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 Aerotriangulation is the term most frequently applied to the process of determining the 

𝑋, 𝑌, and 𝑍 ground coordinates of individual points based on photo coordinate 

measurements 
 

 Phototriangulation is perhaps a more general term, however, because the procedure can 

be applied to terrestrial photos as well as aerial photos 
 

 With improved photogrammetric equipment and techniques, accuracies to which 

ground coordinates can be determined by these procedures have become very high 
 

 One of the principal applications lies in extending or densifying ground control through 

strips and/or blocks of photos for use in subsequent photogrammetric operations 
 

 When used for this purpose, it is often called bridging, because in essence a "bridge" of 

intermediate control points is developed between field-surveyed control that exists in 

only a limited number of photos in a strip or block 
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 Establishment of the needed control for compilation of topographic maps with 

stereoplotters is an excellent example to illustrate the value of aerotriangulation 
 

 In this application, the practical minimum number of control points necessary in each 

stereomodel is three horizontal and four vertical points 
 

 For large mapping projects, therefore, the number of control points needed is extensive, 

and the cost of establishing them can be extremely high if it is done exclusively by field 

survey methods 
 

 Much of this needed control is now routinely being established by aerotriangulation from 

only a sparse network of field-surveyed ground control and at a substantial cost savings 
 

 A more recent innovation involves the use of kinematic GPS and INS in the aircraft to 

provide coordinates and angular attitude of the camera at the instant each photograph 

is exposed 
 

 In theory, this method can eliminate the need for ground control entirely, although in 

practice a small amount of ground control is still used to strengthen the solution 
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 Besides having an economic advantage over field surveying, aerotriangulation has other 

benefits:  
 

(1) most of the work is done under laboratory conditions, thus minimizing delays and 

hardships due to adverse weather conditions 
 

(2) access to much of the property within a project area is not required 
 

(3) field surveying in difficult areas, such as marshes, extreme slopes, and hazardous 

rock formations, can be minimized 
 

(4) the accuracy of the field-surveyed control necessary for bridging is verified during 

the aerotriangulation process, and as a consequence, chances of finding erroneous 

control values after initiation of compilation are minimized and usually eliminated 
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 Apart from bridging for subsequent photogrammetric operations, aerotriangulation can 

be used in a variety of other applications in which precise ground coordinates are needed 

although most of these uses have been largely supplanted by GPS 
 

 In property surveying, aerotriangulation can be used to locate section corners and 

property corners or to locate evidence that will assist in finding these corners 
 

 In topographic mapping, aerotriangulation can be used to develop digital elevation 

models by computing 𝑋, 𝑌, and 𝑍 ground coordinates of a systematic network of points in 

an area, although airborne laser scanning is commonly being used for this task 
 

 Aerotriangulation has been used successfully for densifying geodetic control networks in 

areas surrounded by tall buildings where problems due to multipath cause a loss of 

accuracy in GPS surveys 
 

 Special applications include the precise determination of the relative positions of large 

machine parts during fabrication 
 

 It had been found especially useful in such industries as shipbuilding and aircraft 

manufacture 
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 Methods of performing aerotriangulation may be classified into one of three categories: 

analog, semianalytical, and analytical 
 

 Early analog procedures involved manual interior, relative, and absolute orientation of the 

successive models of long strips of photos using stereoscopic plotting instruments having 

several projectors  ⇨ This created long strip models from which coordinates of pass points 

could be read directly 
 

 Later, universal stereoplotting instruments were developed which enabled this process to 

be accomplished with only two projectors 
 

 Semianalytical aerotriangulation involves manual interior and relative orientation of 

stereomodels within a stereoplotter, followed by measurement of model coordinates 
 

 Absolute orientation is performed numerically—hence the term semianalytical 

aerotriangulation 
 

 Analytical methods consist of photo coordinate measurement followed by numerical 

interior, relative, and absolute orientation from which ground coordinates are computed 
 

