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Typically, the value of κx is positive and the value of κy is negative. This means that the
induced inflow is larger at the rear of the disk and on the retreating side. At higher velocities,

λi 	 λm(1 +
r

R
cosψ)

The classical vortex theory gives an estimate of parameters κx and κy. There are a number of
estimates available for these parameters. A popular one is given by Drees (1949)

κx =
4

3
[(1− 1.8μ2)

√
1 + (λ/μ)2 − λ/μ]

κy = −2μ

Dynamic inflow in forward flight is lot more involved than the hover case. A simple dynamic inflow
model is to assume a perturbation to the induced inflow of the following form

Δλi = λu + λ1c
r

R
cosψ + λ1s

r

R
sinψ

where λu represents the uniform perturbation component and λ1c and λ1s represent the linear
varying components in longitudinal and lateral directions over the rotor disk. These dynamic
inflow components are related to the perturbation forces on the rotor disk, namely rotor thrust CT ,
pitching moment CMy and rolling moment CMx. The perturbation forces are obtained from total
forces after subtracting the steady forces. A simple form of relationships between dynamic inflow
components and perturbation forces is obtained using actuator disk theory.⎡⎢⎢⎣
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1

2(λ0+
√

μ2+λ2
0)

0 0

0 2√
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0

0

0 0 2√
μ2+λ2

0
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where τT and τM are time lags in seconds and these are approximately taken as

τT =
.42

μΩ

τM =
.22

μΩ

The λ0 is the rotor steady inflow (λm + μ tanα) and the Ω is the rotational speed (rad/sec).
An alternate form of dynamic inflow is given by Pitt and Peters (1980).

[M ]

⎡⎣ λ̇u

λ̇c

λ̇s

⎤⎦+ [L]−1

⎡⎣ λu

λc

λs

⎤⎦ =

⎡⎣ cT
−CMy

CMx

⎤⎦
The matrices M and L are of size 3 x 3. There are many forms of these matrices; typically for simple
momentum theory, these matrices are diagonal, for other theories they can be fully populated. One
of the popular form of these matrices is

[L] =
1

cv

⎡⎢⎢⎣
1
2 0 15π

64

√
1−sinα
1+sinα

0 −4
1+sinα 0

15π
64

√
1−sinα
1+sinα 0 − −4

1+sinα

⎤⎥⎥⎦

[M ] =

⎡⎣ 128
75π 0 0
0 −16

45π 0
0 0 −16

45π

⎤⎦
where cv is a mass-flow parameter

cv =
μ2 + λ(λ+ λi)√

μ2 + λ2

and α is the rotor disk tilt wrt free stream.
For dynamic analysis of the blade, the dynamic inflow components are treaded as additional

degrees of freedom. The dynamic inflow models are well suited for aero-elastic stability calculations.
For loads prediction a free wake based unsteady lifting line model or detailed CFD analysis is
prefered. These are discussed in the next section.
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Questions

Justify the following:

• The unsteady forces are more involved for a rotary wing than a fixed wing.

• Show the similarities and differences between the basic fluid mechanics equations and the
basic structural mechanics equations.

• Virtual aerodynamic forces play an important role in the pitch dynamics of the blade.

• In a wind tunnel testing, the unsteady aerodynamic forces on a two-dimensional wing model
were measured for a pure pitch motion as well as for a pure vertical vibratory motion. The
discrepancy in the two sets of results was observed for identical angle of attack perturbation.

• The neglecting of the effect of shed wake and other unsteady aerodynamic forces on the
analysis of rotor performance is quite justified, but for higher frequency vibrations one cannot
ignore these forces.

• During the forward flight mode, there is a continuous stretching and compressing of the
vorticity in the shed wake.

• One has to be very careful to include the effect of shed vorticity for higher harmonic vibrations.

• Is there any difference between the induced velocities calculated using the momentum theory
and the lifting line theory?

• For blade aeroelastic analysis (flap-lag), quasi-steady aerodynamics is widely used.

• The shed wake plays a mroe important role in hovering flight than the forward flight.

• There are differences between the thin airfoil theory, lifting line theory, lifting surface theory
and the rotor shed wake modeling.

• The larger the reversed flow region on the retreating side of the rotor, the more the vibration.

• In a circulation-controlled rotor blade, the steady lift is primarily caused by blowing circu-
lation, causing the aerodynamic center to be close to the half-chord position. To reduce the
aerodynamic moment, the elastic axis is positioned at half-chord, but this may result in an
unstable torsional motion (single degree flutter).

• The Theodoresen function C(k) is referred to as a feedback parameter of blade motion.

• There is no Kutta condition for circulation control airfoils.

