
CHAPTER 11

INDEXING & HASHING

Intro to DB

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 11 - 2

Chapter 11: Indexing and Hashing

▪ Basic Concepts

▪ Ordered Indices

▪ B+-Tree Index Files

▪ B-Tree Index Files

▪ Static Hashing

▪ Dynamic Hashing

▪ Comparison of Ordered Indexing and Hashing

▪ Index Definition in SQL

▪ Multiple-Key Access

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 11 - 3

▪ to speed up access to desired data

▪ Search Key

 attribute (or set of attributes) used to look up records in a file

▪ Index file

 consists of records (called index entries) of the form

▪ Index files are typically much smaller than the original file

▪ Two basic kinds of indices:

 Ordered indices: search keys are stored in sorted order

 Hash indices: search keys are distributed uniformly across “buckets” using a “hash function”.

Basic Concepts

search-key pointer

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 11 - 4

Index Evaluation Metrics

▪ Access types supported

 Point queries: specific value for search key

 Range queries: search key value falling in a specified range

▪ Time

 Access time

 Insertion time

 Deletion time

▪ Space overhead

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 11 - 5

Ordered Indices

▪ Primary index

 index whose search key specifies the sequential order of the file

 also called clustering index

 The search key of a primary index is usually but not necessarily the primary key.

▪ Secondary index

 an index whose search key specifies an order different from the sequential order of the file

 also called non-clustering index

▪ Index-sequential file

 ordered sequential file with a primary index.

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 11 - 6

Dense Index Files

▪ Dense index

 Index record appears for every search-key value in the file.

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 11 - 7

Sparse Index Files

▪ Sparse Index

contains index records for only some search-key values

 Applicable when records are sequentially ordered on search-key

 Less space and less maintenance overhead for insertions/deletions.

 Generally slower than dense index for locating records.

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 11 - 8

Multilevel Index

▪ If primary index does not fit in memory, access

becomes expensive

▪ Treat primary index kept on disk as a sequential file

and construct a sparse index on it.

 outer index – a sparse index of primary index

 inner index – the primary index file

▪ If outer index is still too large to fit in main memory,

another level of index can be created, and so on.

▪ Indices at all levels must be updated on insertion or

deletion from the file

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 11 - 9

Index Update: Deletion

▪ Index entry must be updated accordingly

 If deleted record was the only record in the file with its particular search-key value, the search-key is

deleted from the index also.

 for sparse indices – if an entry for the search key exists in the index, it is deleted by

replacing the entry in the index with the next search-key value in the file (in search-key

order).

 If the next search-key value already has an index entry, the entry is deleted instead of

being replaced.

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 11 - 10

Index Update: Insertion

▪ Perform a lookup using the search-key value appearing in the record to be

inserted.

▪ Dense indices – if search-key value does not appear in the index, insert it.

▪ Sparse indices – if index stores an entry for each block of the file, no change

needs to be made to the index unless a new block is created.

 If a new block is created, the first search-key value appearing in the new block is

inserted into the index.

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 11 - 11

Primary and Secondary Indices

▪ Secondary indices have to be dense

▪ Indices offer substantial benefits when searching for records.

▪ When a file is modified, every index on the file must be updated

 Updating indices imposes overhead on database modification

▪ Sequential scan using primary index is efficient, but a sequential scan using a secondary

index is expensive

 each record access may fetch a new block from disk

▪ Index takes up space

Secondary index

on salary field

of instructor

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 11 - 12

Ordered Index Performance

▪ Access types supported

 Point queries: specific value for search key

 Range queries: search key value falling in a specified range

▪ Time

 Access time: depends on height of index tree

 Insertion/Deletion time: also depends on height

▪ n key values & k children/node

 Best case: height = logk(n)

 Worst case: height = n

=> We want to have balanced index trees!

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 11 - 13

B+-Tree Index

A B+-tree is a rooted tree satisfying the following properties:

▪ All paths from root to leaf are of the same length

▪ Each node (that is not a root) has between n/2 and n pointers

 between (n–1)/2 and n–1 values

▪ Special case: root node

 If not a leaf, it has at least 2 children.

 If the root is a leaf (that is, there are no other nodes in the tree), it can have between 0 and

(n–1) values.

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 11 - 14

Example of B+-Tree

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 11 - 15

Advantages of B+-Tree Index

▪ Advantages
 automatically reorganizes itself with small local changes, in the face of insertions and

deletions.

 Reorganization of entire file is not required to maintain performance.

