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Voltage-Controlled Device Structure of Operation of Large=Signal ,  Small-Signal
as Amplifying Element E> Bipolar Transistor’:> Bipolar TransistorE> Model Model

» In the chapter, we will study the physics of bipolar
transistor and derive large and small signal models.
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» A voltage-dependent current source can act as an amplifier.
» If KR is greater than 1, then the signal is amplified.
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» Regardless of the input resistance, the magnitude of
amplification remains unchanged.
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» A three-terminal exponential voltage-dependent current
source is shown above.

» ldeally, bipolar transistor can be modeled as such.

CH4 Physics of Bipolar Transistors 6



Collector

il

n

Base o—l

p

n

.

Emitter

(a)

Base

(B)

Collector
(C)
Q

+

Ves
o+—_|:

Vee

-+

Qy Vee

Q
Emitter

(E)

(b)

» Bipolar transistor can be thought of as a sandwich of three
doped Si regions. The outer two regions are doped with the
same polarity, while the middle region is doped with

opposite polarity.
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» Reverse biased PN junction creates a large electric field
that sweeps any injected minority carriers to their majority

region.

» This ability proves essential in the proper operation of a
bipolar transistor.
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» Forward active region: Vge>0, Vg <O0.
» Figure b) presents awrong way of modeling figure a).
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» Collector also carries current due to carrier injection from
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» Applying the law of diffusion, we can determine the charge
flow across the base region into the collector.

» The equation above shows that the transistor is indeed a

voltage-controlled element, thus a good candidate as an
amplifier.
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» When two transistors are put in parallel and experience the
same potential across all three terminals, they can be
thought of as a single transistor with twice the emitter area.
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» Although atransistor is a voltage to current converter,
output voltage can be obtained by inserting a load resistor

at the output and allowing the controlled current to pass
thru it.

CH4 Physics of Bipolar Transistors

14




Determine the output voltage in Fig. 4.10if Iy =5 x 10710 A,
45

Figure 410 Simple stage with biasing.

Solution Using Eq. (4.9), we write I = 1.69 mA. This current flows through R;. generating a
voltage drop of 1 k2 x 1.69 mA = 1.69 V. Since Vg =3V — Ic Ry, we obtain

Vo = 1.31 V. (4.19)
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» ldeally, the collector current does not depend on the

collector to emitter voltage. This property allows the
transistor to behave as a constant current source when its

base-emitter voltage is fixed.
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» Base current consists of two components: 1) Reverse
Injection of holes into the emitter and 2) recombination of

holes with electrons coming from the emitter.
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» Applying Kirchoff’s current law to the transistor, we can
easily find the emitter current.
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Example
4.6

Solution

A bipolar transistor having Is = 5 x 107'° A is biased in the forward active region with
Vpe = 750 mV. If the current gain varies from 50 to 200 due to manufacturing variations,
calculate the minimum and maximum terminal currents of the device.

For a given Vg, the collector current remains independent of j:

Ic = Igexp VVLf (4.26)
= 1.685 mA. (4.27)

The base current varies from I /200 to I /50:
8.43 nA < Ip < 33.7 nA. (4.28)

On the other hand, the emitter current experiences only a small variation because
(B + 1)/B is near unity for large B:

1.0051c < Ir < 1.02I¢ (4.29)
1.693mA < I < 1.719mA. (4.30)
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» A diode is placed between base and emitter and a voltage
controlled current source is placed between the collector
and emitter.
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» As R| increases, V, drops and eventually forward biases the

collector-base junction. This will force the transistor out of
forward active region.

» Therefore, there exists a maximum tolerable collector
resistance.
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» Transconductance, g,, shows a measure of how well the
transistor converts voltage to current.

» It will later be shown that g,,is one of the most important
parameters in circuit design.
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> g, can be visualized as the slope of I versus Vg
» Alarge I has alarge slope and therefore a large g,,,
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» When the area of a transistor is increased by n, I increases
by n. For a constant Vg Icand hence g, increases by a
factor of n.
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» The figure above shows that for a given Vg swing, the
current excursion around |-, is larger than it would be
around I,;. This is because g,,Is larger with I-,.
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» Small signal model is derived by perturbing voltage
difference every two terminals while fixing the third terminal
and analyzing the change in current of all three terminals.
We then represent these changes with controlled sources
or resistors.
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» ldeally, Vg has no effect on the collector current. Thus, it
will not contribute to the small signal model.

» It can be shown that Vg has no effect on the small signal
model, either.
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» Here, small signal parameters are calculated from DC
operating point and are used to calculate the change in
collector current due to a change in Vgg.
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» In this example, aresistor is placed between the power
supply and collector, therefore, providing an output voltage.
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» Since the power supply voltage does not vary with
time, it is regarded as a ground in small-signal
analysis.
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» The claim that collector current does not depend on V¢ is
not accurate.