 Various specialized techniques have been developed within each of the three 

aerotriangulation categories 
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 Pass points for aerotriangulation are 

normally selected in the general 

photographic locations shown in Fig. 17-1a 
 

 Historically, points were artificially 

generated using stereoscopic point marking 

devices 
 

 These devices involved drilling a hole in the 

photograph, destroying the emulsion on 

that point 
Figure 17-1. (a) Idealized pass point locations for 

aerotriangulation. (b) Locations of pass points in two adjacent 
stereomodels. 
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 Nowadays, in automatic aerotriangulation, pass points are usually found using 

automated procedures on digital and scanned-film photography 
 

 Control points can be located manually with sub-pixel accuracy in software 
 

 There is no destruction of the photograph using digital methods, so points can easily be 

removed and replaced 



 A typical procedure for measuring a pass point begins by first manually digitizing the 

point in one photograph 
 

     ⇨ The pixels around this point serve as the template array 
 

 Next, the user defines a search area in other photographs for automatic image matching 
 

     ⇨ There are also automatic methods for defining a search area by predicting the  

         coordinates of the point in the subsequent photographs 
 

 Finally, the pixel patch in the search area corresponding to the template array is 

automatically located 
 

     ⇨ Normalized cross-correlation followed by least squares matching is a common method  

         for this step 
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 To avoid poor matches and blunders, well-defined 

unique objects with good contrast and directionality 

should be selected as image-matching templates 
 

 Image-matching software usually provides a measure of 

how well the point was matched, such as the 

correlation coefficient in normalized cross-correlation 

      ⇨ This number should serve as a guide for the user to  

         decide whether or not to accept the matching results 
Figure 17-1. (a) Idealized pass point locations 

for aerotriangulation. (b) Locations of pass 
points in two adjacent stereomodels. 
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 It is not uncommon for incorrectly matched points to have high correlation coefficients 
 

 The process is repeated for each pass point keeping in mind the optimal distribution 

illustrated in Fig. 17-1 
 

 Due to increased redundancy, the most effective points are those that appear in the so-

called tri-lap area, which is the area included on three consecutive images along a strip 
 

 Once many pass points are located, more can be added in a fully automated process by 

prediction of point locations based on a coordinate transformation 



 Semianalytical aerotriangulation, often referred to as independent model 

aerotriangulation, is a partly analytical procedure that emerged with the development of 

computers 
 

 It involves relative orientation of each stereomodel of a strip or block of photos 
 

 After the models have been formed, they are numerically adjusted to the ground system 

by either a sequential or a simultaneous method 
 

 In the sequential approach, contiguous models are joined analytically, one by one, to form 

a continuous strip model, and then absolute orientation is performed numerically to 

adjust the strip model to ground control 
 

 In the simultaneous approach, all models in a strip or block are joined and adjusted to 

ground control in a single step, much like the simultaneous transformation technique 
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 An advantage of using semianalytical aerotriangulation is that independent stereomodels 

are more convenient for operators in production processes 
 

 This stems from the fact that the images that make up stereomodel are more “tightly” 

oriented with respect to each other, whereas in fully analytical adjustments the images 

are oriented to optimize their fit with respect to a block of multiple photos which may 

lead to residual y parallax in the orientation between individual stereopairs 
 

 Regardless of whether the sequential or simultaneous method is employed, the process 

yields coordinates of the pass points in the ground system 
 

 Additionally, coordinates of the exposure stations can be determined in either process  

     ⇨ Thus, semianalytical solutions can provide initial approximations for a subsequent  

         bundle adjustment 
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 In the sequential approach to semianalytical 

aerotriangulation, each stereopair of a strip is 

relatively oriented in a stereoplotter, the 

coordinate system of each model being 

independent of the others 
 

 When relative orientation is completed, model 

coordinates of all control points and pass 

points are read and recorded 
 

 This is done for each stereomodel in the strip. 