• Dynamic inflow modeling is an approximate representation for unsteady rotor forces.
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Chapter 5

Aeroelastic Stability in Hover

Flutter is a dynamic aeroelastic instability caused by the interaction of aerodynamic, elastic and
inertial forces. Flutter is self-sustained oscillations which are totally different from resonance or
forced response oscillations. For flutter instability, the external forcing is not needed. The objective
of this chapter is to understand the basic principles of blade flutter in hovering flight. The equations
of motion are simple as compared to the forward flight case, where many periodic terms are present.
The time and response solutions for forward flight are very involved as compared to those of hovering
flight. For hover, it is relatively easy to determine the equilibrium position of the blade and then
to determine a linearized stability analysis. There are many types of flutter. Two of the most
important types of blade flutter are flap-lag and pitch-flap. The designer has to be very careful
with these instabilities and has to establish the safety margin for critical flight conditions. These
aeroelastic instablities will be investigated in detail for simple blade configurations, with two-degree-
of-freedom models. One can interpret these results for complex configurations and then refine these
analyses.

5.1 Flag-Lag Flutter

This aeroelastic instability is unique with rotor blades, and does not take place in fixed wings. The
flap and lag modes participate in causing this instability, of course, with the inclusion of unsteady
aerodynamic forces. The flap mode alone is highly damped because of aerodynamic damping. The
lag mode alone is a low damped mode, but does not become unstable. The flap and lag modes
together are coupled, and the couplings are due to the Coriolis forces and aerodynamic forces.
There is no likelihood of blade flutter if the aerodynamic forces are neglected. Again, there is no
likelihood of flutter if Coriolis forces are neglected. Hence, for blade flutter, both the aerodynamic
forces and the Coriolis forces play an important role.

To understand the phenomena, a simple blade configuration is studied in hovering flight. The
blade is assumed rigid and it undergoes two degrees of motion, flap and lag motions about hinges.
The flap and lag hinges are coincided and are offset by a distance e from the rotation axis. Also,
there are bending springs at the hinges to obtain desired flap and lag frequencies.
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The equations of motion in nondimensional form are,

Flap:
∗∗
β +ν2ββ − 2β0

∗
ζ= γMβ

Lag:
∗∗
ζ +ν2ζ ζ + 2

ωζ0

Ω
ζL

∗
ζ +2β0

∗
β= γM ζ (5.1)

These are perturbation equations. The νβ and νζ are rotating flap and lag frequencies, the ζL
is the viscous damping coefficient due to lag damper, and β0 is the steady flap deflection due to
centrifugal and aerodynamic forces.

ν2ββ0 = γMβ0 +
ω2
β0

Ω2
βp

where βp is a precone angle. The Mβ and M ζ are perturbation aerodynamic moments about
flap and lag hinges and γ is the Lock number. The ωβ0 and ωζ0 are non-rotating flap and lag
frequencies. Sometimes the viscous damping ratio of mechanical lag damper is defined with respect

to the rotating lag frequency. Then the third term in Eq(5.1) becomes 2ζLνζ
∗
ζ. Let us derive

aerodynamic forces.
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Quasisteady theory is used to obtain the aerodynamic forces. The up and uT are flow velocity
components. Forces per unit span are

Fz 	 L =
1

2
ρac(u2T θ − upuT )

Fx 	 L
up
uT

+D =
1

2
ρac
(cd
a
u2T + upuT θ − u2p

)
Perturbations

Fz =
1

2
ρac{δuT (2uT θ − up) + δup(−uT ) + δθ(u2T )}

Fx =
1

2
ρac{δuT (2cd

a
uT + upθ) + δup(uT θ − 2up) + δθ(upuT )}

Let us examine flow components

Steady:

uT = Ωr
uT
ΩR

= x

up = ΩλR
up
ΩR

= λ

Perturbation:

δuT = −rζ̇
δuT
ΩR

= −x
∗
ζ

δup = rβ̇
δup
ΩR

= x
∗
β

δθ = −kpββ − kpζζ

where x = r/R, and λ is the wake induced inflow parameter at the rotor disk. The kpβ and kpζ are
pitch-flap and pitch-lag coupling terms.

Mβ =
1

ρacΩ2R4

∫ R

e
Fz(r − e) dr

For making analysis simple, the effect of e is neglected in the derivation of aerodynamic forces.
This is, however, not a bad assumption.

Mβ =
1

ρacΩ2R4

∫ R

0
Fzr dr
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M ζ =
1

ρacΩ2R4

∫ R

0
Fxr dr

(Mβ)steady =
1

2

∫ 1

0

{( uT
ΩR

)2
θ −
( up
ΩR

)( uT
ΩR

)}
x dx

=
θ

8
− λ

6

It is assumed that the pitch θ as well as inflow ratio γ are uniform along the length of the blade.
The (M ζ)steady is not important since it is negligible, because the drag force is much smaller than
the lift force.

