Chapter 7
Cells Maintain Their Internal Environments

Cell Membrane

- Components of cell membrane

- Lipid: phospholipids, sterols
- Embedded proteins : receptor proteins, adhesion proteins, recognition proteins, transport proteins
- Transmembrane proteins
- Attachment to cytosolic or exterior face of membrane

Cell Membrane

- Membrane-spanning domains of membrane proteins
- Hydrophobic surface and hydrophilic core
- Transport of sugars, amino acids and ions (hydrophilic) through the hydrophilic core of transport proteins

Transport Across Membrane

- Hydrophobic substances and very small molecules can cross the membrane unassisted.
- Diffusion
- Free diffusion by concentration gradient
- Hydrophobic substance, nonpolar molecules $\left(\mathrm{O}_{2}\right.$, CO_{2}), small polar molecules (water, ethanol)

Transport Proteins

- Channel proteins
- Transport of ions ($\left.\mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Ca}^{2+}, \mathrm{Cl}^{-}\right)$
- Along their concentration gradients
- Aquaporin: channel for water (much faster than the diffusion across the membrane)
- Gated channel

Transport Proteins

- Carrier proteins
- Escort energy substrates and metabolic building blocks, such as glucose, amino acids, and nucleosides
- Along the concentration gradient
- Slower than simple diffusion

Active Transport

- Pump
- One type of proteins that uses energy to move substances
- Transport against the concentration gradient
- Different concentrations between intracellular and extracellular fluids are maintained through pumps.

Table 7.1 Approximate concentrations of ions in intracellular and extracellular fluids

Ion ${ }^{\boldsymbol{a}}$	Intracellular concn (mM)	Interstitial concn (mM)
Sodium $\left(\mathrm{Na}^{+}\right)$	10	145
Potassium $\left(\mathrm{K}^{+}\right)$	150	5
Calcium $\left(\mathrm{Ca}^{2+}\right)$	0	3
Chloride $\left(\mathrm{C}^{-}\right)$	5	110

[^0]
Pump

- Two different energy sources
- ATP
-- e.g. Pumping Na+ and K^{+}against their gradients using ATP
($\mathrm{Na}^{+} / \mathrm{K}^{+}$ATPase)
- Energy inherent in gradient

Transport Proteins in Animals

- Nerve Impulses

(a) Multipolar interneuron

(b) Motor neuron

Nerve Impulses

- Key players: $\mathrm{Na}^{+}, \mathrm{K}^{+}$
- Resting membrane potential of -70 mV
- (Some K+ channels are open.)
- Opening of Na^{+}channel by stimulation
- Generation of action potential 50 mV
(a) Resting state (cytosolic face negative)

Exterior

(b) Depolarized state (cytosolic face positive)

- Opening of voltage-gated K^{+}channel
- Repolarization of membrane potential
- Restoration of membrane potential by $\mathrm{Na}^{+} / \mathrm{K}^{+}$ATPase

Muscle Contraction

- Key player: Ca^{2+}
- Inside muscle cells, Ca^{2+} are packed into a membrane-bound compartment called the sarcoplasmic reticulum (SR).
- When the nerve impulse (powered by $\mathrm{Na}^{+} / \mathrm{K}^{+}$ gradients) reaches the muscle cells, it triggers Ca^{2+} channel in the SR to open.
- Opening of Ca^{2+} channel in SR
\rightarrow Release of Ca^{2+}
\rightarrow Released Ca^{2+} binding to troponin (protein)
\rightarrow Muscle contraction

When Gradients Fail

Electrocardiogram (ECG)

- Long QT (LQT) syndrome
- Long recovery periods before new heart contraction
- Cell to cell variation of recovery periods
- Can cause arrhythmia (lack of rhythm)
- Defects in K^{+}or Na^{+}channels

When Gradients Fail

- Inherited heart failure

- Mutation in the regulatory protein of Ca^{2+} channel in SR (The pump can not transport Ca^{2+} back into SR)

Regulatory protein inhibits the calcium pump.

Phosphorylated regulatory protein allows pump to operate.

Mutant regulatory protein cannot be phosphorylated; calcium pumping is blocked.

Pumps, Carriers, and Nutrient Distribution

- Nutrient components must move from the intestine to the blood stream through intestinal epithelium.
- Epithelium
- The body's version of a cell's membrane
- Epithelial cells
- Cells cover body surfaces and line internal organs
- Intestinal epithelium
- Cells lining the digestive tract

Intestinal Epithelium

- Microvilli
- Facing the intestinal track
- Enzymes and transport proteins are located.
- The enzymes break down complex sugars into simple sugars.

$$
\text { lactose, sucrose } \rightarrow \text { glucose }
$$

- Tight Junction between Cells
- Preventing transport of large molecules
- Barrier between the intestinal contents and the interstitial fluid
- Extracellular Matrix
- Supporting epithelial cells
- Tough network of extracellular proteins and carbohydrates

Matrix and interstitial fluid

Transport of Nutrients across Epithelial Cells

Transport of Nutrients across Epithelial Cells

- Intestinal side
- active transport of glucose powered by Na^{+}gradient
- co-transport of two Na^{+} and one glucose molecule
- Interstitial fluid side
- glucose
-- by carrier proteins
- Na^{+}
-- by Na+/K+ ATPase
- Capillary wall
- Glucose diffusion
- Designed to let all but the large molecules (e.g. blood proteins) cross over

Cells, Salts, and Water Balance

- Movement of water across the cell
- Water movement to equalize the total concentration of solutes
- Osmosis: movement of water across membranes
- Osmotic balance: no net water movement

Cell is in osmotic balance with extracellular fluid.

Cell is higher in solutes than is extracellular fluid Water enters the cell.

Extracellular fluid is higher in solutes than higher in solutes
is the cell. Water is the cell. Water
leaves the cell.

- Cells in osmotic balance
- Cells contain many proteins, amino acids, and other small molecules.
- Concentration of total ions is higher outside than inside cells to keep the osmotic balance.

Water follows salt

- Water in human body (75 kg man)
- 45 L of water
- 30 L : intracellular
- 3.75 L: blood plasma | Almost same solute (salt), since blood
- 11.25 L : extracellular fluid capillaries are permeable to small molecules
- Water balance
- Lactose intolerance
- Lack of lactase breaking lactose into glucose and galactose
- No digestion of lactose \rightarrow movement of water into the intestine
- Metabolize of lactose by intestinal bacteria \rightarrow gas production
- High-magnesium laxative : relieving constipation
- Cystic fibrosis (by impaired salt transport)
- Mutation in Cl^{-}channel : reduced water secretion \rightarrow thick mucus in epithelia of respiratory and gastrointestinal tracts

Biotechnology

- Rehydration therapy
- Diarrhea: kill 2 million children/year by dehydration
- Solution of sugar and salt is effective to treat dehydration: e.g. sports drinks
- Enzyme treatments
- Lactose intolerance
- Add lactase (β-galactosidase) in milk or dairy products
- When you eat a bean-rich meal in a Mexican restaurant
- Beans contain galactose-containing sugars (galactosides)
- Humans lack enzymes for breaking down galactosides.
- Microbial munching on galactosides \rightarrow gas production
- Buy α-galactosidase (Beano) in a drugstore

[^0]: ${ }^{a}$ The most abundant ions in interstitial fluid are sodium and chloride ions, which are the components of table salt.

