Fundamentals of Microelectronics

- CH1 Why Microelectronics?
- CH2 Basic Physics of Semiconductors
- CH3 Diode Circuits
- CH4 Physics of Bipolar Transistors
- CH5 Bipolar Amplifiers
- CH6 Physics of MOS Transistors
- CH7 CMOS Amplifiers
- CH8 Operational Amplifier As A Black Box
- CH16 Digital CMOS Circuits

Chapter 1 Why Microelectronics?

- > 1.2 Example of Electronic System: Cellular Telephone
- 1.3 Analog versus Digital

Cellular Technology

- An important example of microelectronics.
 - Microelectronics exist in black boxes that process the received and transmitted voice signals.

Frequency Up-conversion

- Voice is "up-converted" by multiplying by sinusoidal carrier.
- When multiplied in time domain, their spectra are convolved in frequency domain.

Transmitter

Receiver

Received Spectrum $\begin{array}{c} \hline \\ -f_{c} \\ -f_{c} \\ \end{array} \\
\end{array} \\
\begin{array}{c} f_{c} \\ 0 \\ +f_{c} \\ f \\ \end{array} \\
\end{array}$ Spectrum of Cosine $\begin{array}{c} A \\ -f_{c} \\ 0 \\ -f_{c} \\ \end{array}$ $\begin{array}{c} A \\ -f_{c} \\ 0 \\ -f_{c} \\ \end{array}$ $\begin{array}{c} A \\ -f_{c} \\ -f_{c} \\ \end{array}$ $\begin{array}{c} A \\ -f_{c} \\ -f_{c} \\ \end{array}$ $\begin{array}{c} A \\ -f_{c} \\ -f_{c} \\ \end{array}$ $\begin{array}{c} C \\ -2f_{c} \\ 0 \\ 0 \\ -2f_{c} \\ \end{array}$ $\begin{array}{c} C \\ -2f_{c} \\ 0 \\ 0 \\ \end{array}$ $\begin{array}{c} C \\ -2f_{c} \\ 0 \\ 0 \\ \end{array}$ $\begin{array}{c} C \\ -2f_{c} \\ 0 \\ 0 \\ \end{array}$ $\begin{array}{c} C \\ -2f_{c} \\ \end{array}$ $\begin{array}{c} C \\ -2f_{c} \\ 0 \\ \end{array}$ $\begin{array}{c} C \\ -2f_{c} \\ \end{array}$

High frequency is translated to voice band by multiplying by f_c.
 A low-noise amplifier is needed for signal boosting without excessive noise.

Digital Camera

ADC in Digital Camera

Digital or Analog?

X₁(t) is operating at 100Mb/s and X₂(t) is operating at 1Gb/s.
 A digital signal operating at very high frequency is very "analog".

Analog and Digital Signals

Digital Binary Signal Viewed as Analog Signal

A great deal of amplification and other analog processing before the data reaches a robust digital form

Analog Circuits: Amplification and Filtering

Amplification: voltage gain
$$A_v = \frac{v_{out}}{v_{in}}$$
, $A_v|_{dB} = 20\log \frac{v_{out}}{v_{in}}$ in decibels (dB)

Digital Circuits

Microprocessors, static and dynamic memories, and digital signal processors

Complexity, speed, and power dissipation

> What speed? How much power? How robust?

Basic Circuit Theorems

• Kirchhoff's Laws

Kirchhoff Current Law (KCL):
$$\sum_{i} I_{j} = 0$$

Kirchhoff Voltage Law (KVL): $\sum_{j} V_{j} = 0$

Determination of Voltage Gain

Derive the Voltage Gain: example 1.5

$$v_{in} \bigcirc r_{\pi} \gtrless v_{\pi}^{+} i_{1} \oiint g_{m} v_{\pi} R_{L} \gtrless \bigvee \frac{v_{out}}{R_{L}} \bigvee \frac{v_{out}}{R_{L}} \bigvee \frac{v_{out}}{R_{L}}$$

> Derive the Voltage Gain: example 1.6

Basic Circuit Theorems

• Thevenin Equivalents

Thevenin's theorem states that a one-port network can be replaced with an equivalent circuit consisting of one voltage source in series with one impedance

Thevenin equivalent circuit

Computation of equivalent impedance

Basic Circuit Theorems

• Norton Equivalents

Norton's theorem states that a one-port network can be replaced with an equivalent circuit consisting of one current source in parallel with one impedance

Cascade of Amplifiers

1.....

