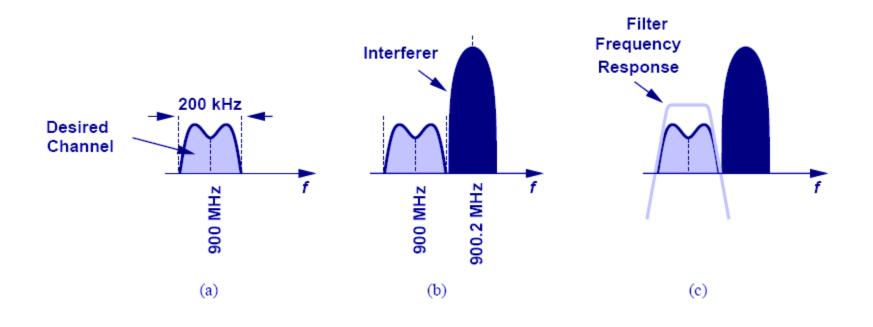
Chapter 15 Analog Filters

- 15.1 General Considerations
- 15.2 First-Order Filters
- 15.3 Second-Order Filters
- > 15.4 Active Filters
- 15.5 Approximation of Filter Response

Outline of the Chapter

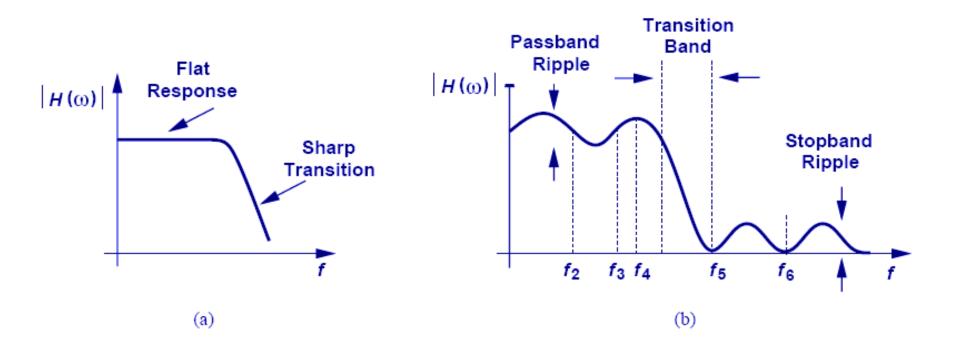


Why We Need Filters



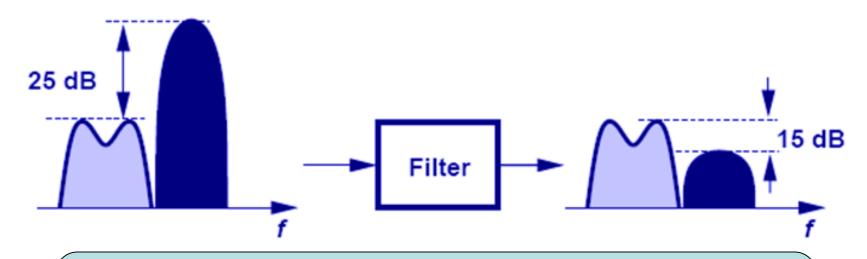
In order to eliminate the unwanted interference that accompanies a signal, a filter is needed.

Filter Characteristics



Ideally, a filter needs to have a flat pass band and a sharp roll-off in its transition band.
 Realistically, it has a rippling pass/stop band and a transition band.

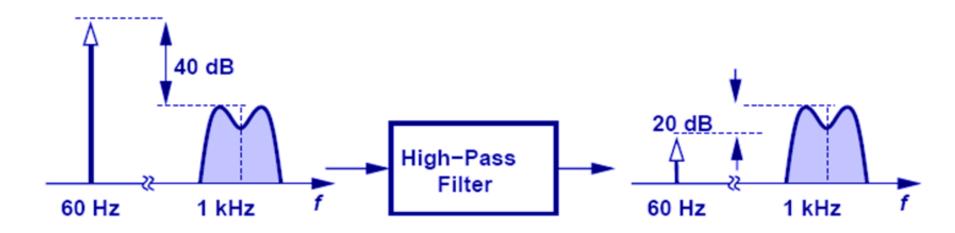
Example 15.1: Filter I



Problem : Adjacent channel interference is 25 dB above the signal. Determine the required stopband attenuation if Signal to Interference ratio must exceed 15 dB.

Solution: A filter with stopband attenuation of 40 dB

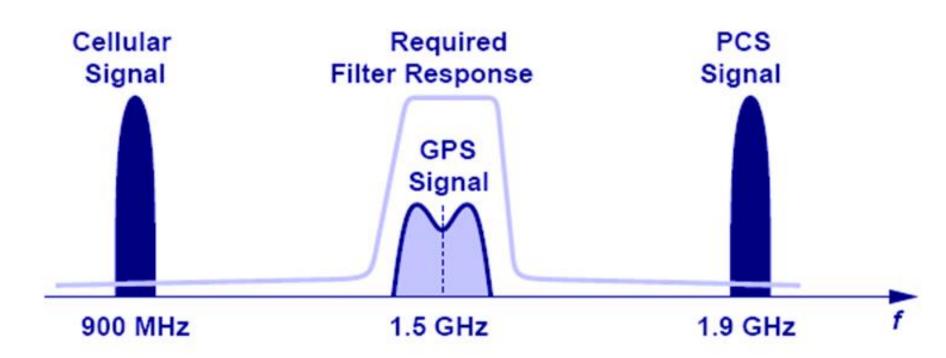
Example 15.2: Filter II



Problem: Adjacent 60-Hz channel interference is 40 dB above the signal. Determine the required stopband attenuation To ensure that the signal level remains 20dB above the interferer level.

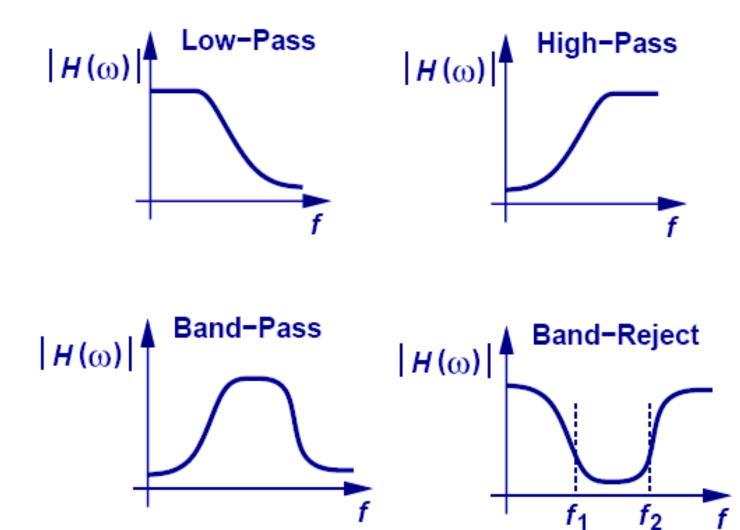
Solution: A high-pass filter with stopband attenuation of 60 dB at 60Hz.

Example 15.3: Filter III

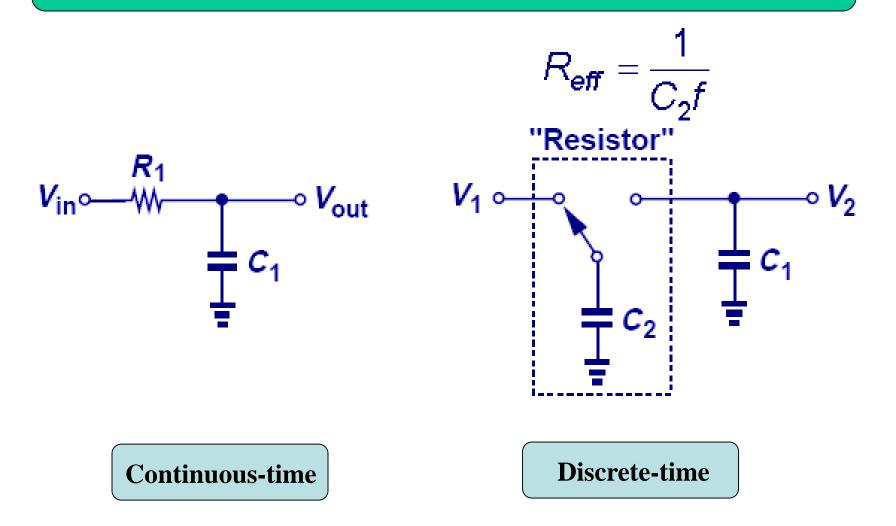


A bandpass filter around 1.5 GHz is required to reject the adjacent Cellular and PCS signals.

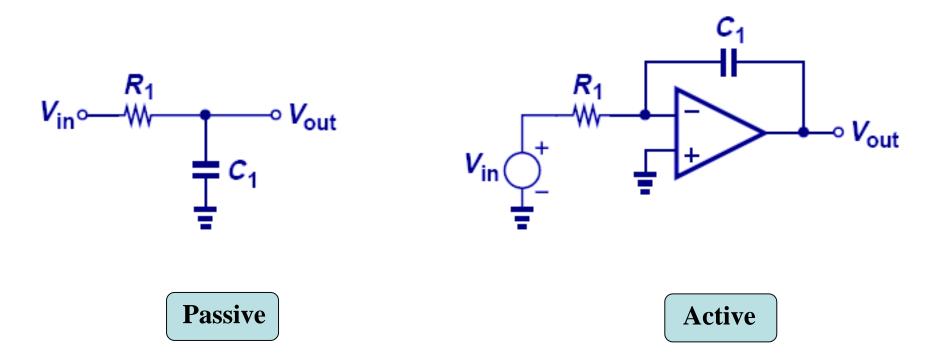
Classification of Filters I



Classification of Filters II



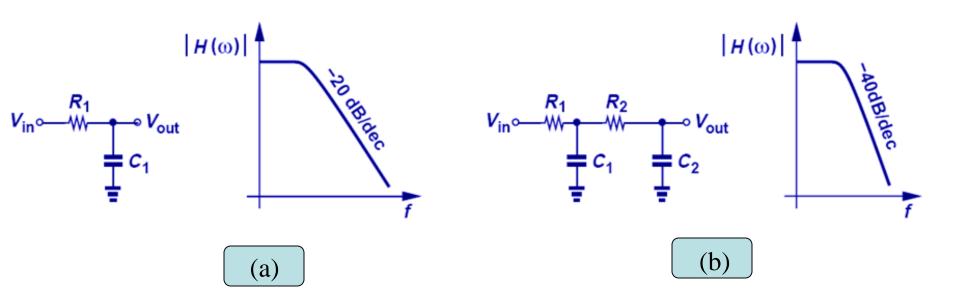
Classification of Filters III



Summary of Filter Classifications

	Low-Pass	High-Pass	Band-Pass	Band-Reject
Frequency Response		\int	\bigwedge	\mathbf{n}
Continuous-Time and Discrete-Time				
Passive and Active	₩- <u>†</u> <u></u>	-0 0		

Filter Transfer Function



Filter (a) has a transfer function with -20dB/dec roll-off.

