1.3.2 Ideal solution

1

1.3.2 Ideal solution

 $G = X_A G_A + X_B G_B + RT(X_A \ln X_A + X_B \ln X_B)$

1.3.4. Chemical Potential

Partial molar quantity (아주 작은 양이 add 되었을 때 변하는 성질) $\bar{Q}_i = \left(\frac{\partial Q_i}{\partial n_i}\right)_{T,P,n_j}$

Partial Molar Quantity of Free energy \rightarrow Chemical Potential ^{Whole System} $\mu_A = \left(\frac{\partial G^U}{\partial n_A}\right)_{T,P,n_B} G$: molar free *E* (independent of size)

For binary solution at T, P, const. $dG' = \mu_A dn_A + \mu_B dn_B$

If T, P change & multi components $dG' = -SdT + VdP + \mu_A dn_A + \mu_B dn_B + \mu_C dn_C + \dots$

For molar quantity

 $G = \mu_A X_A + \mu_B X_B (Jmol^{-1})$ (:: 1 mol of original phase, X_A mol, X_B mol. $dn_A : dn_B = X_A : X_B$)

1.3.2 Ideal solution

For molar quantity

$$G = \mu_A X_A + \mu_B X_B$$

$$\left(\frac{\partial G}{\partial X_A}\right)_{T,P,X_B} = \mu_A$$

For ideal solution,

 $G = X_A G_A + X_B G_B + RT(X_A \ln X_A + X_B \ln X_B)$

$$\mu_A = \left(\frac{\partial G}{\partial X_A}\right)_{T,P,X_B} = G_A + RT \ln X_A$$

 $\mu_B = G_B + RT \ln X_B$

$$\begin{pmatrix} \frac{\partial G}{\partial X_A} \end{pmatrix}_{T,P,X_B} = \mu_A = G_A + RT \ln X_A \\ \mu_B = G_B + RT \ln X_B \end{cases}$$

$$\cdot \quad dG' = -SdT + VdP + \sum \mu_i dn_i \\ \cdot \quad dG^M = \mu_A dX_A + \mu_B dX_B - 1 \\ \cdot \quad G^M = X_A \mu_A + X_B \mu_B - 2 \\ \cdot \quad \frac{dG^M}{dx_A} = \mu_A - \mu_B - 3 \left(\frac{dG^M}{dx_B} = \mu_B - \mu_A \right) \\ \cdot \quad (3) \times X_B \to X_B \frac{\partial G^M}{\partial x_A} = \mu_A X_B - \mu_B X_B \cdot (4) \\ \cdot \quad (2) + (4) \to G^M + X_B \frac{\partial G^M}{\partial x_A} = \mu_A (X_A + X_B) = \mu_A \cdot (5) \\ \cdot \quad \mu_A = G^M + X_A \frac{\partial G^M}{\partial x_B} - (7) \\ (\text{intercept at } X_B = 1) = G^M_{at} x_B + X_A \cdot slope = G^M + X_A \frac{\partial G^M}{\partial x_B} \\ from (7) = \mu_B \\ by (3)' \text{ intercept at } X_B = 0 \end{cases}$$

1.4 Regular solutions (Quasi- chemical model)

- $\Delta H^M = 0$ $\Delta H^M > 0$
- $\Delta H^M > 0$ $\Delta H^M < 0$

Ideal Endothermic Exothermic

Quasi- chemical approach

✓
$$\Delta H^M$$
 is only due to the bonding E.
($\Delta V^M = 0$, vol of A ≅ B)

✓ Interatomic bonding E, distance maintained the same

1.3.3. Regular solutions

when A&B are mixed:

$$\Delta H_{Mix} = P_{AB} \left[\varepsilon_{AB} - \frac{1}{2} (\varepsilon_{AA} + \varepsilon_{BB}) \right] = P_{AB} \varepsilon$$

E: difference between A-B to aveg. of AA. BB

(1)
$$\varepsilon = 0$$
 $\Delta H^M = 0$ Ideal solution
of bonds # atom
 $P_{AB} = N_A Z X_A X_B$ (random solution)
Avogadro's #
(2) $\varepsilon > 0$ $\Delta H^M > 0$ P_{AB} ↑, 다른 종류의 atom이 둘려 쌓여지길 선호함
(3) $\varepsilon < 0$ $\Delta H^M < 0$ $P_{AB} \downarrow$, 같은 종류의 atom이 둘려 쌓여지길 선호함
(less random)

1.3.3. Regular solutions (Quasi-chemical model)

 ΔG_{Mix} , always decrease for small X_B

1.3.3. Regular solutions (Quasi-chemical model)

***** The Effect of ΔH_{mix} and T on ΔG_{mix}

1.3.5 Regular solution

Total free energy of alloy (1-39)

 G^M $=\widetilde{X_{A}G_{A}^{\circ}+X_{B}G_{R}^{\circ}}+\widetilde{\Omega X_{A}X_{B}+RT(X_{A}lnX_{A}+X_{B}lnX_{B})}$ $= X_A \left[G_A^{\circ} + \Omega (1 - X_A)^2 + RT \ln X_A \right]$ $+ X_B \left[G_B^{\circ} + \Omega (1 - X_B)^2 + RT ln X_B \right]$ $(X_A X_B = X_A^2 X_B + X_B^2 X_A)$ $= \mu_A X_A + \mu_B X_B$

