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 15.1  General Considerations

 15.2  First-Order Filters

 15.3  Second-Order Filters

 15.4  Active Filters

 15.5  Approximation of Filter Response
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Outline of the Chapter
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Why We Need Filters

 In order to eliminate the unwanted interference that 

accompanies a signal, a filter is needed. 
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Filter Characteristics

 Ideally, a filter needs to have a flat pass band and a sharp roll-

off in its transition band.

 Realistically, it has a rippling pass/stop band and a transition 

band. 
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Example 15.1:  Filter I
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Solution: A filter with stopband attenuation of 40 dB

Problem : Adjacent channel interference is 25 dB above the 

signal. Determine the required stopband attenuation if Signal to 

Interference ratio must exceed 15 dB.



Example 15.2:  Filter II
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Problem: Adjacent  60-Hz channel interference is 40 dB above 

the signal. Determine the required stopband attenuation 

To ensure that the signal level remains 20dB above the 

interferer level.

Solution: A high-pass filter with stopband attenuation of 60 dB 

at 60Hz.



Example 15.3:  Filter III

 A bandpass filter around 1.5 GHz is required to reject 

the adjacent Cellular and PCS signals.
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Classification of Filters I
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Classification of Filters II

Continuous-time Discrete-time
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Classification of Filters III

Passive Active
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Summary of Filter Classifications
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Filter Transfer Function

 Filter (a) has a transfer function with -20dB/dec roll-off.

 Filter (b) has a transfer function with -40dB/dec roll-off and 

provides a higher selectivity.

(a) (b)
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General Transfer Function

pk = pole frequencies

zk = zero frequencies
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Example 15.4 : Pole-Zero Diagram
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Impulse response contains

Example 15.5: Position of the poles

Poles on the RHP

Unstable 

(no good)

Poles on the jω axis

Oscillatory

(no good)

Poles on the LHP

Decaying

(good)
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Transfer Function

 The order of the numerator m ≤ The order of the denominator n

Otherwise, H(s)→ as s→.

 For a physically-realizable transfer function, complex zeros or 

poles occur in conjugate pairs.

 If a zero is located on the jω axis, z1,2=± jω1 , H(s) drops to zero 

at ω1.
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Imaginary Zeros

 Imaginary zero is used to create a null at certain frequency.

For this reason, imaginary zeros are placed only in the stop band.
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Sensitivity

P
C

dP dC
S

P C


 Sensitivity indicates the variation of a filter parameter due to 

variation of a component value.

P=Filter Parameter

C=Component Value
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Example 15.6: Sensitivity 
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Problem: Determine the sensitivity of ω0 with respect to R1.

 For example, a +5% change in R1 translates to a -5% error in ω0.



First-Order Filters
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 First-order filters are represented by the transfer function 

shown above. 

 Low/high pass filters can be realized by changing the relative 

positions of poles and zeros.
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Example 15.8: First-Order Filter I

R2C2 <  R1C1
R2C2 > R1C1
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Example 15.9: First-Order Filter II

R2C2 <  R1C1 R2C2 > R1C1
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Second-Order Filters

 Second-order filters are characterized by the “biquadratic” equation 

with two complex poles shown above.  

 When Q increases, the real part decreases while the imaginary part 

approaches ± ωn.

=> the poles look very imaginary thereby bringing the circuit closer to 

instability.
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Second-Order Low-Pass Filter
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α = β = 0

24CH 14 Analog Filters

Peak magnitude normalized to the passband magnitude: 2 11 (4 )Q Q  

.



Example 15.10: Second-Order LPF 
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Problem: Q of a second-order LPF = 3.

Estimate the magnitude and frequency of the peak in the frequency 

response.



Second-Order High-Pass Filter
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β = γ = 0

21 1 (2 )n Q   Frequency of the peak:  

Peak magnitude normalized to the passband magnitude: 2 11 (4 )Q Q  

26CH 14 Analog Filters



Second-Order Band-Pass Filter
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Example 15.2: -3-dB Bandwidth 
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Problem: Determine the -3dB bandwidth of a band-pass response.
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LC Realization of Second-Order Filters
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 An LC tank realizes a second-order band-pass filter with two 
imaginary poles at  ±j/(L1C1)

1/2 , which implies infinite 
impedance at ω=1/(L1C1)

1/2. 
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Example 15.13: LC Tank 

 At ω=0, the inductor acts as a short.

 At ω=, the capacitor acts as a short.
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RLC Realization of Second-Order Filters
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 With a resistor, the poles are no longer pure imaginary which 
implies there will be no infinite impedance at any ω.
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Voltage Divider Using General Impedances
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Low-pass High-pass Band-pass
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Low-pass Filter Implementation with Voltage Divider
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Example 15.14: Frequency Peaking 
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Voltage gain greater than unity (peaking) 

occurs when a solution exists for 

2

2 2
1 1 1 1 1 1 1 12

2( )( )
( )

0

d D
R C L R R C L L

d



   



1
1

1

1
Thus, when ,

2

peaking occurs.

C
Q R

L
  



Example 15.15: Low-pass Circuit Comparison

 The circuit (a) has a -40dB/dec roll-off at high frequency.

 However, the circuit (b) exhibits only a -20dB/dec roll-off since 

the parallel combination of L1 and R1 is dominated by R1

because L1ω→, thereby reduces the circuit to R1 and C1.

Good Bad
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(a) (b)



High-pass Filter Implementation with Voltage Divider
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Band-pass Filter Implementation with Voltage Divider
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Why Active Filter?

 Passive filters constrain the type of transfer function.