(Mβ)perturbation =
1

ρacΩ2R4

∫ R

0
δFzr dr

=
1

2

∫ 1

0

{
δuT
ΩR

(
2
uT
ΩR

θ − up
ΩR

)
− δup

ΩR

uT
ΩR

+ δθ
( uT
ΩR

)2}
x dx

= −
∗
ζ

(
θ

4
− λ

6

)
−

∗
β

8
− 1

8
(kpββ + kpζζ)

(M ζ)perturbation =
1

ρacΩ2R4

∫ R

0
δFxr dr

=
1

2

∫ 1

0

{
δuT
ΩR

(
2
cd
a

uT
ΩR

+
up
ΩR

θ
)
+

δup
ΩR

( uT
ΩR

θ − 2
up
ΩR

)
+δθ

( uT
ΩR

)2}
x dx

= −
∗
ζ

(
1

4

cd
a

+
λθ

6

)
+

∗
β

(
θ

8
− λ

3

)
− (kpββ + kpζζ

) λ
6

Steady solution

β0 =
γ

ν2βe

(
θ

8
− λ

6

)
+

ω2
β0

Ω2
βp

1

ν2βe

(5.2)

ζ0 	 0

where

ν2βe
= ν2β +

γ

8
kpβ

Perturbation Equations
Flap

∗∗
β +

γ

8

∗
β +(ν2β +

γ

8
kpβ)β +

[
−2β0 + γ

(
θ

4
− λ

6

)] ∗
ζ +kpζ

γ

8
ζ = 0

Lag

∗∗
ζ +

[
2
ωζ0

Ω
ζL + γ

(
cd
4a

+
λθ

6

)] ∗
ζ +
(
ν2ζ +

γ

6
kpζλ

)
ζ +

[
2β0 − γ

(
θ

8
− λ

3

)] ∗
β

+
γ

6
kpβλβ = 0
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Rewriting these equations⎡⎢⎣
∗∗
β

∗∗
ζ

⎤⎥⎦+

[ γ
8 −2β0 + γ

(
θ
4 − λ

6

)
2β0 − γ

(
θ
8 − λ

3

)
2
ωζ0

Ω ζL + γ
(
cd
4a + λθ

6

)
]⎡⎢⎣

∗
β

∗
ζ

⎤⎥⎦

+

[
ν2β + γ

8kpβ
γ
8kpζ

γ
6kpβλ ν2ζ +

γ
6kpζλ

][
β

ζ

]
= 0 (5.3)

For the solution of the above equations (5.3), one needs trim solution i.e., λ and θ. It is assumed
that the wake induced inflow λ for hover is uniform along the length of the blade. For constant
pitch θ, there may be some variation in λ, but is not considered here. Using the simple momentum
theory,

λ = kh

√
cT
2

(5.4)

where cT is the thrust coefficient and kh is an empirical factor to cover tip losses and nonuniform
distribution, typically 1.15. Comparing thrust obtained using momentum theory and blade element
theory, one gets

θ =
6cT
σa

+
3

2
λ (5.5)

Two simple ways to calculate the solution on Eqs. (5.3) are determinant expansion and the eigen-
value solution.

I. Determinant Expansion

Assume flap and lag displacements as

β(ψ) = βesψ

ζ(ψ) = ζesψ

Eqs. (5.3) becomes⎡⎢⎢⎣
s2 + γ

8s+ ν2β + γ
8kpβ (−2β0 +

γθ
4 − γλ

6 )s+ γ
8kpζ

(2β0 − γθ
8 + γλ

3 )s+ γ
6kpβ

s2 + (
2ωζ0

Ω ζL + γ
4
cd
a + γλ

6 θ)s
+ν2ζ +

γ
6kpζλ

⎤⎥⎥⎦
⎡⎣ β

ζ

⎤⎦ = 0

For a nontrivial solution, the determinant of the matrix is zero. This results into

As4 +Bs3 + Cs2 +Ds+E = 0 (5.6)

where

A = 1

B =
γ

8
+ 2

ωζ0

Ω
ζL +

γ

4

cd
a

+
γλ

6
θ

C=γ
8 (2

ωζ0

Ω ζL + γ
4
cd
a + γλ

6 θ) + ν2β + γ
8kpβ + ν2 + γ

6kpζλ

−(−2β0 +
γθ
4 − γλ

6 )(2β0 − γθ
8 + γλ

3 )
(5.7)
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D = (ν2β +
γ

8
kpβ)(

2ωζ0

Ω
ζL +

γ

4

cd
a

+
γλ

6
θ) +

γ

8
(ν2ζ +

γ

6
kpζλ)

−γ

8
kpζ (2β0 −

γθ

8
+

γλ

3
)− γ

6
kpβλ(−2β +

γθ

4
− γλ

4
)

E = (ν2β +
γ

8
kpβ )(ν

2
ζ +

γ

6
kpζλ)− (

γ

8
kpζ )(

γ

6
kpβλ)

At the critical flutter condition, the system damping becomes zero.

s = iω

Substituting in Eq. (5.6),

Aω4 − iBω3 − Cω2 + iDω + E = 0

Setting separately the real and imaginary parts to be zero, gives,

Aω4 − Cω2 + E = 0

−Bω3 +Dω = 0

The second equation gives

ω2 =
D

B

Substituting in the first equation

A(
D

B
)2 −C(

D

B
) +E = 0

or

AD2 − CDB + EB2 = 0

This is the condition for instability. It is called as Routh’s stability criteria.

Solution Procedure

Given the rotor characteristics in terms of coefficients

γ, σ, a, cd, kpβ , kpζ , ζL, νβ, νζ , βp, ωβ0/Ω, ωζ0/Ω

Step 1. Calculate the trim solution. For a given cT
σ calculate λ and θ using Eqs.(5.4) and (5.5).

