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Optimal State Feedback for Stochastic System
System z(k+ 1) = Ax(k) + Bu(k) + &1 (k)

Objective: Design a state feedback u(k) = f(x(k))that minimizes
p—1
E > {z"(0)Qu(i) + v (i)Ru(i)} + =" (p)Qex(p)
i=0

Assume that the state is perfectly measured and that ¢1(k)is a zero-mean

Gaussian white noise with covariance R;.

Open-loop optimal feedback law (MPC) and closed-loop optimal control

law (DP) can give different results in general. Will it be in this case?



Open-loop Optimal Solution

As before,
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Short-hand notations as before:
X =8%2(0)+S"U + S°€

We get

Vo (z(0);U) =E [X'T*X + U T U]

_E [(5%(0) +SU+ 57T T (S%2(0) + SUU + S°E) + uTruu}

— (8%2(0) + SU)T T (8%2(0) + S“U) + UTT U + E [gTssT rwssg}
This differs from the deterministic case only in the last term.

Note that

K |£Tse Pwseg} [trace {38 rfUS%TgH — trace {saTrwsaRl}



Since the last term does not involve U, the solution is the same as the

deterministic case:

U= — (suTrwSU)_l S¥ T8,

T T T —1 T
VO(Q;O) :xg [839 ST _ g TTQu (Su [*Su —I—Fu) St Fxg;c] To+

trace {SsT I'*S* R, }



Dynamic Programming

Vp—1(z(p—1)) = in T {z'(p—=1)Qz(p—1) +u' (p — ) Ru(p — 1)+

=" (p)S(p)z(p)|z(p — 1)}

v

Vo—o(xz(p—2)) = ug?li_%)E {xT(p —2)Qz(p —2) +uT(p— 2)Ru(p — 2)+

Vo—i(z(p—1))[x(p—2)}



CLOFC-DP

Key result: Optimal feedback law is the same as the deterministic case

u(k) = — (BTS(k+1)B+R) " BTS(k+1)Az(k), k=p—1,...,0
where

S(k) =ATS(k+ 1A+ Q
~ ATS(k+1)B(BTS(k+1)B+R)  BTS(k+1)A

Optimal cost-to-go

Vo(zg) = 23 S(0)xg + Ztraee{S(j)Rl}

g=1



Constant Setpoint Tracking

Consider the performance function of

o

> (r(k) = y(k)T Qe(r(k) — y(k)) +u” (k) Ru(k)

k=0

Then, one can reformulate this as a state regulation problem by writing the

model as [x(k+1) ] :[A 0 ] [x(k) ]+[B ]u(k)

r(k+1) 0 I r(k) 0
U N Sl FUSAS LA A )
Z(k+1) A (k) B(k)
k) —y(k)=[ —-C I [ jfg’lg ]
Q=[-C 11" Q.[-C 1]

At steady state, the input is not zero for offset-free tracking.

Au = 0 at steady state for integral action. The above formulation does

not guarantee integral action.



The following reformulation ensures integral action:

> (r(k) = y(k)T Qe(r(k) — y(k)) + Au” (k) RAu(k)
k=0
The state needs to be augmented with previous input move

Fk)=[ x(k) (k) uk-1)]"

With this definition
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The problem with this formulation is that the state (k) is not

stabilizable. Hence, the RDE is not guaranteed to converge.



Remedy: Model Differencing

e(k+1)=yk+1) —rk+1)

— e(k) + Ay(k + 1) —WO: e(k) + CAAz(k) + CBAu(k)
1 Aef/ikjﬁ) lzl CAA 9‘ “ Aeg(clil;) l*l CBB lAu(k)
F(ht1) i (k) B

with this new definition:



Disturbance Rejection

The objective function remains the same, though the linear model is:
x(k+ 1) = Ax(k) + Bu(k) + Bad(k)

As before, the steady state value of %« is non-zero as long as the

disturbance is non-zero.

As a result, Au(k) needs to be penalized as in the constant set point

tracking case. The following two re-definitions will achieve this:

(k) = [ u(a];(f)l) ] and (k) = [ A@f}i’)‘“) ]

In this case, there are no issues with stabilizability of the new state z(k)

and both the reformulations work.
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