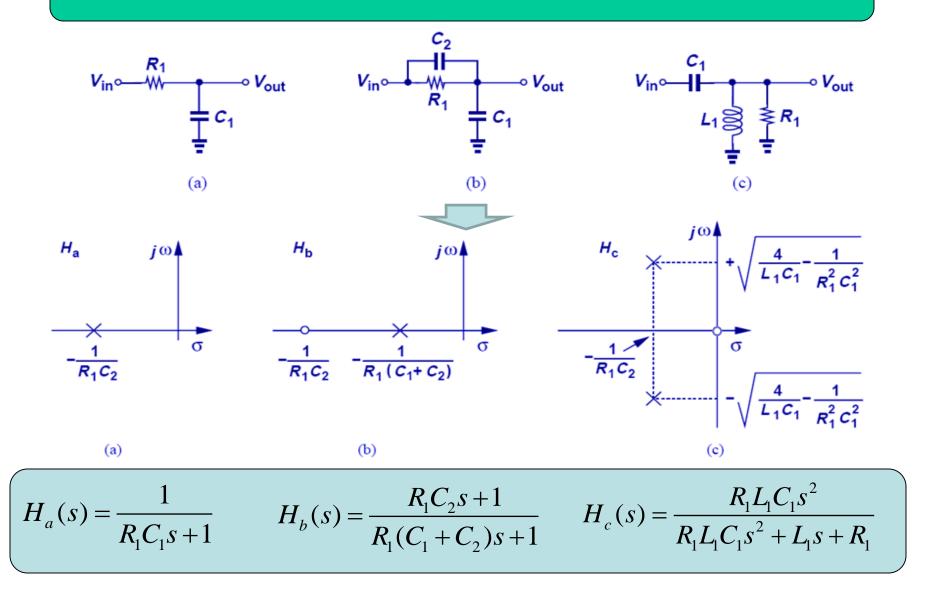
Filter (b) has a transfer function with -40dB/dec roll-off and provides a higher selectivity.

General Transfer Function

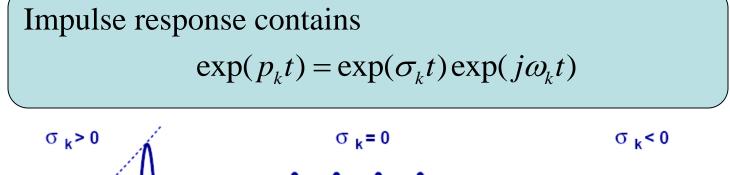
$$H(s) = \alpha \frac{(s - z_1)(s - z_2) \cdots (s - z_m)}{(s - p_1)(s - p_2) \cdots (s - p_n)}$$

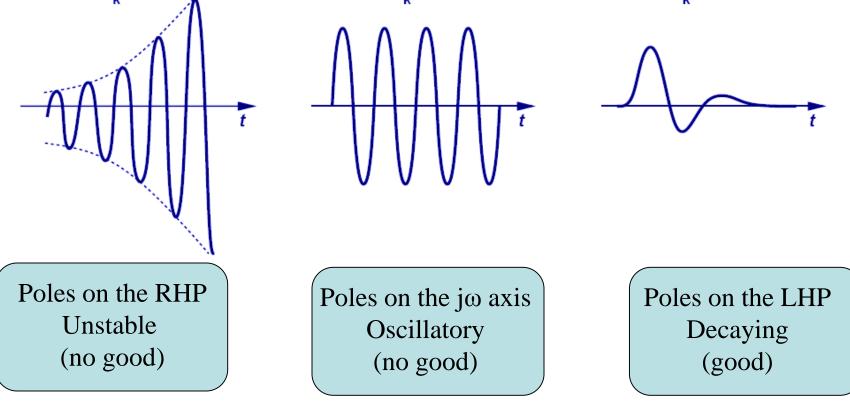
z_k = zero frequencies p_k = pole frequencies

Example 15.4 : Pole-Zero Diagram



Example 15.5: Position of the poles





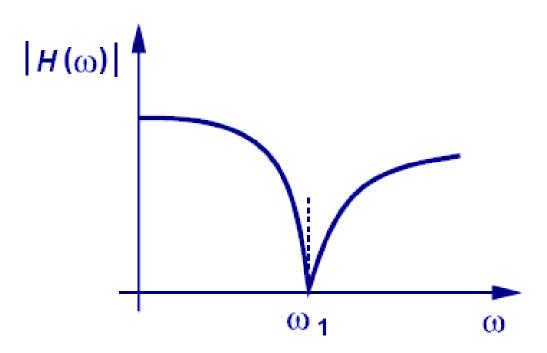
Transfer Function

$$H(s) = \alpha \frac{(s - z_1)(s - z_2) \cdots (s - z_m)}{(s - p_1)(s - p_2) \cdots (s - p_n)}$$

➤ The order of the numerator m ≤ The order of the denominator n Otherwise, H(s)→∞ as s→∞.

- For a physically-realizable transfer function, complex zeros or poles occur in conjugate pairs.
- > If a zero is located on the j ω axis, $z_{1,2}=\pm j\omega_1$, H(s) drops to zero at ω_1 .

Imaginary Zeros



Imaginary zero is used to create a null at certain frequency. For this reason, imaginary zeros are placed only in the stop band.

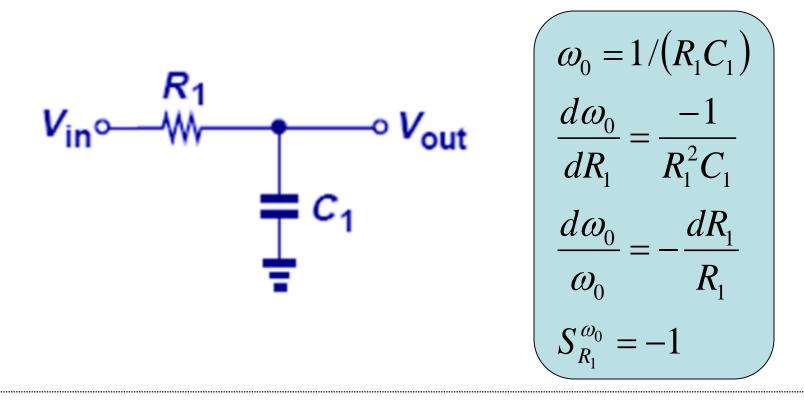
Sensitivity

$$S_C^P = \frac{dP}{P} \left/ \frac{dC}{C} \right|$$

Sensitivity indicates the variation of a filter parameter due to variation of a component value.

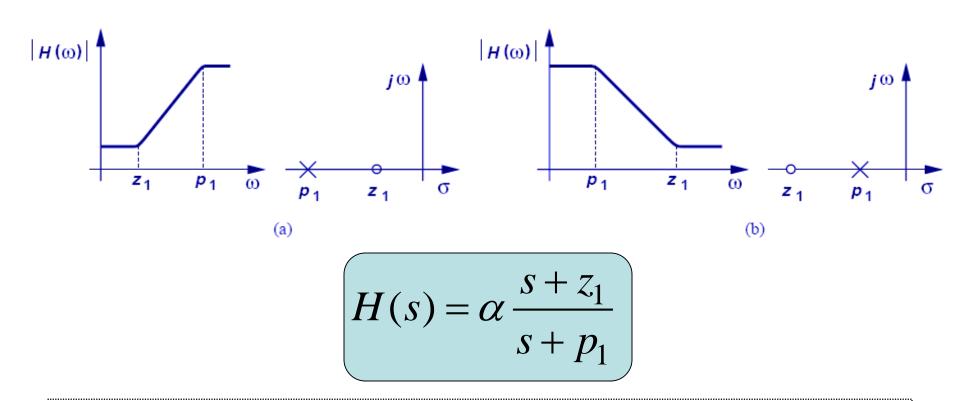
Example 15.6: Sensitivity

Problem: Determine the sensitivity of ω_0 with respect to R_1 .



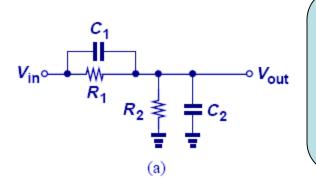
 \succ For example, a +5% change in R_1 translates to a -5% error in ω_0 .

First-Order Filters



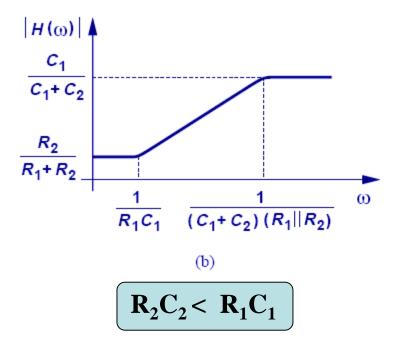
- First-order filters are represented by the transfer function shown above.
- Low/high pass filters can be realized by changing the relative positions of poles and zeros.