Step 2. Calculate the steady flap detection β0 using Eq. (5.2).

Step 3. Calculate the constants A, B, C, D, E for Eqs. (5.7).

Step 4. Calculate R = AD2 −BCD +B2E.

If the remainder R is zero it gives critical condition. For a non-zero value of R, select a new cT
σ

and repeat Steps 1-4. Vary cT
σ till R changes sign. Take finer steps of cT

σ to get the critical value
at which R is nearly zero.

Note that Eq.(7) can also be solved using any standard subroutine for polynomial equation.
The solution will give complex roots, the real part represents damping and the imaginary part
presents the damping of the mode.

II. Eigen Analysis
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The perturbation equations of motion (5.3) can be interpreted in a standard spring-mass-damper
form.

[M ]

⎧⎨⎩
∗∗
β
∗∗
ζ

⎫⎬⎭+ [C]

⎧⎨⎩
∗
β
∗
ζ

⎫⎬⎭+ [K]

{
β
ζ

}
= 0 (5.8)

The matrices C and K are not symmetric. These can be transformed into a first order system
(2.14) and solved as an eigenvalue problem. This will give two complex conjugate pairs, i.e., four
eigenvalues. A typical eigenvalue λ will be

λ = λreal + iλimaginary

(Note this eigenvalue λ is totally different from inflow λ.) The real part of the eigenvalue represents
damping of the mode and the imaginary part represents the frequency of the mode.

If any one of the eigenvalue has a positive real part, the blade is unstable. The λR = 0 gives
the stability boundary. Also note that if the frequency becomes zero in the unstable region, it
represents static divergence condition.

This figure shows the flap-lag flutter stability boundaries as a function of thrust level obtained
for a rotor blade in hovering flight. The following rotor parameters have been used for calculations

γ = 8.0 σ = .05 kpβ = kpζ = 0

βp = 0 a = 2π cd = .01 ζL = 0

The flutter boundary is calculated using the determinant expansion. For a particular thrust
level represented by cT

σ , the blade is unstable inside the elliptic graph. The less damped lag mode
becomes unstable and the damping ratio of the lag mode is plotted on the next figure for a fixed
flap frequency, and for varying lag frequencies. These results are obtained using eigen-analysis. It
is interesting to note that the lag mode instability is soft in nature and can be easily stabilized
with the inclusion of a small amount of structural damping in the lag mode. Flap-lag flutter is
an instability of lag mode which occurs at lag frequency. Because of low reduced frequencies, the
unsteady effects play less important role here. The application of quasisteady aerodynamics theory
appears adequate to predict flap-lag flutter. For hingeless rotors with no pitch-flap or pitch-lag
coupling or flap-lag structural coupling, the critical condition for flap-lag stability occurs with zero
precone and

flap frequency = lag frequency = 1.15/rev
The rotor is stable for a flap frequency of less than 1/rev or greater than 1.4/rev.
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5.1.1 Comment on Flap-Lag Flutter

Some general remarks are made on flap-lag flutter.

1. Articulated Rotor
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Assume the blade with kpβ = kpζ = 0 and with no hinge offset, e = 0. Gives νβ = 1. The
steady solution is given in Eq. (5.2),

β0 =
γθ

8
− γλ

6

Let us examine the perturbation equations in Eq. (5.3),

coupling term in flap equation = (−2β0 +
γθ
4 − γλ

6 )
∗
ζ

=
γλ

6

∗
ζ

This term is small and can be neglected. This nearly uncouples the flap equation from the
lag equation. It has been seen that the articulated blade with zero hinge offset, the blade is
stable from the aeroelastic stability. However, the coupling term in the lag equation plays an
important role for the determination of vibration and loads.

2. Ideal Precone

An ideal precone is the initial blade coning setting so that at the operating condition, the
moments due to centrifugal force and aerodynamic force balance out, result in

β0 ≈ βp

From steady solution, Eq.(5.2)

β0 =
1

ν2β

[
ω2
β0

Ω2
βp +

γθ

8
− γλ

6

]
(assume kpbeta = kpζ = 0)

ν2β = 1 +
3

2

e

R
+

ω2
β0

Ω2

This gives

βp =
γ

1 + 3
2e

(
θ

8
− λ

6

)
and this does not depend on nonrotating flap frequency. Again the flap mode gets nearly un-
coupled from lag mode resulting in a stable blade from flap-lag flutter instability. Otherwise,
precone can be destabilizing.

3. Thrust Level

Flap-lag flutter is a high thrust phenomena. To achieve a high thrust level in hover, a high
collective pitch is required. Also the inflow λ is higher for a higher thrust level. The result
of this all is that the coupling terms particular in the lag equation becomes larger with
higher thrust. At zero thrust, the coupling is minimum and the blade is free from aeroelastic
instability.