Figures 17-2a and b illustrate the first three 

relatively oriented stereomodels of a strip and 

show plan views of their respective 

independent coordinate systems 

Figure 17-2. Independent model or semianalytical 
aerotriangulation. (a) Three adjacent relatively oriented 

stereomodels. (b) Individual arbitrary coordinate systems of three 
adjacent stereomodels. (c) Continuous strip of stereomodels 

formed by numerically joining the individual arbitrary coordinate 
systems into one system. 
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 By means of pass points common to adjacent 

models, a three-dimensional conformal 

coordinate transformation is used to tie each 

successive model to the previous one 
 

 To gain needed geometric strength in the 

transformations, the coordinates of the 

perspective centers (model exposure stations) 

are also measured in each independent model 

and included as common points in the 

transformation 

Figure 17-2. Independent model or semianalytical 
aerotriangulation. (a) Three adjacent relatively oriented 

stereomodels. (b) Individual arbitrary coordinate systems of three 
adjacent stereomodels. (c) Continuous strip of stereomodels 

formed by numerically joining the individual arbitrary coordinate 
systems into one system. 
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 The right exposure station of model 1-2, 𝑂2, 

for example, is the same point as the left 

exposure station of model 2-3. To transform 

model 2-3 to model 1-2, therefore, 

coordinates of common points 𝑑, 𝑒, 𝑓,  and 𝑂2 

of model 2-3 are made to coincide with their 

corresponding model 1-2 coordinates 



 Once the parameters for this transformation 

have been computed, they are applied to the 

coordinates of points 𝑔, , 𝑖, and 𝑂3 in the 

system of model 2-3 to obtain their 

coordinates in the model 1-2 system 
 

 These points in turn become control for a 

transformation of the points of model 3-4 
 

 By applying successive coordinate 

transformations, a continuous strip of 

stereomodels may be formed, as illustrated in 

Fig. 17-2c 
 

 The entire strip model so constructed is in the 

coordinate system defined by model 1-2 

 
Figure 17-2. Independent model or semianalytical 

aerotriangulation. (a) Three adjacent relatively oriented 
stereomodels. (b) Individual arbitrary coordinate systems of three 

adjacent stereomodels. (c) Continuous strip of stereomodels 
formed by numerically joining the individual arbitrary coordinate 

systems into one system. 
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 Once the parameters for this transformation 

have been computed, they are applied to the 

coordinates of points g, h, i, and O in the 

system of model 2-3 to obtain their 

coordinates in the model 1-2 system 
 

 These points in turn become control for a 

transformation of the points of model 3-4 
 

 By applying successive coordinate 

transformations, a continuous strip of 

stereomodels may be formed, as illustrated in 

Fig. 17-2c 
 

 The entire strip model so constructed is in the 

coordinate system defined by model 1-2 

 
Figure 17-2. Independent model or semianalytical 

aerotriangulation. (a) Three adjacent relatively oriented 
stereomodels. (b) Individual arbitrary coordinate systems of three 

adjacent stereomodels. (c) Continuous strip of stereomodels 
formed by numerically joining the individual arbitrary coordinate 

systems into one system. 

Seoul National University  

Aerotriangulation 

17-4. Sequential Construction of a Strip Model from Independent Models 



 Once the parameters for this transformation 

have been computed, they are applied to the 

coordinates of points g, h, i, and O in the 

system of model 2-3 to obtain their 

coordinates in the model 1-2 system 
 

 These points in turn become control for a 

transformation of the points of model 3-4 
 

 By applying successive coordinate 

transformations, a continuous strip of 

stereomodels may be formed, as illustrated in 

Fig. 17-2c 
 

 The entire strip model so constructed is in the 

coordinate system defined by model 1-2 

 
Figure 17-2. Independent model or semianalytical 

aerotriangulation. (a) Three adjacent relatively oriented 
stereomodels. (b) Individual arbitrary coordinate systems of three 

adjacent stereomodels. (c) Continuous strip of stereomodels 
formed by numerically joining the individual arbitrary coordinate 

systems into one system. 
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 After a strip model has been formed, it is numerically adjusted to the ground 

coordinate system using all available control points 
 

 If the strip is short, i.e., up to about four models, this adjustment may be done using a 

three-dimensional conformal coordinate transformation 
 

 This requires that a minimum of two horizontal control points and three vertical control 

points be present in the strip 
 

 More control than the minimum is desirable, however, as it adds stability and 

redundancy to the solution 
 

 If the strip is long, a polynomial adjustment is preferred to transform model coordinates 

to the ground coordinate system 

 