▪ (Minor) Disadvantages
 extra insertion and deletion overhead

 space overhead

▪ Advantages of B+-trees outweigh disadvantages

▪ B+-trees are used extensively

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 11 - 16

B+-Tree Node Structure

▪ Typical node

 Ki are the search-key values

 Pi are pointers to children (for non-leaf nodes)

or pointers to records or buckets of records (for leaf nodes).

▪ The search-keys in a node are ordered

K1 < K2 < K3 < . . . < Kn–1

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 11 - 17

Leaf Nodes

▪ For i = 1, 2, . . ., n–1,

 pointer Pi either points to a file record with search-key value Ki,

 or to a bucket of pointers to file records, each record having search-key value Ki.

 need bucket structure only if search-key does not form a primary key

▪ For leaf nodes Li and Lj, i < j,

 Li’s search-key values are less than Lj’s search-key values

▪ Pn points to next leaf node in search-key order

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 11 - 18

Non-Leaf Nodes

▪ Non leaf nodes form a multi-level sparse index on the leaf nodes.

▪ For a non-leaf node with m pointers:

 All the search-keys in the subtree to which P1 points are less than K1

 For 2  i  m, all the search-keys in the subtree to which Pi points have values greater than

or equal to Ki–1 and less than Ki

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 11 - 19

Example of a B+-tree

▪ n = 5

▪ All nodes other than root must have

 between 2 and 4 values

 ((n–1)/2 and n –1, with n = 5).

▪ Non-leaf nodes other than root must have

 between 3 and 5 children

 ((n/2 and n with n =5; or 1 more than number of key values).

▪ Root must have at least 2 children.

B+-tree for instructor file (n = 6)

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 11 - 20

Observations about B+-trees

▪ Since the inter-node connections are done by pointers,

“logically” close blocks need not be “physically” close.

▪ The non-leaf levels of the B+-tree form a hierarchy of sparse indices

▪ The B+-tree contains a relatively small number of levels

 Level below root has at least 2* n/2 values

 Next level has at least 2* n/2 * n/2 values

 Level h has at least 2* n/2h-1 values

 If there are K search-key values in the file, the tree height is no more than  logn/2(K) 

 thus searches can be conducted efficiently

▪ Insertions and deletions to the main file can be handled efficiently, as the

index can be restructured in logarithmic time.

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 11 - 21

B+-Tree: Search

Find all records with a search-key value of V.

1. C=root

2. While C is a nonleaf node {
Let Km be the last non-null search-key value in C ; Set K0= -inf ; Km+1= +inf

Let i be the smallest value s.t. Ki-1  V < Ki

C = Pi }

3. If there is a value j s.t. Kj = V, follow pointer Pi to the desired record
else no record with search-key value V exists.

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 11 - 22

B+-Trees: Search Performance

▪ If there are K search-key values in the file, the height of the tree is

no more than logn/2(K).

▪ A node is generally the same size as a disk block

 typically 2~4 kilobytes

 and n is typically around 50~100 (40 bytes per index entry).

▪ With 1 million search key values and n = 100

 at most log50(1,000,000) = 4 nodes are accessed in a lookup.

▪ Contrast this with a balanced binary tree (or an unbalanced tree with degree 100)

 around 20 nodes are accessed in a lookup

 difference is significant since every node access may need a disk I/O, costing around 20

milliseconds

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 11 - 23

Updates on B+-Trees: Insertion

1. Find the leaf node L in which the search-key value would appear (Search)

2. If the search-key value is already present in the leaf node

1. Add record to the file

2. If necessary, add a pointer to the bucket.

3. If the search-key value is not present, then

1. add the record to the main file (and create a bucket if necessary)

2. If there is room in L, insert <key-value, pointer> pair in L

else split the node (along with the new <key-value, pointer> entry)

- as discussed in the next slide

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 11 - 24

Updates on B+-Trees: Insertion (Cont.)

▪ Splitting a leaf node:

 Take the n <key-value, pointer> pairs (including the one being inserted) in sorted order

 Place the first n/2 in the original node L, and the rest in a new node P.

 Let k be the least key value in P.

Insert <k, P> into the parent of the node being split.

 If the parent is full, split it and propagate the split further up.

▪ Splitting of nodes proceeds upwards till a node that is not full is found.

 worst case: root node may be split increasing the height of the tree by 1

Result of splitting node after inserting Adams into node (Brandt, Califieri, Crick).