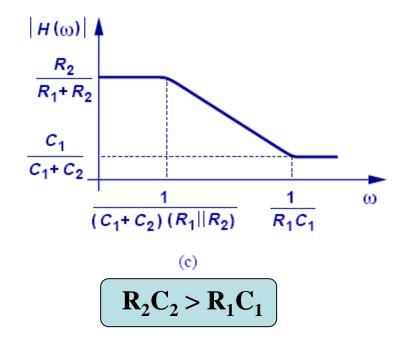
Example 15.8: First-Order Filter I



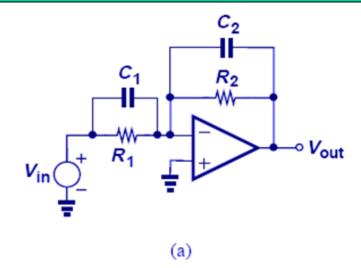
$$\frac{V_{out}}{V_{in}}(s) = \frac{R_2(R_1C_1s+1)}{R_1R_2(C_1+C_2)s+R_1+R_2}$$

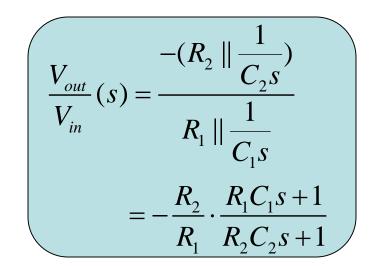
$$z_1 = -\frac{1}{(R_1C_1)}, p_1 = -[(C_1+C_2)R_1 || R_2]^{-1}$$



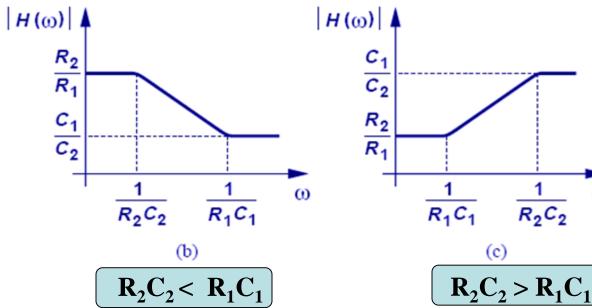


Example 15.9: First-Order Filter II

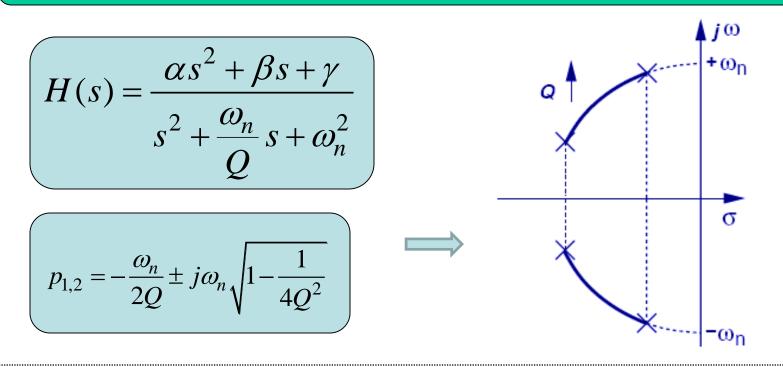




ω



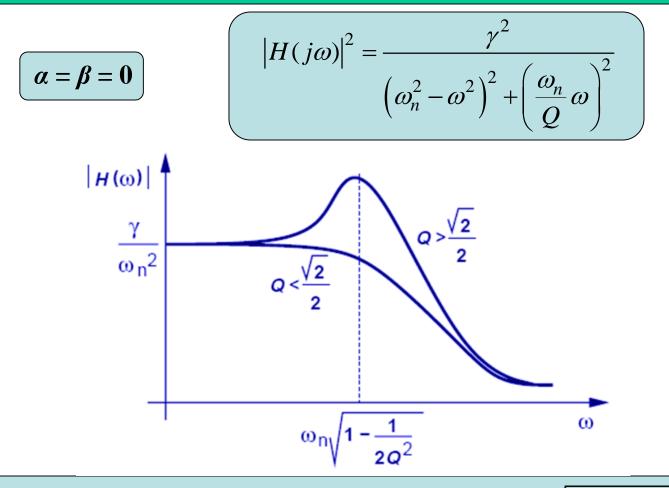
Second-Order Filters



- Second-order filters are characterized by the "biquadratic" equation with two complex poles shown above.
- When Q increases, the real part decreases while the imaginary part approaches $\pm \omega_n$.

=> the poles look very imaginary thereby bringing the circuit closer to instability.

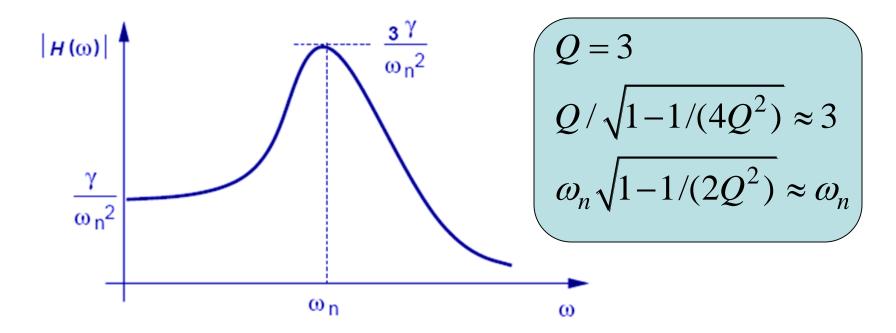
Second-Order Low-Pass Filter



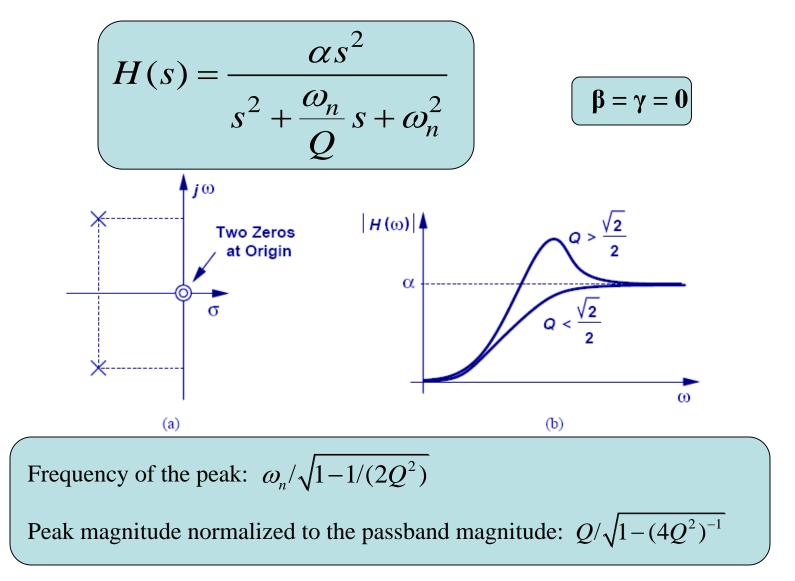
Peak magnitude normalized to the passband magnitude: $Q/\sqrt{1-(4Q^2)^{-1}}$

Example 15.10: Second-Order LPF

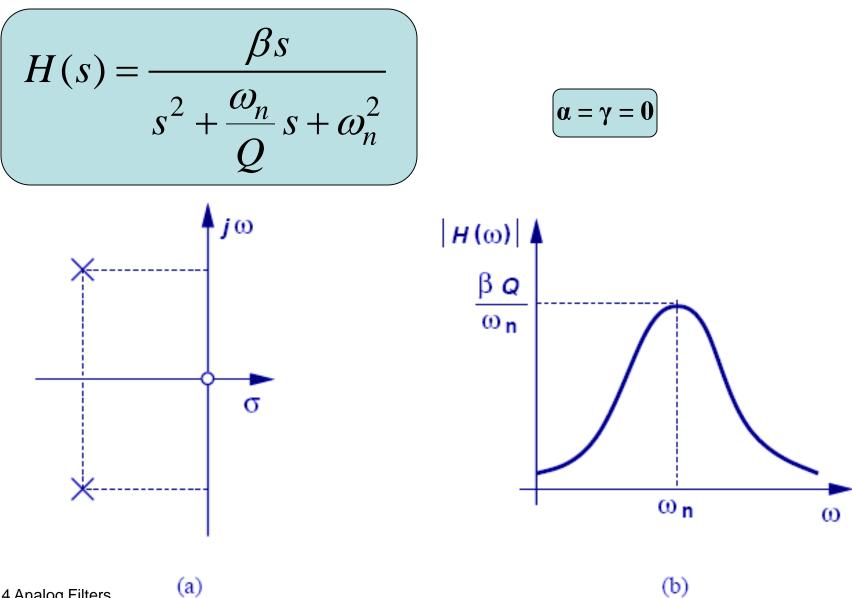
Problem: Q of a second-order LPF = 3. Estimate the magnitude and frequency of the peak in the frequency response.



Second-Order High-Pass Filter



Second-Order Band-Pass Filter

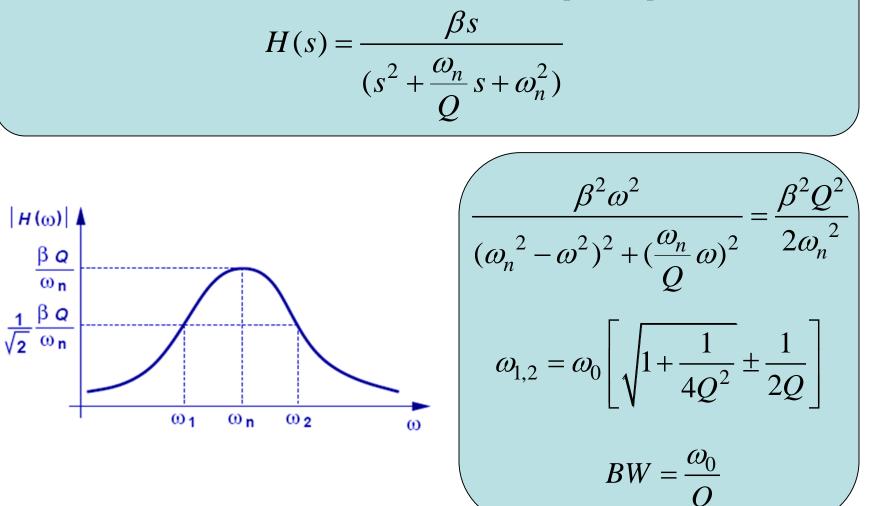


CH 14 Analog Filters

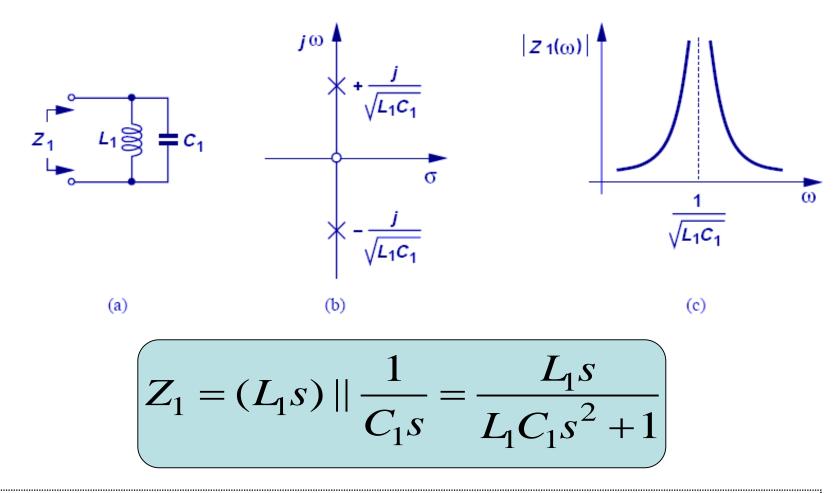
27

Example 15.2: -3-dB Bandwidth

Problem: Determine the -3dB bandwidth of a band-pass response.