4. Elastic Coupling

If the section principal axes do not lie along the flap and lag axes, then the flap and lag
equations get coupled structurally due to elastic coupling. The elastic coupling allows the
transfer of kinetic energy from weakly damped lag mode to well damped flap mode. The
soft lag rotors get stabilized with small coupling. The stiff lag rotors on the other hand
get destabilized with the small coupling term but generally become stabilized with the large
coupling term.
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5. Matched Stiffness Rotors

For matched stiffness rotors, the flap bending stiffness EIx is equal to the lag stiffness EIz.
This is generally achieved through a circular cross-section at the root of the blade. This means
that the nonrotating flap and lag frequencies are equal. Not shown so far, but it results in
uncoupling, the bending and torsion equations structurally. This means that there is a less
influence of torsion on flap-lag stability. Thus the matched stiffness condition stabilizes the
blades.

6. Structural Damping

The flap mode is highly damped because of aerodynamic damping. The structural damping
in the flap mode is unimportant. On the other hand, the lag mode is weakly damped and
the flag-lap mode is instability of the lag mode. This instability is soft in nature and can
stabilized damping in the lag mode. The other possibility is to add a mechanical lag damper
at the root hinge to stabilize the blade.

7. Hinge Sequence

The earlier analysis is made for lag hinge followed by flap hinge outboard, other possibility
is flap hinge followed by lag hinge outboard. The changed hinge sequence will introduce
some extra nonlinear terms, in particular, in the aerodynamic forces. The flap-lag aeroelastic
stability is very sensitive to small terms so the results can be somewhat different due to a
change in hinge sequence (Kaza & Kvaternik.)

8. Pitch-Flap Coupling kpβ

Pitch-flap coupling, due to torsion dynamics or kinematic coupling is introduced in the two-
degree-of-freedom problem by assuming a feather motion of the form

Δθ = −kpββ

The pitch-flap coupling kpβ is positive for flap up/pitch down motion. The positive value
of pitch-flap coupling raises the flap frequency. However, its influence on flap-lag stability is
small.

9. Pitch-Lag Coupling kpζ

Pitch-lag coupling due to torsion dynamics or kinematic coupling is introduced in two-degree
model by assuming a feather motion of the form

Δθ = −kpζζ

The pitch-lag kpζ is positive for lag back-pitch down motion. Generally, a negative coupling
is stabilizing analysis.

10. Quasistatic Torsion Model

For low to moderate torsional frequencies one has to include torsion degree of motion for
stability analysis. For high torsional frequencies (typically νθ > 5) the feathering inertia and
damping terms are generally small and these do not influence the flap-lag instability. Either
one can drop the torsion effect all together or one can include approximately the stiffness
terms through a quasistatic torsion model assumption. Let us look at the flap-lag torsion
equations.

[M ]

⎧⎨⎩
β̈

ζ̈

θ̈

⎫⎬⎭+ [C]

⎧⎨⎩
β̇

ζ̇

θ̇

⎫⎬⎭+ [k]

⎧⎨⎩
β
ζ
θ

⎫⎬⎭ = 0 (5.9)
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keeping only static stiffness terms in the torsion equation, one gets

k31β + k32ζ + k33θ = 0

θ = −k31
k33

β − k32
k33

ζ (5.10)

Replace θ from the flap and lag equations using above expression. Again this results into a
two-degree system. The effective pitch-flap and pitch-lag coupling terms due to torsion mode
have been retained. These coupling terms are primarily caused by aerodynamic forces.

11. Stall

The flap-lag instability generally takes place at a high pitch setting, which also means high
angle of attack. There is the likehood of getting into stalled flow for part of the rotor blade.
At stall, there is a loss of flap damping because of the reduced lift-curve slope.

12. Compressibility

Near the tip of the blade, there is a high speed region, and sometimes there can be transonic
flow conditions. The compressibility effects are important near the tip, because of larger
dynamic pressure there. Also due to transonic conditions, there is a shift in aerodynamic
center from 1/4-chord to 1/2-chord, resulting in a large torsional moment. Also there is a
large increase in the drag force. The compressibility effects can be quite destabilizing.

Ex. In a circulating controlled rotor blade, the aerodynamic characteristics are functions of
geometric angle as well as blowing,

cl = c1α+ c2cμ

cd = cd0 + d1cμ

Using quasisteady aerodynamics, derive the equations of motion for blade flap-lag aeroelastic sta-
bility in hover.

Flap-Lag equations

∗∗
β −ν2ββ − 2β0

∗
ζ= γMβ +

ω2
β0

Ω2
βp

∗∗
ζ −ν2ζ ζ − 2β0

∗
β +2ζL

ωβ0

Ω
ζ = γM ζ

FZ =
1

2
ρc(cluTV − cdupV )

δFZ =
1

2
ρc(δcluTV + clδuTV + cluT δV − δcdupV

−cdδupV − cdupδV )

δcl = clαδα + clμδcμ

δcd = cduδcμ

δcμ = −2cμ
δV

V

δV =
1

V
(uT δuT + upδup)

α = θ − up
uT
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δα = δθ − 1

V 2
(uT δup − upδuT )

δFz
1
2ρc

= δuT

{
upuT
V

(c1 + d1cμ − cd0) + (
u2T
V

+ V )(θ − up
uT

)c1

−(
u2T
V

− V )c2cμ

}
+δup

{
−u2T

V
c1 +

upuT
V

c1(θ − up
uT

)− upuT
V

c2cμ

+
u2p
V

(d1cμ − cd0)− V (cd0 + d1cμ)