Next step: insert entry with <Califieri, pointer-to-new-node> into parent

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 11 - 25

B+-Tree

Insertion

Example

• Insert “Adams”

• Insert “Lamport”

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 11 - 26

Updates on B+-Trees: Deletion

1. Find the record to be deleted (using the B+-tree, leaf node L)

Remove the record from the main file (and from the bucket, if present)

2. Remove <key-value, pointer> from the leaf node L

If this was the last record with the key-value (e.g., the bucket has become empty)

3. If L has too few entries (less than n/2 pointers) due to the removal

then merge siblings or redistribute entries (as explained in next slide)

4. Cascade upwards

 If the root node has only one pointer after deletion,

then delete it and the sole child becomes the root

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 11 - 27

Updates on B+-Trees: Deletion

If L has too few entries (less than n/2 pointers) due to the removal {

▪ If entries in L and a sibling fit into a single node, then merge siblings:

 Insert all the search-key values in the two nodes into a single node (the one on the left),

and delete the other node, P.

 Delete the pair < Ki–1, P > from its parent, recursively using the above procedure.

▪ Else, redistribute pointers:

 Redistribute the pointers between the node and a sibling such that both have more than

the minimum number of entries.

 Update the corresponding search-key value in the parent of the node.

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 11 - 28

B+-Tree

Deletion

Example

• Delete “Srinivasan”

• Delete “Singh” and “Wu”

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 11 - 29

B+-Tree

Deletion

Example

• Delete “Gold”

Node with Gold and Katz became underfull, and was merged with its sibling

Parent node becomes underfull, and is merged with its sibling

Value separating two nodes (at the parent) is pulled down when merging

Root node then has only one child, and is deleted

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 11 - 30

B+-Tree File Organization

▪ The leaf nodes in a B+-tree file organization store records

 instead of pointers.

▪ Data file degradation problem can be solved by using B+-Tree File

Organization.

 Just as index file degradation problem is solved by using B+-Tree indices.

▪ Leaf nodes are still required to be half full

 Since records are larger than pointers, the maximum number of records that can be stored

in a leaf node is less than the number of pointers in a nonleaf node.

▪ Insertion and deletion are handled in the same way as insertion and deletion

of entries in a B+-tree index.

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 11 - 31

B+-Tree File Organization (Cont.)

▪ Good space utilization important since records use more space than pointers.

=> involve more sibling nodes in redistribution during splits and merges

 Involving 2 siblings in redistribution results in each node having at least entries 3/2n

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 11 - 32

Static Hashing

▪ bucket

 unit of storage containing one or more records

 typically a disk block

▪ hash file organization

 obtain the bucket of a record directly from its search-key value using a hash function

▪ Hash function h

 function from the set of all search-key values K to the set of all bucket addresses B

 is used to locate records for access, insertion as well as deletion

▪ Records with different search-key values may be mapped to the same bucket

 thus entire bucket has to be searched sequentially to locate a record.

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 11 - 33

Hash File Organization

▪ There are 10 buckets,

▪ The binary representation of the ith character

is assumed to be the integer i.

▪ The hash function returns the sum of the

binary representations of the characters

modulo 10

h(Music) = 1

h(History) = 2

h(Physics) = 3

h(Elec. Eng.) = 3

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 11 - 34

Hash Functions

▪ Worst hash function

 maps all search-key values to the same bucket

 access time becomes O(n)

▪ An ideal hash function is

 uniform: each bucket is assigned the same number of search-key values from the set of

all possible values.

 random: each bucket will have the same number of records assigned to it irrespective of

the actual distribution of search-key values in the file

▪ Typical hash functions perform computation on the internal binary

representation of the search-key

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 11 - 35

Handling of Bucket Overflows

▪ Bucket overflow can occur because of

 Insufficient buckets

 Skew in distribution of records. This can occur due

to two reasons:

 multiple records have same search-key value

 chosen hash function produces non-uniform

distribution of key values

▪ Although the probability of bucket overflow

can be reduced, it cannot be eliminated; it is

handled by using overflow buckets.

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 11 - 36

Hash Indices

▪ A hash index organizes the

search keys, with their

associated record pointers, into

a hash file structure.

hash index on ID of instructor

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 11 - 37

Deficiencies of Static Hashing

▪ Hash function h maps key values to a fixed set of B of bucket addresses

▪ Databases grow or shrink with time.

 If number of buckets is too small, performance will degrade due to too much overflows.

 Too many buckets wastes space (buckets will be underfull).

 If database shrinks, again space will be wasted.

▪ One solution: periodic re-organization of the file

 a new hash function and bucket address space

 Expensive and disrupts normal operations

▪ Better solution: dynamic hashing

 allow the number of buckets to be modified dynamically.

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 11 - 38

Dynamic Hashing

▪ Allows the hash function to be modified dynamically
 Good for database that grows and shrinks in size

▪ Extendable hashing – one form of dynamic hashing
 Hash function generates values over a large range — typically b-bit integers, with b = 32.

