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3.5 Interface Migraiton

% Growth can be categorized into diffusion-controlled growth and
Interface-controlled growth

3.5 Interface Migration

v" Phase transformation occurs by nucleation growth process.
v' B forms at a certain sites within a (parent) during nucleation (interface created)

then the a/p interface “migrate” into the parent phase during growth.

+» Types of interfaces

1. Glissile: by L glide — results in the shearing of parent lattice into the
product (), motion (glide) insensitive to temperature (athermal)
2. Non glissile (most of cases): migration by random jump of individual atoms

across the interface (similar to high angle grain boundary migration)
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3.5 Interface Migration

A. Heterogeneous Transformation

+» Classifying nucleation and growth transformation (=heterogeneous transformation)

v Transformation by the migration of a glissile interface

— Military transformation

v Uncoordinated transfer of atoms across non-glissile interface

— Civilian transformation

% Military transformation
v' The nearest neighbors of any atom are unchanged.
v The parent product phases — the same composition, no diffusion involved

(martensite transformation , mechanical twins)
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Classification of Nucleation & Growth
Transformation

TABLE 3.5

Classification of Nucleation and Growth Transformations
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Model of Edge Dislocation
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Symbols:
1: Positive edge dislocation S
T : Negative edge dislocation
__________ -

SEOUL NATIONAL UNIVERSITY

ol of Materials Science and Engineering

Young-Chang Joo



Geometry of edge dislocation

|

Slip plane: where slip occurs

Dislocation line: boundary between the slipped and unslipped
part of a crystal

Slip plane contains both Burgers vectors and dislocation lines

Edge dislocation: Burgers vector b L dislocation line
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Metallic crystal system

Close Packing Crystal structure

O How can we stack metal atoms to minimize empty
space?

closed packed atomic
arrangement in 2-D

Now stack these 2-D layers to make 3-D structures
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Metallic crystal system

<+ Stacking sequence
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Metallic crystal system

< A -B - A -B stacking sequence - HCP
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Dislocation in FCC Crystal
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Partial Dislocation (FCC)

Difficult

a — a = u =
7“[101]%?”[21 1]+€”[112]
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Stacking Fault

Extended Dislocation (FCC)

A Position
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Martensite
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Temperature, °C

Continuous Cooling Transformation
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Continuous Cooling Transformation
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Martensite Transformation in Steel

(a) (b)
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Martensite Transformation in Steel
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Martensite
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Shape memory alloy

259 SEQUL NATIONAL UNIVERSITY
You ng-Chang JOO chool ¢f Materials Science and En gineering



Shape memory alloy
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Needs of shape memory alloy thin film

(Y.Fu et al., Sensors and Actuators , 2004)

Micro-electro-mechanical system
Micro scale & great surface / volume ratio
Large deformation
Large recovery force
Fast response rate
micropumps, micro-sensors, microgrippers etc.

Biomedical application
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Martensitic transformation

Phase transformation that occurs by cooperative atomic
movements — military transformation
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Shape memory effect

< Thermoelastic martensitic transformation

v Plastic strain that introduced into a material by twinning
deformation in martensite recovers completely when the
alloy is heated above a certain temperature.

v Plastic flow occurs by twinning rather than slip

Deformation
G XD G XD

Austenite Martensite Austenite
(high T) (low T) (high T)
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Superelasticity and Shape memory
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Superelasticity and Shape memery
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Habit Plane

The interface plane between austenite and
martensite as measured on a macroscopic scale.
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Detecting of Transformation
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