}
+δθ(c1uTV )

Fx =
1

2
ρc(clupV + cduTV )

δFx
1
2ρc

= δuT

{
c1
u2p
V

+
upuT
V

c1(θ − up
uT

)− upuT
V

c2cμ

+
u2T
V

(cd0 − d1cμ) + V (cd0 + d1cμ)

}
+δup

{
−upuT

V
(c1 + d1cμ − cd0) + (

u2p
V

+ V )c1(θ − up
uT

)

−u2p
V

c2cμ

}
δθ(c1upV )

For Hover
uT
ΩR

= x,
up
ΩR

= λ

δuT
ΩR

= −x
∗
ζ,

δup
ΩR

= x
∗
β δθ = −kpββ − kpζζ

V ≈ uT

Mβ =
1

ρacR4Ω2

∫ R

0
r δFZ dr

M ζ =
1

ρacR4Ω2

∫ R

0
r δFx dr

Perturbation Equations are
Flap:

∗∗
β +γ(

1

8
− 1

6
λθ − 1

8

cd0
c1

+
1

6

c2
c1
cμ)

∗
β +(ν2β +

γ

8
kpβ)β

+

{
−2β0 + γ(

θ

4
− λ

6
− 1

8

c2
c1
cμ +

1

6

d1
c1

cμ − 1

6

cd0
c1

)

} ∗
ζ +

1

8
kpζζ = 0

Lag:

∗∗
ζ +

{
2ωζ0

Ω
ζL + γ(

cd0
4c1

+
λθ

6
− 1

6

c2
c1
cμλ)

} ∗
ζ +(ν2ζ +

γ

6
kpζλ)ζ

+

{
2β0 − γ(

θ

8
− 1

6

d1
c1

cμ +
1

6

cd0
c1

)

} ∗
β +

γ

6
kpβλβ = 0
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5.2 Pitch-Flap Instabilities

The flap and torsion modes participate causing this instability. This flutter instability is also
called as classical or conventional flutter because a similar type flutter is also called as classical or
conventional flutter because a similar type flutter instability takes place in fixed wings. However,
there are certain differences for rotor blade flutter from fixed wing flutter.

i) There is an important coupling due to centrifugal force if there is a cg offset from the elastic
axis.

ii) There is a tennis racket effect in the torsion equation.

iii) Aerodynamic forces are more involved, in particular, returning wake can be important here.

iv) Periodic forces are present if forward flight is also considered.

The result of all this is that one may not be able to apply the fixed wing results here. Let us
investigate this problem for a simple blade configuration with two degrees of motion, rigid flap
about flap hinge and rigid pitch about pitch bearing. The torsion bearing is assumed to be located
outboard of the flap hinge (which is typical). The study is carried out for hovering flight.

The equations of motion for uniform blades in nondimensional form are

Flap:
∗∗
β +ν2ββ − 3

2

XI

R
(
∗∗
θ +θ) = γMβ +

ω2
β0

Ω2
βp (5.11)

Pitch: I∗
f
(
∗∗
θ +ν2θθ + 2

ωθ0

Ω
ζθ

∗
θ)− 3

2

xI
R

(
∗∗
β +β) +Kpβ (

Wθ0

Ω
)2I∗

f
β

= γMθ + I∗
f

ω2
θ0

Ω2
θcon

where I∗
f
= If/Ib, the If is the feather moment of inertia and Ib is the flap moment of inertia.

The ωβ0 and ωθ0 are the nonrotating flap and torsion frequencies. The ζθ is the viscous damping
coefficient in the pitch mode with respect to nonrotating frequency and Kpβ is the pitch-flap
coupling. The νβ and νθ are respectively, the rotating natural frequencies of flap and torsion
modes.

ν2β = 1 +
3

2

e

R
+

ω2
β0

Ω2
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ν2θ = 1 +
ω2
θ0

Ω2

where e is the offset for flap hinge. The θcon is the control system command pitch.

Let us examine the aerodynamic forces

Mβ ≈ 1

ρacΩ2R4

∫ R

0
rL dr (5.12)

Mθ ≈ 1

ρacΩ2R4

[∫ R

0
(−xa)Ldr +MNc

]
where xa is the chordwise offset of aerodynamic center from elastic axis, positive towards the trailing
edge. The airfoils used for the rotor blades are generally symmetric and therefore the aerodynamic
moment coefficient cmac is zero. The MNc is the noncirculatory aerodynamic moment which is
important for the pitch dynamics. The lift force per unit length is

(5.13)

where C(k) is a lift deficiency function and it depends on the reduced frequency k = ωb
U . For

simplifying the analysis, a representative value of C(k) is taken at the 3/4-radius position and
assumed constant for the blade. The perturbation aerodynamic force is

(Mβ)perturbation =
1

ρacΩ2R4

∫ R

0
δL r dr

1

2

∫ 1

0
C(k)

{
δuT
ΩR

(2
uT
ΩR

θ − up
ΩR

)− δup
ΩR

uT
ΩR

+ δθ(
uT
ΩR

)2
}
x dx

Mθ)perturbation = −1

2

∫ 2

0

xa
R

C(k)