 Use only a prefix (i bits) of the hash function

 Bucket address table size = 2i. Initially i = 0

 Value of i grows and shrinks as the size of the database grows and shrinks.

 The number of buckets also changes dynamically due to coalescing and splitting of
buckets.

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 11 - 39

General Extendable Hash Structure

In this structure, i2 = i3 = i, whereas i1 = i – 1 (see next

slide for details)

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 11 - 40

Extendable Hashing

▪ Each bucket j stores a value ij
 All the entries that point to the same bucket have the same values on the first ij bits.

▪ To locate the bucket containing search-key Kj:

1. Compute h(Kj) = X

2. Use the first i high order bits of X as a displacement into bucket address table, and follow

the pointer to appropriate bucket

▪ To insert a record with search-key value Kj

 follow same procedure as look-up and locate the bucket, say j.

 If there is room in the bucket j insert record in the bucket.

 Else the bucket must be split and insertion re-attempted (next slide)

 Overflow buckets used instead in some cases (will see shortly)

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 11 - 41

Extendable Hashing: Insertion

To split a bucket j when inserting record with search-key value Kj :

▪ If i > ij (more than one pointer to bucket j)
 allocate a new bucket z, and set ij = iz = (ij + 1)

 Update the second half of the bucket address table entries originally pointing to j, to point
to z

 remove each record in bucket j and reinsert (in j or z)

 recompute new bucket for Kj and insert record in the bucket (further splitting is required if
the bucket is still full)

▪ If i = ij (only one pointer to bucket j)
 If i reaches some limit b, or too many splits have happened in this insertion, create an

overflow bucket

 Else
 increment i and double the size of the bucket address table.

 replace each entry in the table by two entries that point to the same bucket.

 recompute new bucket address table entry for Kj
Now i > ij so use the first case above.

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 11 - 42

Extendable Hashing: Deletion

▪ Locate it the key value in its bucket and remove it.

▪ The bucket itself can be removed if it becomes empty

 with appropriate updates to the bucket address table

▪ Coalescing of buckets can be done

 coalesce only with a “buddy” bucket having same value of ij and same ij –1 prefix

▪ Decreasing bucket address table size is also possible

 Note: decreasing bucket address table size is an expensive operation and should be done

only if number of buckets becomes much smaller than the size of the table

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 11 - 43

Extendable Hashing: Example

• Insert “Mozart”, “Srinivasan”, and “Wu”

• Insert “Einstein”

• Initial Hash structure

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 11 - 44

Example (Cont.)

• Insert “Gold” and “El Said” • Insert “Katz”

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 11 - 45

Example (Cont.)

And after insertion of eleven records

• Insert “Kim”

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 11 - 46

Example (Cont.)

And after insertion of

Kim record in previous

hash structure

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 11 - 47

Extendable Hashing vs. Other Schemes

▪ Benefits of extendable hashing:

 Hash performance does not degrade with growth of file

 Minimal space overhead

▪ Disadvantages of extendable hashing

 Extra level of indirection to find desired record

 Bucket address table may itself become very big (larger than memory)

 Cannot allocate very large contiguous areas on disk either

 Changing size of bucket address table is an expensive operation

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 11 - 48

Ordered Indexing vs Hashing

▪ Cost of periodic re-organization

 Static hashing is worst => dynamic hashing

▪ Relative frequency of insertions and deletions

▪ Is it desirable to optimize average access time at the expense of worst-case

access time?

▪ Expected type of queries:

 Hashing is generally better at retrieving records having a specified value of the key.

 If range queries are common, ordered indices are to be preferred

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 11 - 49

Other Issues in Indexing

▪ Record relocation and secondary indices

 If a record moves, all secondary indices that store record pointers have to

be updated

 Solution: use primary-index search key instead of record pointer in

secondary index

 Extra traversal of primary index to locate record

 Higher cost for queries, lower costs for node splits

 Add record-id if primary-index search key is non-unique

▪ Duplicate keys

 Buckets used in both hashing and tree indicies

 Extra care needed in algorithm implementations

Original Slides:

© Silberschatz, Korth and Sudarshan
Intro to DB

Copyright © by S.-g. Lee Chap 11 - 50

Index Definition in SQL

▪ Create an index

create index <index-name> or <relation-name> (<attribute-list>)

create index b-index on branch(branch-name)

▪ create unique index

 indirectly specify and enforce candidate key condition

 Not really required if SQL unique integrity constraint is supported

▪ To drop an index

drop index <index-name>

END OF CHAPTER 11