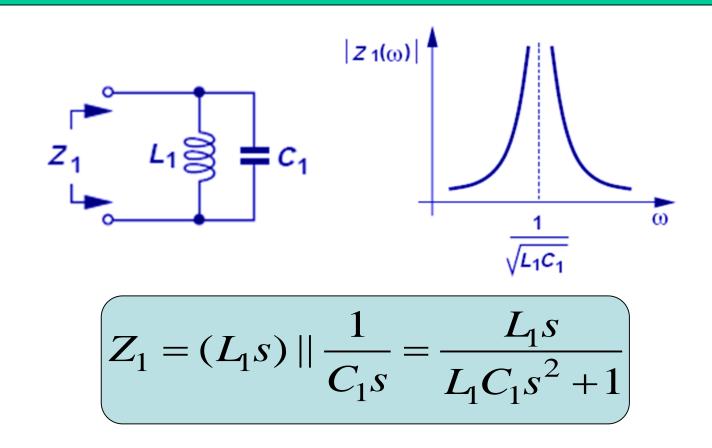


LC Realization of Second-Order Filters



An LC tank realizes a second-order band-pass filter with two imaginary poles at $\pm j/(L_1C_1)^{1/2}$, which implies infinite impedance at $\omega = 1/(L_1C_1)^{1/2}$.

Example 15.13: LC Tank



At ω=0, the inductor acts as a short.
 At ω=∞, the capacitor acts as a short.

RLC Realization of Second-Order Filters

$$Z_{2} = R_{1} \| \frac{L_{1}s}{L_{1}C_{1}s^{2} + 1} = \frac{R_{1}L_{1}s}{R_{1}L_{1}C_{1}s^{2} + L_{1}s + R_{1}}$$
$$= \frac{R_{1}L_{1}s}{R_{1}L_{1}C_{1}(s^{2} + \frac{1}{R_{1}C_{1}}s + \frac{1}{L_{1}C_{1}})} = \frac{R_{1}L_{1}s}{R_{1}L_{1}C_{1}(s^{2} + \frac{\omega_{n}}{Q}s + \omega_{n}^{2})}$$



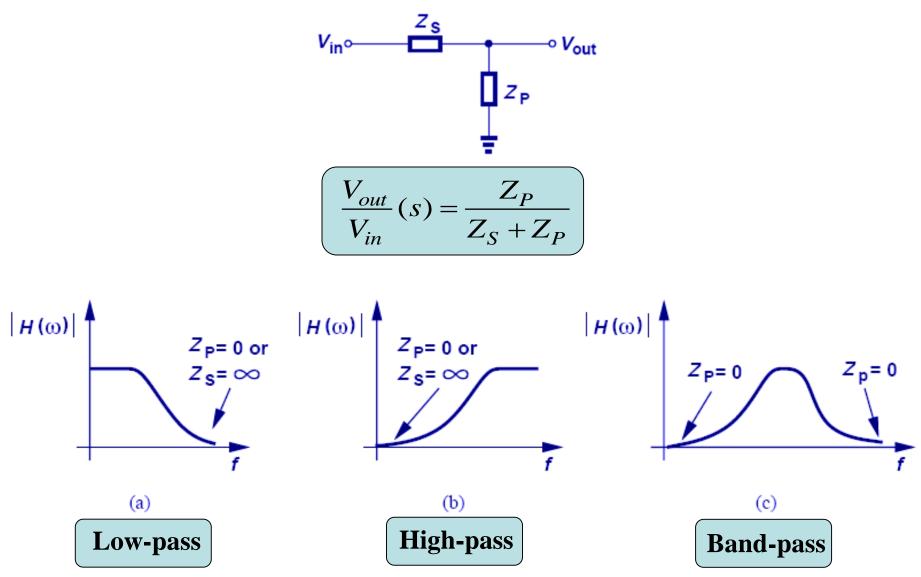
$$\omega_{n} = \frac{1}{\sqrt{L_{1}C_{1}}}, \quad Q = R_{1}\sqrt{\frac{C_{1}}{L_{1}}}$$

$$p_{1,2} = -\frac{\omega_{n}}{2Q} \pm j\omega_{n}\sqrt{1 - \frac{1}{4Q^{2}}}$$

$$= -\frac{1}{2R_{1}C_{1}} \pm j\frac{1}{\sqrt{L_{1}C_{1}}}\sqrt{1 - \frac{L_{1}}{4R_{1}^{2}C_{1}}}$$

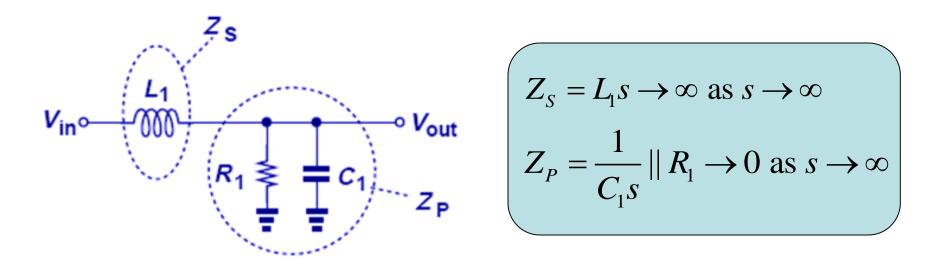
With a resistor, the poles are no longer pure imaginary which implies there will be no infinite impedance at any ω.

Voltage Divider Using General Impedances



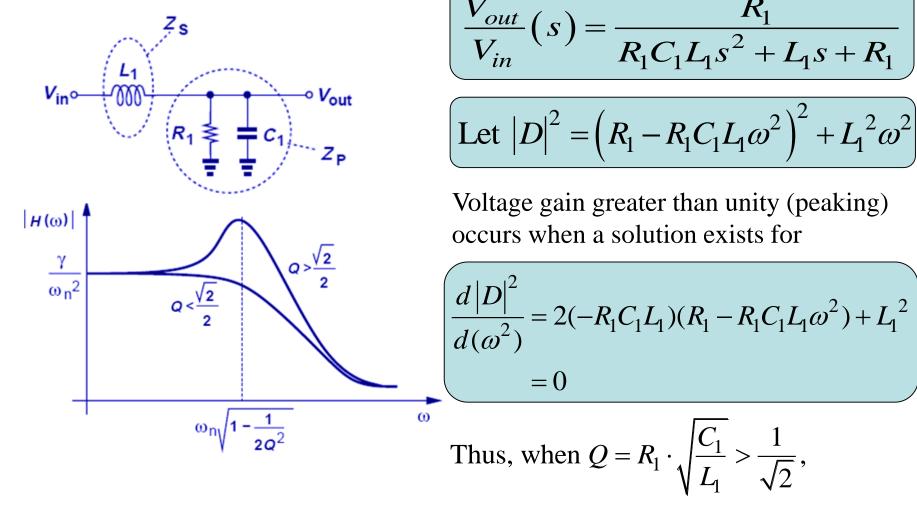
CH 14 Analog Filters

Low-pass Filter Implementation with Voltage Divider



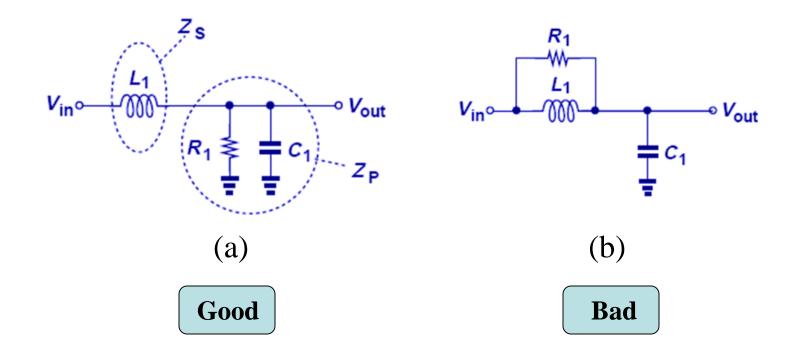
$$\frac{V_{out}}{V_{in}}(s) = \frac{R_1}{R_1 C_1 L_1 s^2 + L_1 s + R_1}$$

Example 15.14: Frequency Peaking



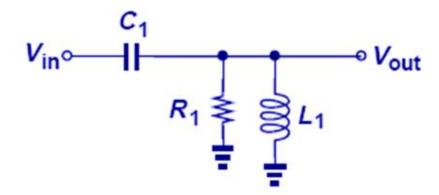
CH 14 Analog Filters

Example 15.15: Low-pass Circuit Comparison



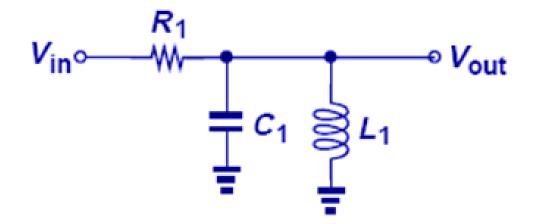
The circuit (a) has a -40dB/dec roll-off at high frequency.
 However, the circuit (b) exhibits only a -20dB/dec roll-off since the parallel combination of L₁ and R₁ is dominated by R₁ because L₁ω→∞, thereby reduces the circuit to R₁ and C₁.