{
δuT
ΩR

(2
uT
ΩR

θ − up
ΩR

)− δup
ΩR

uT
ΩR

+δθ(
uT
ΩR

)2
}
dx+Mnc

and

Mnc =
1

ρacΩ2R4

{
1

4
πρΩ2c3[r(

1

4
+

xa
c
)β̈ − r(

1

2
+

xa
c
)θ̇
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−c(
3

32
+

1

2

xa
c
)θ̈]

}
The steady and perturbation flow components are

uT
ΩR

= x,
up
ΩR

= λ

δuT
ΩR

= 0,
δup
ΩR

= x
∗
β − c

R
(
1

2
+

xa
c
)

∗
θ

δθ = θ (elastic)

Perturbation moments become

Mβ =
1

2
C

{
−1

4

∗
β +

1

3

c

R
(
1

2
+

xa
c
)

∗
θ +

1

4
θ

}
Mθ = −1

2
C
xa
R

{
−1

3

∗
β +

1

2

c

R
(
1

2
+

xa
c
)

∗
θ +

1

3
θ

}
− 1

16
(
c

R
)2(

1

2
+

xa
c
)
∗
θ (5.14)

The equations of motion (5.11) become[
1 −3

2
xI
R

−3
2
xI
R I∗

f

][ ∗∗
β
∗∗
θ

]
+

⎡⎢⎢⎣
γ
8C(k) − γ

12
c
R(1 + 2xa

c )C(k)− 1
24

C
R

−γ
6

c
R

xa
c C(k)

γ
8 (

c
R )

2 xa
c (1 + 2xa

c )C(k)
+ 1

16(
c
R )

2(12 +
xa
c ) + 2I∗

f

ωθ0
Ω ζθ

⎤⎥⎥⎦
[ ∗

β
∗
θ

]

+

[
ν2β −γ

8C(k)− 3
2
xI
R

−3
2
xI
R kpβ I∗

f
ν2θ + γ

6
c
R

xa
c C(k)

][
β
θ

]
= 0 (5.15)

These are second order equations expressed in standard spring-mass-damper form. These can
be solved many different ways. Two possible ways are:

(a) Expansion of the determinant
(b) Eigen Analysis

Two types of instabilities are possible
(a) Static instability (Divergence)
(b) Dynamic instability (Flutter)

Let us examine each one separately.

5.2.1 Pitch Divergence

At a particular operating condition, if a disturbance is given to the blade, the elastic pitch becomes
larger and larger till the blade fails. This is a static instability and the dynamics of the blade does
not play any role. It is only the pitch mode which becomes unstable. One can solve the governing
pitch-flap equations (5.15) as an eigenvalue problem. This will result into two complex conjugates
pairs.
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eigen λ = λReal + iλImag.

For divergence condition

λReal ≥ 0

and

λImag. = 0

Divergence is a zero frequency condition. For divergence, the acceleration and velocity terms
are not important. Also, C(k) = 1.[

ν2β −γ
8 − 3

2
xI
R

−3
2
xI
R I∗

f
ν2θ +

γ
6
xa
R

] [
β
θ

]
= 0

Setting the determinant to be zero, gives the critical condition

R = ν2β(I∗
f
− ν2θ +

γ

6

xa
R

)−−3

2

xI
R

(
γ

8
+

3

2

xI
R

)

= 0 gives the critical condition.
If R > 0, the system is stable or

3

16
γ
xI
R

− γ

6
ν2β

xa
R

< ν2βI∗
f
ν2θ

xI
R

− 8

9
ν2β

xa
R

<
16

3γ
ν2βI∗

f
ν2θ

8

9
ν2β ≈ 1

Thus for the stable blade from pitch divergence

xI − xa
R

<
16

3γ
ν2βI∗

f
ν2θ

The pitch divergence depends on the chordwise offset of the cg after aerodynamic center. The
elastic axis location is unimportant for the divergence boundary.

Let us consider a typical rotor with the following properties

γ = 8 νβ = 1.1 I∗
f
= .001

R

c
= 10
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For the unstable blade

xa − xI
c

≥ R

c
× 16

3
× 1

8
× 1.21 × ν2θ × 0.001 ≈ .01ν2θ

The right hand side is a positive number. The aerodynamic center is quite close to 1/4-chord. Thus
if cg falls on 1/4-chord or ahead of 1/4-chord, there is no possibility of pitch divergence.
There are two important parameters for pitch divergence

(a) cg offset from 1/4-chord
(b) torsional frequency ωθ

Ω
It should be kept in mind that for fixed wing, the divergence depends on aerodynamic center

offset from the elastic axis. For the rotor blade, the elastic axis position is unimportant and
divergence can happen even if the aerodynamic center and elastic axis are coincident. This is
because in rotors, as blade twists, the lift increases and this increases steady flap deflection β,
resulting in larger twisting action due to the centrifugal force component (β × CF ).

