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Smooth interface, Rough interface

Phase Transfromation In Materials
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Two types of solid-liquid interfaces

Phase Transfromation In Materials
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Rough vs. smooth interfaces

Phase Transfromation In Materials
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4.2 Growth of a Pure Solid

Phase Transfromation In Materials



Nano & Flexible 

Device Materials Lab.21

4.2.1 Continuous Growth

 Solid/ liquid diffuse interface 

≈ the migration of a random high angle grain boundary 

 Driving force for solidification

 Net rate of solidification

Growth rate is usually a diffusion controlled process

 Pure metal:  grow at rate controlled by heat conduction

 Alloy grow at rate controlled by solute diffusion

Phase Transfromation In Materials
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iT(L: latent heat of melting,     : undercooling of the interface)
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4.2.1  Lateral Growth

 Metals with a high entropy of melting prefer to form atomically smooth, 

close packed interface.

Phase Transfromation In Materials
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4.2.1  Lateral Growth

 Gmin = Minimum interace energy, i.e. min. # of broken ‘solid’ bonds

 # of broken bonds for a single atom:  flat surface – 4

ledge -2

corner – no increase

 Low accommodation rate

 Ledge + jog  liquid can join solid without increasing interfacial 

energy  lateral growth of ledge (coherent solid/ solid interface)

Phase Transfromation In Materials
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4.2 Growth of a Pure Solid

 Lateral Growth

Phase Transfromation In Materials
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4.2 Growth of a Pure Solid

Phase Transfromation In Materials

 If large # of atoms → form a disc-shaped layer,  

 Self-stabilized and continue to grow.

 The edges of disc + contributing to E → counterbalanced by ∆Gv.

 ∆T becomes large, 𝑟 ∗ ↓.

)/exp( 2

iTk 

1) Surface nucleation

2) Spiral growth

 Addition of atoms to the ledge cause it to rotate around the axis of screw 

dislocation.

 The spiral tightens until it reaches a min radius of 𝑟
∗

 𝑣 (growth rate)= 𝑘3(∆𝑇𝑖)
2

3) Growth from twin boundary

 Another permanent source of steps like spiral growth
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4.2 Growth of a Pure Solid

Phase Transfromation In Materials
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4.2.3 Lateral Growth of a Pure Solid

Phase Transfromation In Materials

1) Superheated liquid

 Solid growing at v (planar)

 More heat to the protrusion → melt away V ↓ to match other v in planar 

region

 Heat from away from the interface through solid = heat inflow from liquid + L

 If r is so large → Gibbs-Thompson effect can be ignored the 

solid/liquid interface remain at Tm ( r : radius of curvature of the protrusion )

 𝑑𝑇/𝑑𝑥 in the liquid ahead of the protrusion will increase more positively.

VLLSS vLTKTK 
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4.2 Growth of a Pure Solid

Phase Transfromation In Materials

2) Solid growing into supercooled liquid

 Protrusion 0
'


dX

dTL

 Heat flow from solid = the protrusion grows preferentially.

becomes more negative

 Heat removed more effectively from the tip.

 Solidification begins in the bulk of the liquid.

 Supercooled liquid에서 solid 생성 → 잠열이 liquid로발산
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4.2 Growth of a Pure Solid

Development of Thermal Dendrite

Phase Transfromation In Materials

cf. Constitutional supercooling

* shown at the beginning of solidification at the tip of dendrites

VLLSS vLTKTK 

Assume 𝑇’𝑠 ≈ 0

𝑇’𝐿 measured in the direction of 𝑣

∆𝑇𝑐 = 𝑇𝑖 − 𝑇∞
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4.2 Growth of a Pure Solid

Phase Transfromation In Materials
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 𝑣↑ as 𝑟↓ due to enhanced heat conduction

as a result of G-T eq.

Min. radius r occur when ∆𝑇𝑟 = ∆𝑇𝑜 = 𝑇𝑚 − 𝑇∞
𝑟𝑚𝑖𝑛 = the critical nuclei radius 
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𝑉 → 0 as 𝑟 → 𝑟
∗

and as 𝑟 →∞ heat conduction slow.

𝑣 = 𝑣𝑚𝑎𝑥 when 𝑟 = 2𝑟
∗
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4.3 Alloy Solidification

Phase Transfromation In Materials

4.3.1 Solidification of single-phase alloys

𝑘 (partition coefficient) = 
L

s

X

X
< 1

 Three limiting cases

1. Infinitely slow (equilibrium) solidification

 Sufficient time for diffusion in solid & liquid : 𝑘𝑋𝑜, 𝑋𝑜

 Relative amount of solid and liquid : lever rule

a b
c d
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4.3 Alloy Solidification

Phase Transfromation In Materials

𝑋𝑂

𝑋𝑂

𝑋𝑂

𝑋𝑂

𝑘𝑋𝑂

𝑑𝑥

Solid of a Liquid of b

𝑋𝑂

𝑘

c

d

 Solidification starts at 𝑇1 (solid 𝑘𝑋𝑂)

 Liquid 상의조성증가→

Solidification이더낮은온도 (𝑇<𝑇1)

에서생김

 Liquid와 solid의양: lever rule

마지막 𝑇3에서응고종료

전체 bar가 𝑋0 조성으로응고
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4.3 Alloy Solidification

Phase Transfromation In Materials

2. No diffusion in solid, perfect mixing in liquid

 Separate layers of solid retain their 

original compositions mean comp. 

of the solid (𝑋𝑠) < 𝑋𝑠

 Liquid become richer than 
𝑋𝑜

𝑘
→ XE

 Variation of 𝑋𝑠: solute rejected to 

the liquid 
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4.3 Alloy Solidification

Phase Transfromation In Materials

2. No diffusion in solid, perfect mixing in liquid

 𝑇1에도달하면응고시작

 계면온도는 T1 이하로감소

 Liquid/solid의계면은항상

“local equilibrium”

 Mean composition of solid (𝑋𝑠)

 계면에서 liquid와 solid의양

(𝑋𝑠와 𝑋𝐿의 lever rule)

 Liquid는
𝑋𝑜

𝑘
를넘어서 XE까지

갈수있다.
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4.3 Alloy Solidification

Phase Transfromation In Materials
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B.C. : 𝑋𝑆 = 𝑘𝑋𝑂 when 𝑓𝑆=0

∴

If k < 1 : predicts that if no diff. in solid, some eutectic always exist to 

solidify

← non-eq. lever rule. (Scheil eq.)