High-pass Filter Implementation with Voltage Divider



$$\frac{V_{out}}{V_{in}}(s) = \frac{(L_1 s) || R_1}{(L_1 s) || R_1 + \frac{1}{C_1 s}} = \frac{L_1 C_1 R_1 s^2}{R_1 C_1 L_1 s^2 + L_1 s + R_1}$$

Band-pass Filter Implementation with Voltage Divider



$$\frac{V_{out}}{V_{in}}(s) = \frac{(L_1 s) \| \frac{1}{C_1 s}}{(L_1 s) \| \frac{1}{C_1 s} + R_1} = \frac{L_1 s}{R_1 C_1 L_1 s^2 + L_1 s + R_1}$$

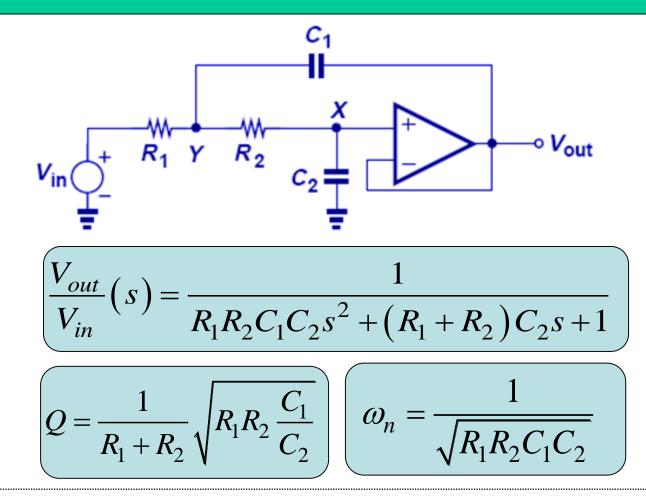
Why Active Filter?

> Passive filters constrain the type of transfer function.

> They may require bulky inductors.

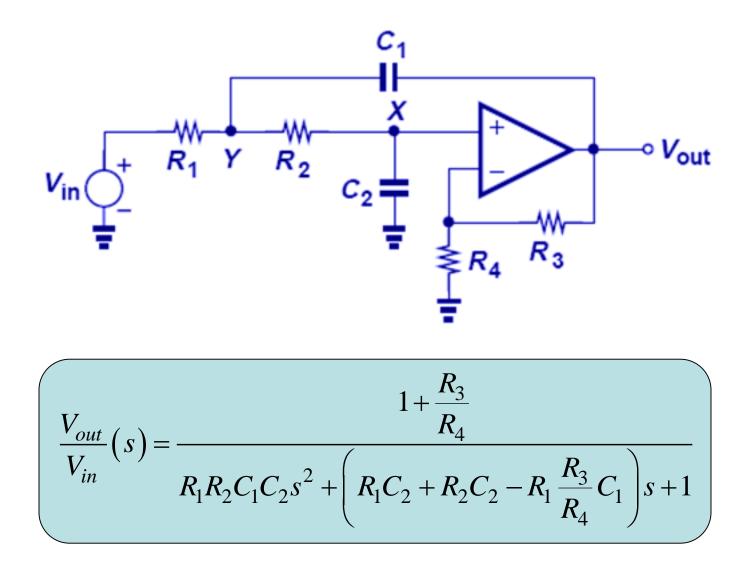
*-----

Sallen and Key (SK) Filter: Low-Pass



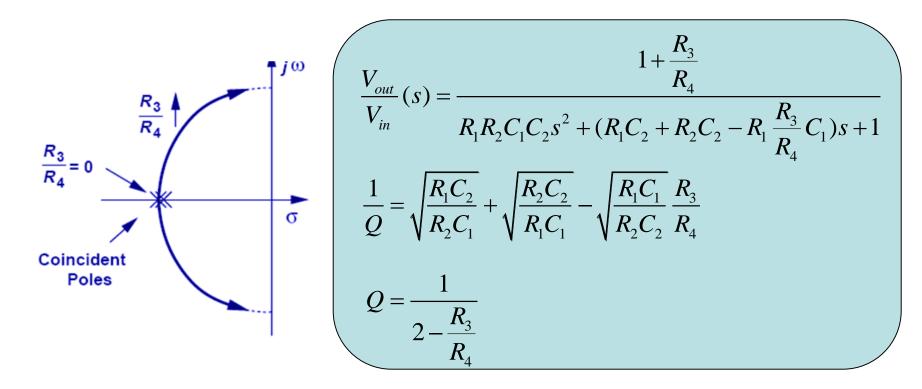
Sallen and Key filters are examples of active filters. This particular filter implements a low-pass, second-order transfer function.

Example 15.16: SK Filter with Voltage Gain



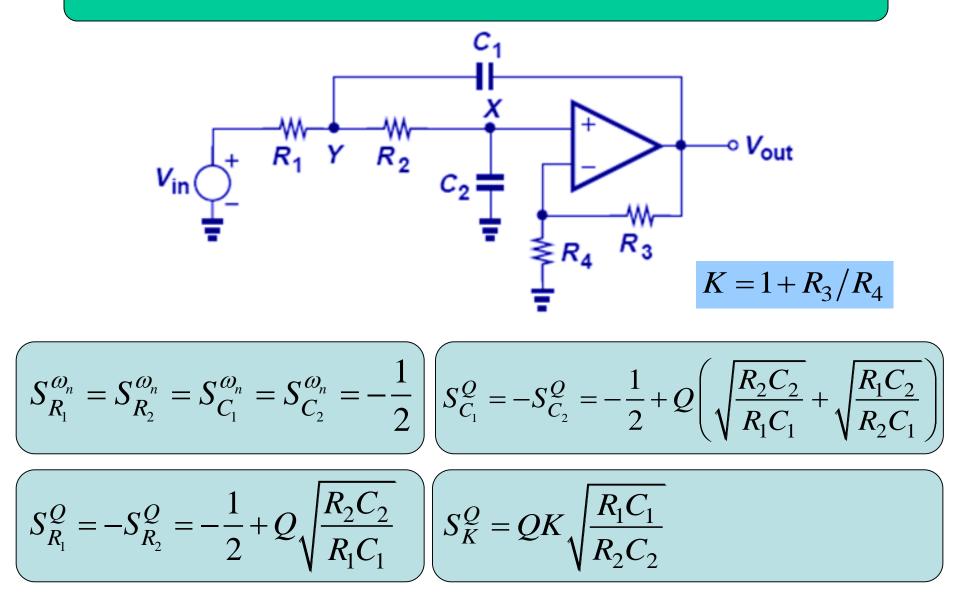
Example 15.17: SK Filter Poles

Problem: Assuming $R_1 = R_2$, $C_1 = C_2$, Does such a filter contain complex poles?



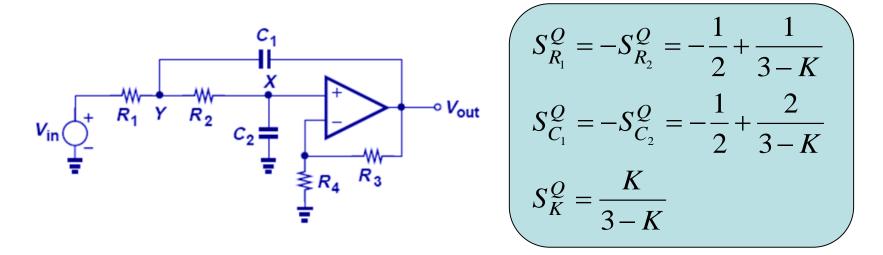
> The poles begin with real, equal values for $R_3/R_4 = 0$ and become complex for $R_3/R_4 > 0$.

Sensitivity in Low-Pass SK Filter



Example 15.18: SK Filter Sensitivity I

Problem: Determine the Q sensitivities of the SK filter for the common choice $R_1=R_2=R$, $C_1=C_2=C$.

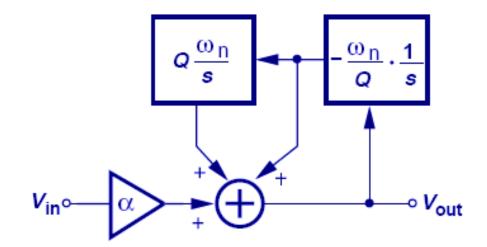


With K=1,

$$|S_{R_1}^Q| = |S_{R_2}^Q| = 0$$

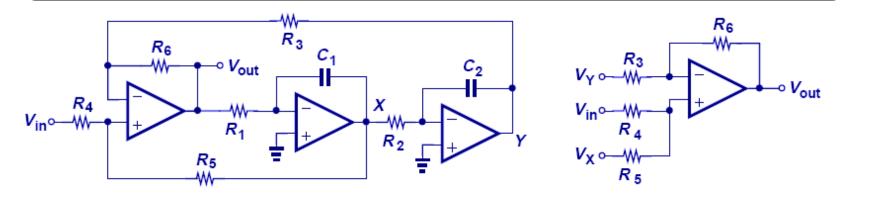
 $|S_{C_1}^Q| = |S_{C_2}^Q| = |S_K^Q| = \frac{1}{2}$

Integrator-Based Biquads



It is possible to use integrators to implement biquadratic transfer functions.

KHN (Kerwin, Huelsman, and Newcomb) Biquads

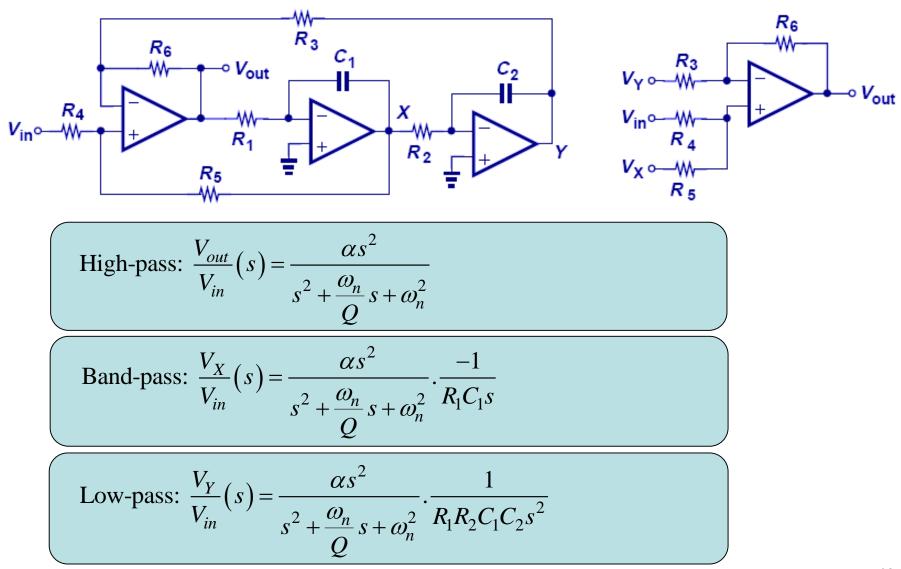


$$\underbrace{V_X = -\frac{1}{R_1 C_1 s} V_{out}, \ V_Y = -\frac{1}{R_2 C_2 s} V_X = \frac{1}{R_1 R_2 C_1 C_2 s^2} V_{out}}_{R_1 R_2 C_1 C_2 s^2} V_{out} \underbrace{V_{out} = \frac{V_{in} R_5 + V_X R_4}{R_4 + R_5} \left(1 + \frac{R_6}{R_3}\right) - V_Y \frac{R_6}{R_3}}_{R_3}$$