 $\therefore \begin{cases} \mu_A = G_A^{\circ} + \Omega(1 - X_A)^2 + RT \ln X_A \\ \mu_B = G_B^{\circ} + \Omega(1 - X_B)^2 + RT \ln X_B \end{cases}$

Activity

 $\mu_A = G_A + RT ln a_A$

for regular solution

 $\gamma_A = \frac{a_A}{X_A}$: activity coefficient

$$ln\left(\frac{a_A}{X_A}\right) = \frac{\Omega}{RT}(1 - X_A)^2$$
$$ln\left(\frac{a_B}{X_B}\right) = \frac{\Omega}{RT}(1 - X_B)^2$$

$$RT ln \gamma_A = \Omega X_B^2$$

For dilute solution.

$$\gamma_B = \frac{a_B}{X_B} = const$$
 (Henry's law)
 $\gamma_A = \frac{a_A}{X_A} = 1$ (Raoult's law)

1.3.6 Real Solutions

Actual arrangement in real solution

 \rightarrow Compromise between $\Delta E \& \Delta S$ for min G

- $\begin{cases} \varepsilon < 0 & G \downarrow \text{ by increasing A} B \text{ bonds} & \rightarrow \text{ ordering} \\ \varepsilon > 0 & G \uparrow \text{ by increasing A} A, B B \text{ bonds} & \rightarrow \text{ clustering} \end{cases}$
- Ordering & clustering tendency ↓ as T ↑
- $\Delta V^M \neq 0$ (size dependence) Size difference \rightarrow interstitial solid solution

Strong chemical bonding force \rightarrow <u>intermediate phase</u> formation

1.3.7. Ordered Phases - SPO parameter

(a) Random A-B solution with a total of 100 atoms and $X_A = X_B = 0.5$, $P_{AB} \sim 100$, S = 0. (b) Same alloy with short-range order $P_{AB} = 132$, $P_{AB}(\max) \sim 200$, S = 0.32.

If $\Omega < 0$, and $\# P_{AB}$ is greater. \rightarrow short range order (S) (vs. long range order)

$$S = \frac{P_{AB} - P_{AB}(random)}{P_{AB}(max) - P_{AB}(random)}$$

1.3.8. Intermediate Phases

♦ When small composition deviation cause rapid rise of *G*→ intermetallic compound.
Usually stoichiometric $A_m B_n (m, n : integer)$

Ordered structures in Cu-Au system

1.4 Equilibrium in Heterogeneous Systems

The Molar Free Energy of Two-phase Mixture

1.4 Equilibrium in Heterogeneous Systems

* A Simple Phase Diagram

- 1 Completely miscible
- ② Miscibility Gap
 - Liquid phase (ideal)
 - Solid phase ($\Delta H_{mix} > 0 \rightarrow A$, B dislike)
- ③ Ordered Alloy
 - $\Delta H_{mix} < 0$
- (4) Simple Eutectic
 - Miscibility gap extend into liquid phase

(5) Phase diagram containing intermediate phase

* A Simple Phase Diagram

1.5 Binary Phase Diagrams(Summary)

 T_1

Nano & Flexible Device Materials Lab.

***** System with a Miscibility Gap ($\Delta H_{mix}^s > \Delta H_{mix}^L = 0$)

***** Ordered Alloys ($\Delta H^s_{mix} < 0$)

Eutectic Phase Diagram with Same Crystal Structure

Eutectic Phase Diagram with Different Crystal Structure

More Complex Phase Diagram

Phase Diagrams Containing Intermediate Phases

Minimum G

The Effect of Temperature on Solid Solubility

Equilibrium Vacancy Concentration

1.6 The Influence of Interfaces on Equilibrium

The effect of interfacial energy on the solubility of small particles.

Phase β in α

✓ Gibbs – Thompson Effect :

Extra pressure due to the curvature of α/β interface

Phase Transformation in Materials

Device Materials Lab.

1.6 The Influence of Interfaces on Equilibrium

\therefore Transfer of d*n* mol of β from large to small particle.

 $dG = \Delta G_r \cdot dn$

 $(\Delta G_r:$ molar free energy difference

between two particles)

 $dG = \gamma dA$

(\because Large particle \rightarrow unchanged, small \rightarrow changed)

 $\gamma dA = \Delta G_r \cdot dn$

$$\Delta G_r = \gamma \frac{dA}{dn}$$

$$n = \frac{4\pi r^2}{3V_m}, A = 4\pi r^2, \frac{dA}{dn} = \frac{\frac{dA}{dr}}{\frac{dA}{dr}} = \frac{2V_m}{r}$$

 $\therefore \ \Delta G_r = \frac{2\gamma V_m}{r}$

Nano & Flexible Device Materials Lab

1.6 The influence of interfaces on Equilibrium

The effect of interfacial energy on the solubility of small particles

Typical value : $\gamma = 200 \ mJ/m^2$, $V_m = 10^{-5} \ m^3$

$$\frac{X_r}{X_{\infty}} \approx 1 + \frac{1}{r(nm)} (10 \text{ nm} \rightarrow \frac{X_r}{X_{\infty}} = 1.1 (10 \% \text{ diff}))$$