 They may require bulky inductors.

38CH 14 Analog Filters



Sallen and Key (SK) Filter: Low-Pass
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 Sallen and Key filters are examples of active filters.  This 

particular filter implements a low-pass, second-order transfer 

function.
39CH 14 Analog Filters



Example 15.16: SK Filter with Voltage Gain
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Example 15.17: SK Filter Poles

 The poles begin with real, equal values for                  and 

become complex for                  .
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Problem: Assuming R1=R2, C1=C2, Does such a filter contain complex poles?
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Sensitivity in Low-Pass SK Filter
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Example 15.18: SK Filter Sensitivity I

1 2

1 2

1 1

2 3

1 2

2 3

3

Q Q
R R

Q Q
C C

Q
K

S S
K

S S
K

K
S

K

    


    





43CH 14 Analog Filters

Problem: Determine the Q sensitivities of the SK filter for the common 

choice R1=R2=R, C1=C2=C.
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Integrator-Based Biquads
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 It is possible to use integrators to implement biquadratic
transfer functions.
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KHN (Kerwin, Huelsman, and Newcomb) Biquads
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Versatility of KHN Biquads
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Sensitivity in KHN Biquads
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Tow-Thomas Biquad
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Tow-Thomas Biquad
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Differential Tow-Thomas Biquads

 An important advantage of this topology over the KHN biquad 

is accrued in integrated circuit design, where differential 

integrators obviate the need for the inverting stage in the loop.
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Example 15.20: Tow-Thomas Biquad 
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Adjusted by R2 or R4

1 2 4 2

3 1

1 R R C
Q
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Adjusted by R3

Note that n and Q of the Tow-Thomas filter can be adjusted (tuned) 

independently.
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Antoniou General Impedance Converter
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 It is possible to simulate the behavior of an inductor by using 
active circuits in feedback with properly chosen passive 
elements.
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Simulated Inductor

 By proper choices of Z1-Z4, Zin has become an impedance that 

increases with frequency, simulating inductive effect. 

Thus, 
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High-Pass Filter with SI 

 With the inductor simulated at the output, the transfer function 

resembles a second-order high-pass filter.
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Example 15.22: High-Pass Filter with SI 
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Node 4 can also serve as an output.
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 V4 is better than Vout since the output impedance is lower.



Low-Pass Filter with Super Capacitor

 
1

1
in

X

Z
Cs R Cs




1

2 2
1 1

1

1

out in

in in

X

V Z

V Z R

R R C s R Cs





 

56CH 14 Analog Filters

 How to build a floating inductor to derive a low-pass filter?

Not possible. So use a super capacitor.



Example 15.24: Poor Low-Pass Filter 

 4

1
2out X out out X

X

V V Cs R V V R Cs
R

  
      

  

 Node 4 is no longer a scaled version of the Vout. Therefore the 

output can only be sensed at node 1, suffering from a high 

impedance.
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Frequency Response Template

 With all the specifications on pass/stop band ripples and 

transition band slope, one can create a filter template that will 

lend itself to transfer function approximation.
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Butterworth Response
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ω-3dB=ω0, for all n.

 The Butterworth response completely avoids ripples in the 

pass/stop bands at the expense of the transition band slope.
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Poles of the Butterworth Response
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2nd-Order nth-Order
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Example 15.24: Order of Butterworth Filter

 The minimum order of the Butterworth filter is three. 
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Specification: passband flatness of 

0.45 dB for f < f1=1 MHz, stopband 

attenuation of 9 dB at f2=2 MHz.
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Example 15.25: Butterworth Response 
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3 3
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2 2
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2 2 *(1.45 )p MHz RC section

2nd-order SK

Using a Sallen and Key topology, design a Butterworth filter for the 

response derived in Example 14.24.
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Example 15.25: Butterworth Response (cont’d)
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Chebyshev Response
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 The Chebyshev response provides an “equiripple” pass/stop 

band response.

Chebyshev Polynomial
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Textbook error:

No ripple



Chebyshev Polynomial 

Chebyshev polynomial for 

n=1,2,3

Resulting transfer function for

n=2,3
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Chebyshev Response
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Example 15.26: Chebyshev Response 

 2 (2MHz) 0.116 18.7dBH j    

ω0=2π (1MHz)

 A third-order Chebyshev response provides an attenuation of 

-18.7 dB a 2MHz.

Suppose the filter required in 

Example 14.24 is realized with third-

order Chebyshev response. 

Determine the attenuation at 2MHz.

2

1
0 95 0 329

1



 .   .



 
2

3

2

0 0

1

1 4 3

H j

 


 



  
   
   

67CH 14 Analog Filters



Example 15.27: Order of Chebyshev Filter

Specification: 

Passband ripple: 1 dB

Bandwidth: 5 MHz

Attenuation at 10 MHz: 30 dB

What’s the order?
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21 dB 20log 1 0 509     .

0Attenuation at 2 10 MHz: 30 dB  

2 2 1

1
0 0316

1 0 509 cosh ( cosh 2)n 
 .

 .

2cosh (1 317 ) 3862 3 66 4n n n.    .  



Example 15.28: Chebyshev Filter Design

   1 1
0 0

2 1 2 11 1 1 1
sin sinh sinh cos cosh sinh

2 2
k
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n n n n

 
 

 

     
     

   

2,3 0 00.337 0.407p j   

SK2

1,4 0 00.140 0.983p j   

SK1

Using two SK stages, design a filter that 

satisfies the requirements in Example 14.27.
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Example 15.28: Chebyshev Filter Design (cont’d)
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