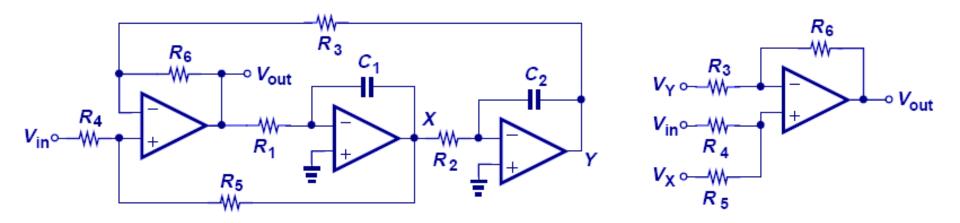
$$\left(\text{Comparing with } V_{out}\left(s\right) = \alpha V_{in}\left(s\right) - \frac{\omega_n}{Q} \cdot \frac{1}{s} V_{out}\left(s\right) - \frac{\omega_n^2}{s^2} V_{out}\left(s\right)\right)$$

$$\alpha = \frac{R_5}{R_4 + R_5} \left(1 + \frac{R_6}{R_3} \right) \left(\frac{\omega_n}{Q} = \frac{R_4}{R_4 + R_5} \cdot \frac{1}{R_1 C_1} \cdot \left(1 + \frac{R_6}{R_3} \right) \right) \left(\omega_n^2 = \frac{R_6}{R_3} \cdot \frac{1}{R_1 R_2 C_1 C_2} \right)$$

Versatility of KHN Biquads



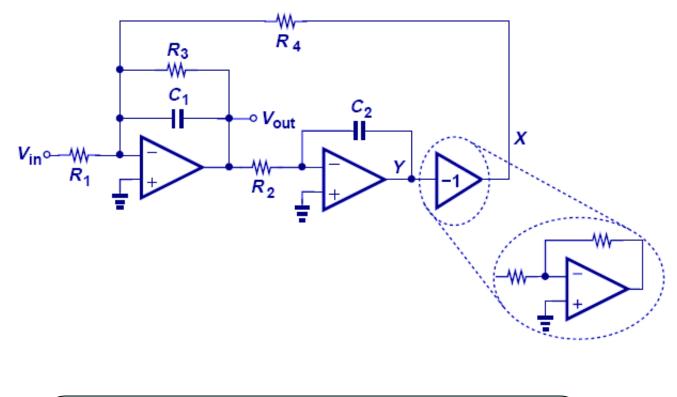
Sensitivity in KHN Biquads



$$\left|S_{R_1,R_2,C_1,C_2,R_3,R_6}^{\omega_n}\right| = 0.5$$

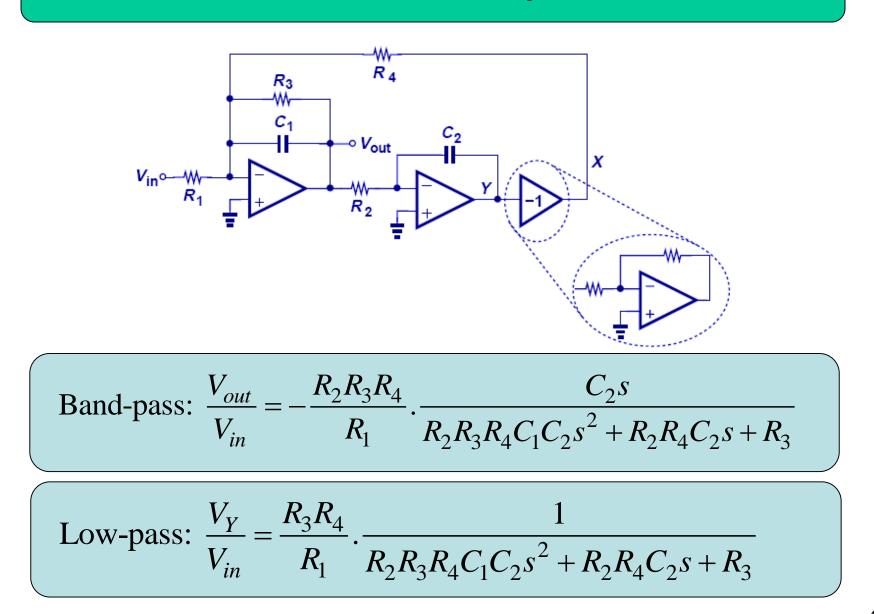
$$\begin{vmatrix} S_{R_1,R_2,C_1,C_2}^{Q} \end{vmatrix} = 0.5, \quad \left| S_{R_4,R_5}^{Q} \right| = \frac{R_5}{R_4 + R_5} < 1, \\ \left| S_{R_3,R_6}^{Q} \right| = \frac{Q}{2} \frac{\left| R_3 - R_6 \right|}{1 + \frac{R_5}{R_4}} \sqrt{\frac{R_2 C_2}{R_3 R_6 R_1 C_1}} \end{vmatrix}$$

Tow-Thomas Biquad

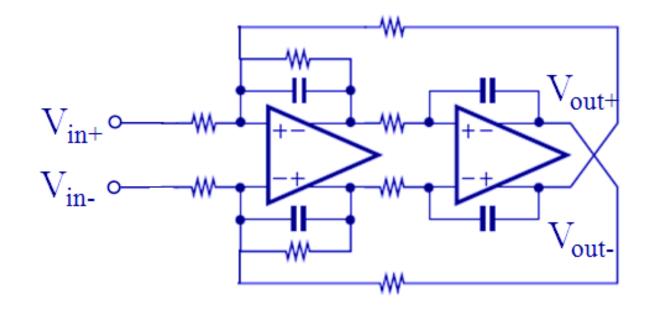


$$\left(\frac{V_{out}}{R_2C_2s} \cdot \frac{1}{R_4} + \frac{V_{in}}{R_1}\right) \left(R_3 \Box \frac{1}{sC_1}\right) = -V_{out}$$

Tow-Thomas Biquad

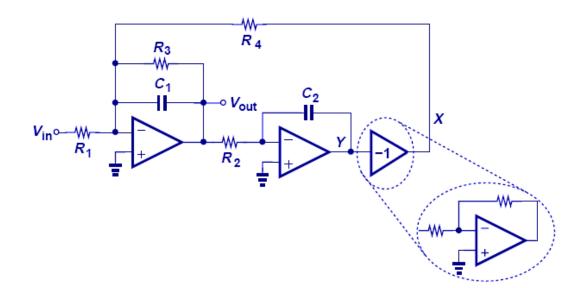


Differential Tow-Thomas Biquads



An important advantage of this topology over the KHN biquad is accrued in integrated circuit design, where differential integrators obviate the need for the inverting stage in the loop.

Example 15.20: Tow-Thomas Biquad



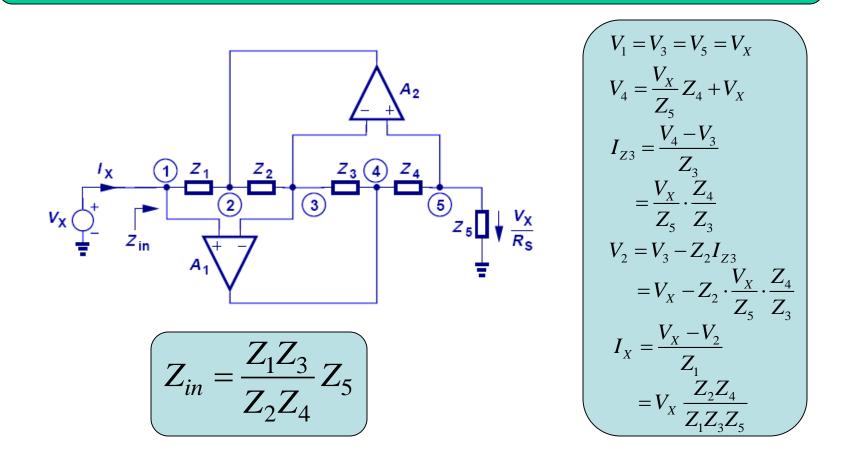
Note that ω_n and Q of the Tow-Thomas filter can be adjusted (tuned) independently.

$$\omega_n = \frac{1}{\sqrt{R_2 R_4 C_1 C_2}}$$
Adjusted by R₂ or R₄

$$Q^{-1} = \frac{1}{R_3} \sqrt{\frac{R_2 R_4 C_2}{C_1}}$$

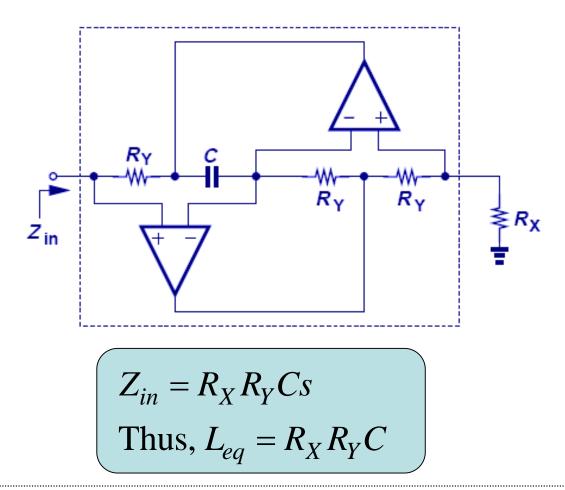
Adjusted by R₃

Antoniou General Impedance Converter



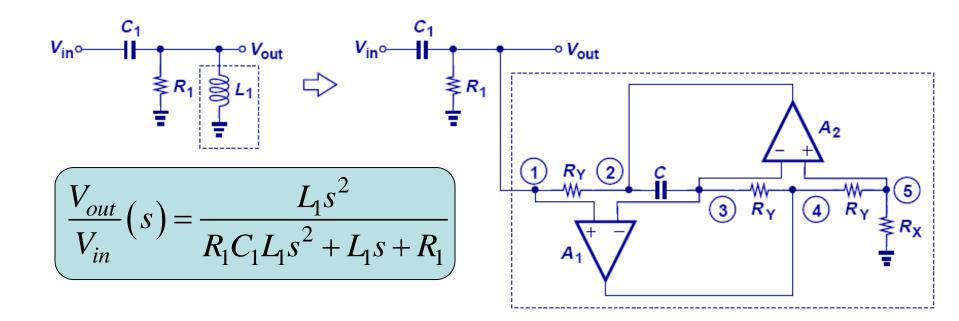
It is possible to simulate the behavior of an inductor by using active circuits in feedback with properly chosen passive elements.