5.2.2 Flutter

The self-excited oscillations are caused by the coupling of pitch and flap modes. The flutter bound-
ary is defined by the zero damping condition. This flutter does not depend on the thrust level and
in fact, it can take place at zero thrust. The rotor trim is not required for the calculation of flutter
speed.

There are two simple ways to solve the dynamic pitch and flap equations (5.15), either the
determinant expansion or as an eigenvalue problem. Let us discuss the first method.
Determinant Expansion:

Assume the perturbation motion as

β(ψ) = βesψ

θ(ψ) = θesψ

Substituting in the governing Eq. (5.15),⎡⎢⎢⎢⎢⎢⎣
s2 + γ

8C(k)s+ ν2β
−3

2
xI
R s2 − γ

12
c
R (1 + 2xa

c )C(k)s

−γ
8C(k)− 3

2
xI
R

−3
2
xI
R s2 γ6

xa
R C(k)s

−3
2
xI
R

I∗
f
s2 + γ

8 (
c
R )

2 xa
c (1 + 2xa

R C(k)s

+I∗
f
ν2θ + γ

6
xa
R C(k) + 2I∗

f

ωθ0
Ω ζθ

⎤⎥⎥⎥⎥⎥⎦
[
β
θ

]
= 0

Expansion of the determinant will result in

As4 +Bs3 + Cs2 +Ds+E = 0

Routh’s stability criteria is

R = AD2 −BCD +B2E > 0 for stable system.

Neglecting the shed wake effect. The above stability criteria can be put in an approximate form as

xI − xa
R

< (
c

R
)2(

1

3
√
2
+

γ

48
) for stable blade

Again it is the offset of cg behind the aerodynamic center that is important. If cg lies on the
1/4-chord or ahead of it, there is no likelihood of flutter.
Eigen Analysis
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The governing equations (5.15) are second order equations and can be put in a standard spring-
mass-damper form and these can be solved as an eigenvalue problem. The solution will give two
complex conjugate pairs, i.e, four eigen-values.

Eigenvalue λ = λReal + iλImag.

If any of the eigenvalues has a positive real part, that system is unstable. The flutter boundary is
marked where the real part of the eigenvalue is zero.

Flutter stability is increased by

(a) Increasing the control stiffness, i.e. ωθ.

(b) Reducing xI , i.e. bringing cg closer to the elastic axis. A conservative approach is to keep cg
on the aerodynamic center.

(c) Introducing damping in the torsion mode either through a mechanical damper or attaching
damping tape on the control system.
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Ex. The characteristics of an articulated rotor with 6% hinge offset are given as

γ = 8.0 I∗
f
= .001

c

R
= 20

The blade cg and elastic axis lies respectively at 35% and 20% of chord. If the nonrotating torsional
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frequency is 3 times the rotational speed.

(a) Find out whether the blade is stable from pitch divergence or not.

(b) If the elastic axis is brought to 25% chord position, you would like to find whether the blade
can get into pitch-flap flutter. For simplicity assume C(k)=1 C(k) = 1

(a) For pitch divergence,

xI − xA
R

<
16

3γ
ν2βI∗

f
ν2θ for stable blade

ν2β = 1 +
3

2
× .06 = 1.09

RHS =
16

3× 8
× 1.09 × .001 × 10 = .0073

LHS = .10× 1

20
= .005

Blade is stable

(b) Flutter Eqs.[
1 −.0075

−.0075 .001

] [
β
θ

]
+

[
1 −.033
0 .000625

] [
β
θ

]
+

[
1.09 −1.0

−.0075 .01

] [
β
θ

]
= 0

Determinant becomes∣∣∣∣ s2s+ 1.09 −.0075s2 − 1.0
−.0075s2 − .0075 −.001s2 + .000625s + .01

∣∣∣∣ = 0

= As4 +Bs3 + Cs2 +Ds+ E

A = .00094 B = .00075 C = .0035
D = .00975E = .0034

R = AD2 −BCD +B2E = .66 × 10−8

Blade stable (marginal)

5.3 Flap-Lag-Torsion Flutter

The earlier two-degrees of freedom representation of flap-lag and pitch-flap blades is quite analogous
to the fixed wing “typical section” analysis that treats a two-dimensional wing undergoing rigid
body pitch and heave motions. An improvement over the two-degree model will be to introduce the
third degree of motion. Thus, the blade undergoes rigid body flap, lag and feather rotations about
hinges at the blade root, with hinge springs to obtain arbitrary natural frequencies. With this three-
degree flap-lag-torsion model, both flap-lag and pitch-flap instabilities are covered. The equations
of motion for this system are covered in 3.10 and the generic aerodynamic forces are defined in 4.6.
This will result into three second order equations in terms of β, ζ, and θ (like Eqs. (5.3)) and these
equations can be solved as an eigenvalue problem. Again the nature of the eigenvalues tells whether
the system is stable or not. For a three-degree model, the hinge sequence is quite important, and
the results can be quite different for different hinge sequences. The suitability of a particular hinge
sequence depends on the physical configuration of the blade. For most blade configurations, a hinge
sequence of inboard flap, followed by lag and then the torsion outboard, appears quite adequate.
For analysis details, see Chopra (83). These simple two-degree and three-degree models help to