» As Vgincreases, the depletion region between base and
collector increases. Therefore, the effective base width
decreases, which leads to an increase in the collector
current.
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» With Early effect, collector current becomes larger than
usual and a function of V¢
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A bipolar transistor carries a collector current of 1 mA with Vg = 2 V. Determine the
required base-emitter voltage if V4 = oo or V4 =20 V. Assume [y =2 x 10716 A,

Solution With V4 = oo, we have from Eq. (4.67)

I
Ve = Vrln— (4.70)
Is
— 7603 mV. (4.71)
If V4 =20V, we rewrite Eq. (4.67) as
I 1
Ve = Veln| ———— 4.72)
Is 1+ E
Va
—757.8mV. (4.73)

In fact, for Vg < Vi, we have (14 Veg/Va) L~ 1 — Veg/Va

I V,
Vee ~ Vi ln— + Vyln(1— —£ (4.74)
Is Va
[C VCE
~ Vplnl — v, —<E 475
T HIS T Vi ( )

where it is assumed In(1 — €) &~ —e fore « 1. 38
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» Early effect can be accounted for in large-signal model by
simply changing the collector current with a correction

factor.
» In this mode, base current does not change.
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Operation in
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» When collector voltage drops below base voltage and
forward biases the collector-base junction, base current

Increases and the current gain factor, B, decreases .
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» Reciprocity holds: aglgg = agles = s
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» Equivalent to Ebers-Moll Model
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» The speed of the BJT also drops in saturation.
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[ V.. > IR + (V.. —400mV) }

» In order to keep BJT at least in soft saturation region, the
collector voltage must not fall below the base voltage by

more than 400mV.
» A linear relationship can be derived for V.. and R- and an
acceptable region can be chosen.

47
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» In deep saturation region, the transistor loses its voltage-
controlled current capability and Vg becomes constant.
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» With the polarities of emitter, collector, and base reversed, a
PNP transistor is formed.

» All the principles that applied to NPN's also apply to PNP’s,
with the exception that emitter is at a higher potential than
base and base at a higher potential than collector.
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> The figure above summarizes the direction of current flow
and operation regions for both the NPN and PNP BJT's.
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» Note that the emitter is at a higher potential than both the
base and collector.
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Example
417

Solution

In the circuit shown in Fig. 4.41, determine the terminal currents of Q1 and verify oper-
ation in the forward active region. Assume [s = 2 x 10-16 A and 8 = 50, but V4, = oc.

Figure 441 Simple stage using a pap transistor.

We have Vg =2V — 1.2V = 0.8 V and hence

V
Ic =1 expvi:

= 4.61 mA.
It follows that
Ip =922 uA
I =470 mA.

(4.104)

(4.105)

(4.106)
(4.107)

We must now compute the collector voltage and hence the bias across the B-C junction.

Since R carries I,
Vy = Rele
=0.922V,

(4.108)
(4.109)

which is lower than the base voltage. Invoking the illustration in Fig. 4.39(b), we conclude
that QO operates in the active mode and the use of equations (4.100)—(4.102) is justified.

54



© VOLI'IZ
300 Q)

Vcc: 2.5V

CH4 Physics of Bipolar Transistors

55



Example
4.18

Solution

In the circuit of Fig. 4.42.V;, represents a signal generated by a microphone. Determine

Vout for Viy = 0and Vi, = +5mVif Iy = 1.5 x 10~1¢ A.

o Vout
R = 300Q

+

Vcc_--_ 25V

Figure 442 PNP stage with bias and small-signal voltages.

For V;,, = 0, Vg = 4800 mV and we have

and hence

Vep
Iy g =1 —_—
clv,=0 = Isexp v,
= 3.46 mA,
Vour = 1.038 V.

If Vj, increases to +5 mV, Vgg = +795 mV and

Ilyessmy = 2.85mA,

yielding

V,u = 0.856 V.

(4.110)

(4.111)

(4.112)

(4.113)

(4.114)

Note that as the base voltage rises, the collector voltage falls, a behavior similar to that
of the npn counterparts in Fig. 4.25. Since a 5-mV change in Vj, gives a 182-mV change
in V,,,;. the voltage gain is equal to 36.4. These results are more readily obtained through

the use of the small-signal model.
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(b)

» The small signal model for PNP transistor is exactly
IDENTICAL to that of NPN. This is not a mistake because
the current direction is taken care of by the polarity of Vg
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» Small-signal model is identical to the previous ones.
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» Since during small-signal analysis, a constant voltage
supply is considered to be AC ground, the final small-signal
model is identical to the previous two.
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