Simulated Inductor



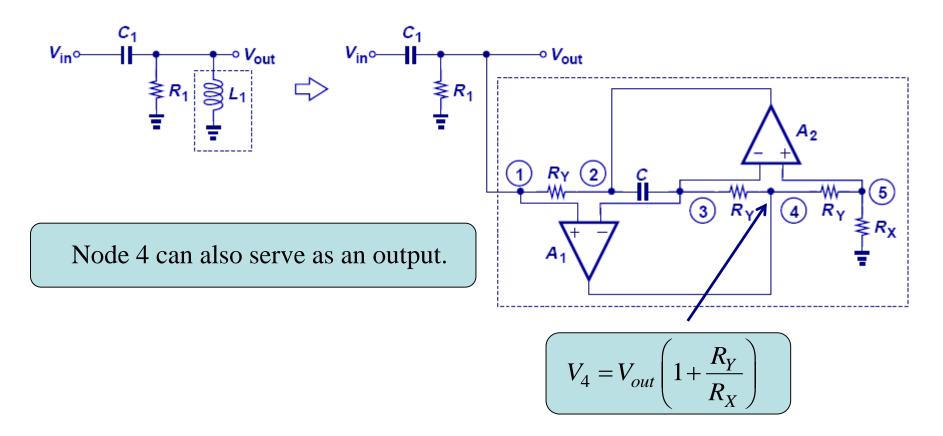
By proper choices of Z₁-Z₄, Z_{in} has become an impedance that increases with frequency, simulating inductive effect.

High-Pass Filter with SI



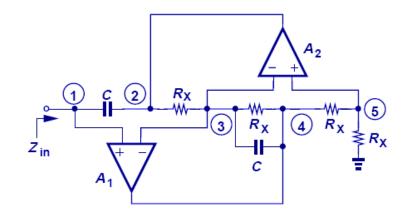
With the inductor simulated at the output, the transfer function resembles a second-order high-pass filter.

Example 15.22: High-Pass Filter with SI

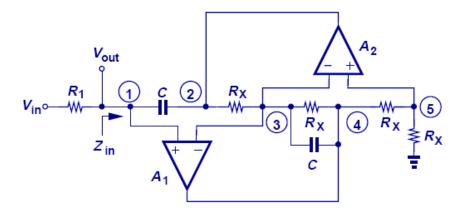


 \succ V₄ is better than V_{out} since the output impedance is lower.

How to build a floating inductor to derive a low-pass filter? Not possible. So use a super capacitor.

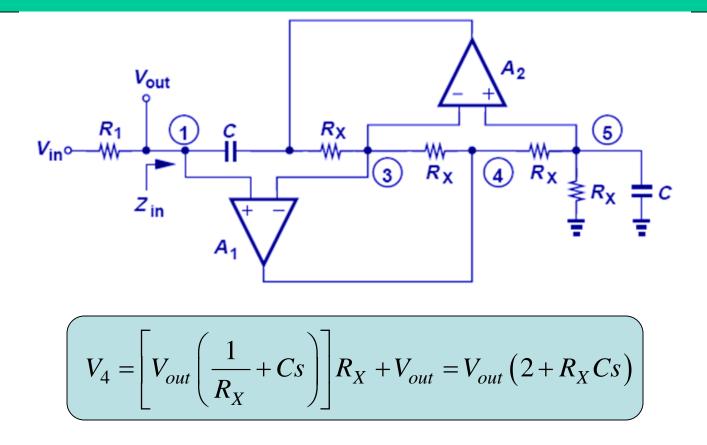


$$\overline{Z_{in} = \frac{1}{Cs\left(R_X Cs + 1\right)}}$$



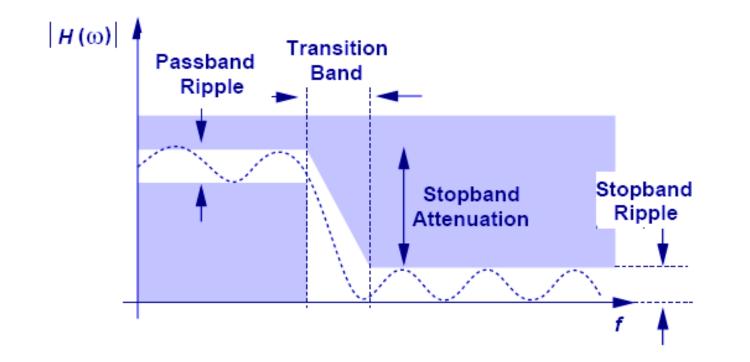
$$\frac{V_{out}}{V_{in}} = \frac{Z_{in}}{Z_{in} + R_1} \\
= \frac{1}{R_1 R_X C^2 s^2 + R_1 C s + 1}$$

Example 15.24: Poor Low-Pass Filter



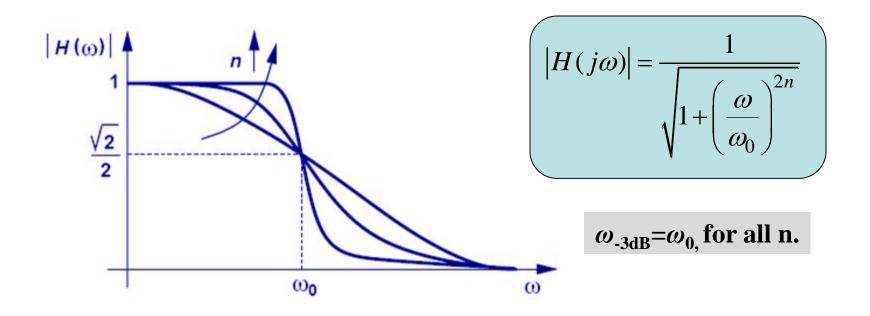
Node 4 is no longer a scaled version of the V_{out}. Therefore the output can only be sensed at node 1, suffering from a high impedance.

Frequency Response Template



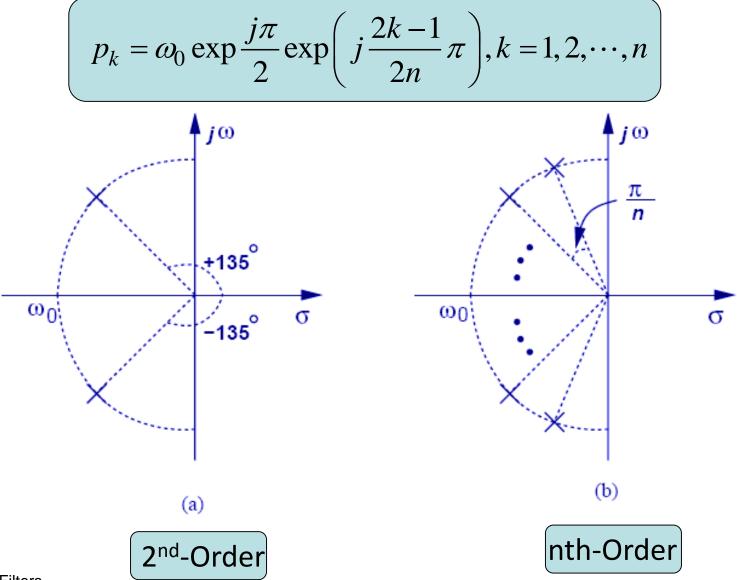
With all the specifications on pass/stop band ripples and transition band slope, one can create a filter template that will lend itself to transfer function approximation.

Butterworth Response

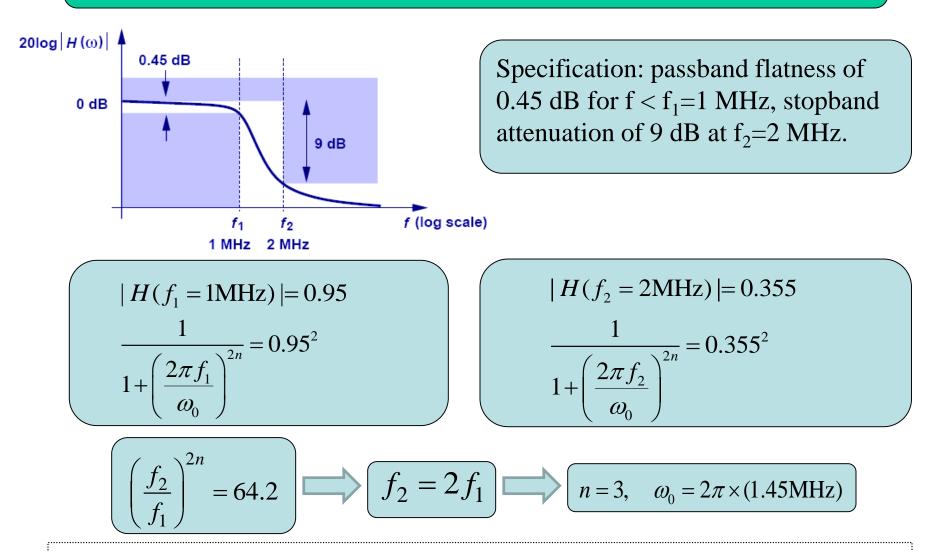


The Butterworth response completely avoids ripples in the pass/stop bands at the expense of the transition band slope.

Poles of the Butterworth Response

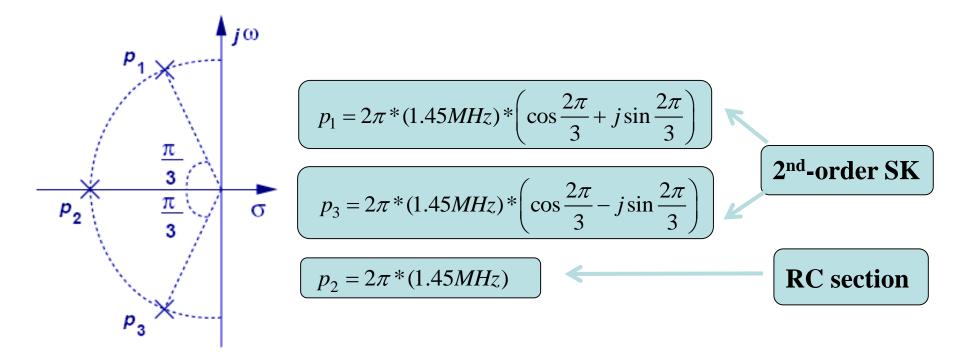


Example 15.24: Order of Butterworth Filter

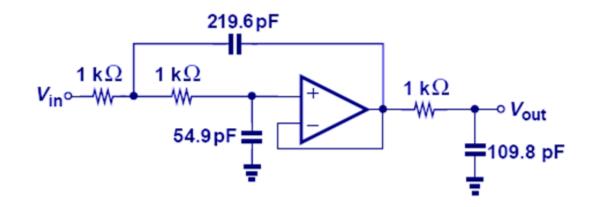


The minimum order of the Butterworth filter is three.

Using a Sallen and Key topology, design a Butterworth filter for the response derived in Example 14.24.



Example 15.25: Butterworth Response (cont'd)



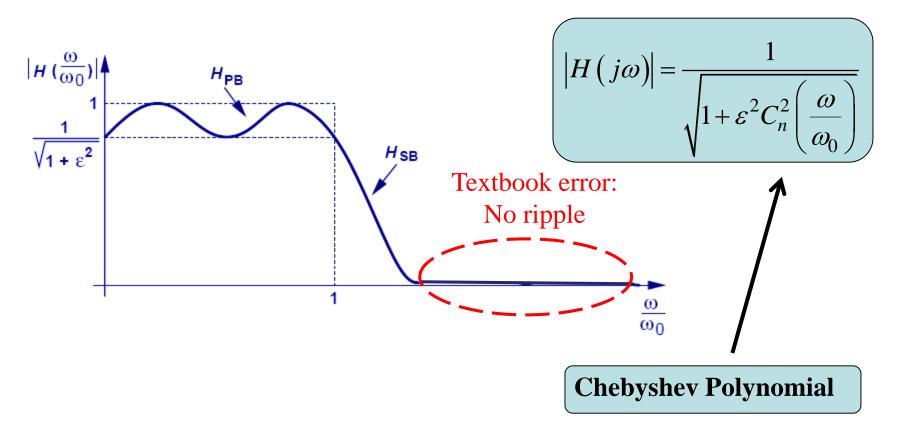
$$H_{SK}(s) = \frac{(-p_1)(-p_3)}{(s-p_1)(s-p_3)} = \frac{[2\pi \times (1.45\text{MHz})]^2}{s^2 + [4\pi \times (1.45\text{MHz})\cos(2\pi/3)]s + [2\pi \times (1.45\text{MHz})]^2}$$

$$\omega_n = 2\pi \times (1.45\text{MHz}) \text{ and } Q = 1/2\cos\frac{2\pi}{3} = 1 \rightarrow$$

$$R_1 = R_2 = 1\text{k}\Omega, \ C_2 = 54.9\text{pF}, \text{ and } C_1 = 4C_2$$

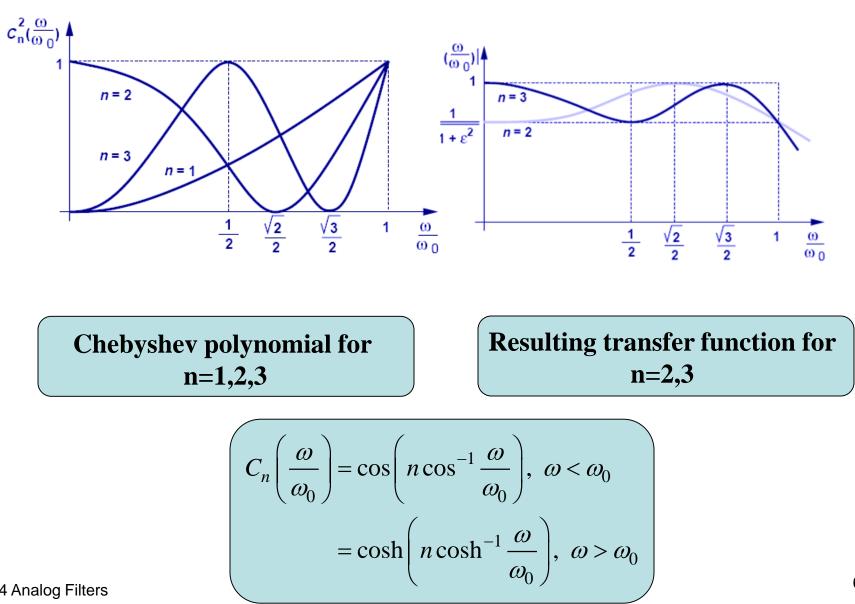
$$\frac{1}{R_3C_3} = 2\pi \times (1.45 \text{MHz}) \rightarrow R_3 = 1\text{k}\Omega \text{ and } C_3 = 109.8\text{pF}$$

Chebyshev Response



The Chebyshev response provides an "equiripple" pass/stop band response.

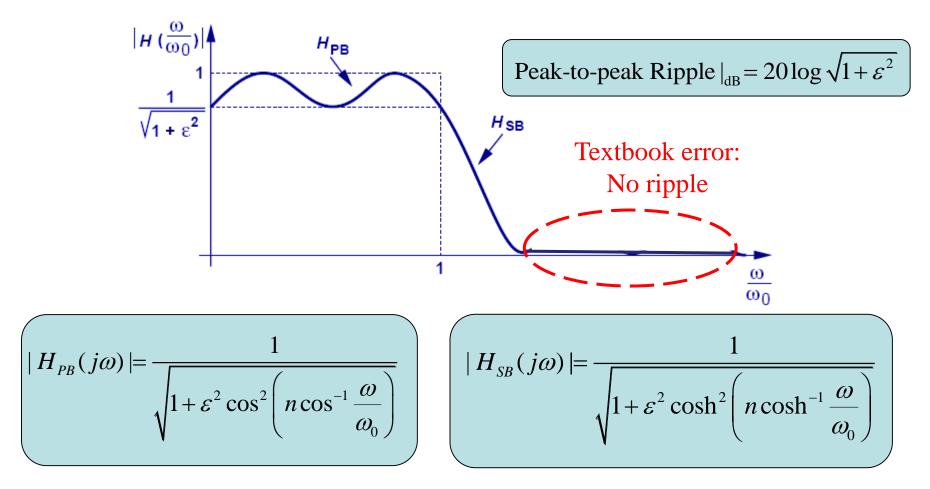
Chebyshev Polynomial



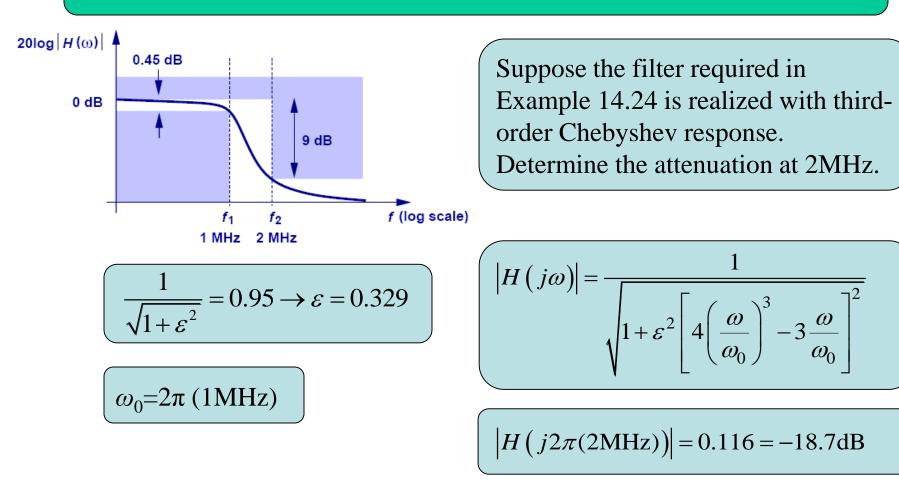
CH 14 Analog Filters

65

Chebyshev Response



Example 15.26: Chebyshev Response



A third-order Chebyshev response provides an attenuation of -18.7 dB a 2MHz.

Example 15.27: Order of Chebyshev Filter

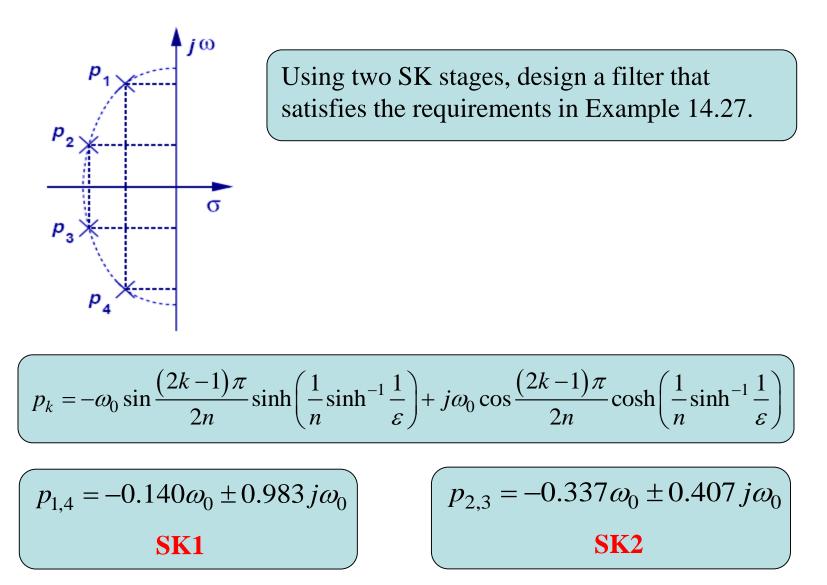
Specification: Passband ripple: 1 dB Bandwidth: 5 MHz Attenuation at 10 MHz: 30 dB What's the order?

$$1 \, \mathrm{dB} = 20 \log \sqrt{1 + \varepsilon^2} \rightarrow \varepsilon = 0.509$$

Attenuation at $\omega = 2\omega_0 = 10$ MHz: 30 dB

$$\frac{1}{\sqrt{1+0.509^2 \cosh^2(n \cosh^{-1} 2)}} = 0.0316$$
$$\cosh^2(1.317n) = 3862 \rightarrow n > 3.66 \rightarrow n = 4$$

Example 15.28: Chebyshev Filter Design



Example 15.28: Chebyshev Filter Design (cont'd)