Figure 17-2. Independent model or semianalytical 
aerotriangulation. (a) Three adjacent relatively oriented 

stereomodels. (b) Individual arbitrary coordinate systems of three 
adjacent stereomodels. (c) Continuous strip of stereomodels 

formed by numerically joining the individual arbitrary coordinate 
systems into one system. 
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 In the short strip illustrated in Fig. 17-2c, 

horizontal control points 𝐻1 through 𝐻4 and 

vertical control points 𝑉1 through 𝑉4 would be 

used in a three-dimensional conformal 

coordinate transformation to compute the 

ground coordinates of pass points 𝑎 through 

𝑙 and exposure stations 𝑂1 through 𝑂4 



 Due to the nature of sequential strip formation, random errors will accumulate along the 

strip 
 

 Often, this accumulated error will manifest itself in a systematic manner with the errors 

increasing in a nonlinear fashion 
 

 This effect, illustrated in Fig. 17-4, can be significant, particularly in long strips 
 

 Figure 17-4a shows a strip model comprised of seven contiguous stereomodels from a 

single flight line 

Figure 17-4. (a) Plan view of control extension of a seven-model 
strip. (b) Smooth curves indication accumulation of errors in X, Y, 

and Z coordinates during control extension of a strip. 
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 Note from the figure that sufficient ground 

control exists in model 1-2 to absolutely 

orient it (and thereby the entire strip) to 

the ground system 



 The remaining control points (in models 4-5 and 7-8) can then be used as checkpoints to 

reveal accumulated errors along the strip 
 

 Figure 17-4b shows a plot of the discrepancies between model and ground coordinates 

for the checkpoints as a function of 𝑋 coordinates along the strip 
 

 Except for the ground control in the first model, which was used to absolutely orient the 

strip, discrepancies exist between model positions of horizontal and vertical control 

points and their corresponding field-surveyed positions 

Figure 17-4. (a) Plan view of control extension of a seven-model 
strip. (b) Smooth curves indication accumulation of errors in X, Y, 

and Z coordinates during control extension of a strip. 
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 Smooth curves are fit to the discrepancies 

as shown in the figure 



 If sufficient control is distributed along the length of the strip, a three-dimensional 

polynomial transformation can be used in lieu of a conformal transformation to perform 

absolute orientation and thus obtain corrected coordinates for all pass points 
 

 This polynomial transformation yields higher accuracy through modeling of systematic 

errors along the strip 
 

 Most of the polynomials in use for adjusting strips formed by aerotriangulation are 

variations of the following third-order equations: 

(17-1) 
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 In Eqs. (17-1), 𝑋 , 𝑌  and 𝑍  are the transformed ground coordinates; 𝑋 and 𝑌 are strip 

model coordinates; and the 𝑎′𝑠, 𝑏′𝑠, and 𝑐′𝑠 are coefficients which define the shape of the 

polynomial error curves. The equations contain 30 unknown coefficients (𝑎′𝑠, 𝑏′𝑠, and 𝑐′𝑠) 
 

 Each three-dimensional control point enables the above three polynomial equations to be 

written, and thus 10 three-dimensional control points are required in the strip for an 

exact solution 



 When dealing with transformations involving polynomials, however, it is imperative to 

use redundant control which is well distributed throughout the strip 
 

 It is important that the control points occur at the periphery as well, since extrapolation 

from polynomials can result in excessive corrections 
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Figure 17-4. (a) Plan view of control extension of a seven-model 
strip. (b) Smooth curves indication accumulation of errors in X, Y, 

and Z coordinates during control extension of a strip. 

 As illustrated by Fig. 17-4b, errors in 𝑋, 𝑌, 

and 𝑍 are principally functions of the linear 

distance (𝑋 coordinate) of the point along 

the strip 
 

 However, the nature of error propagation 

along strips formed by aerotriangulation is 

such that discrepancies in 𝑋, 𝑌, and 

𝑍 coordinates are also each somewhat 

related to the 𝑌 positions of the points in 

the strip 
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 Depending on the complexity of the distortion, certain terms may be eliminated from 

Eqs. (17-1) if they are found not to be significant 
 

 This serves to increase redundancy in transformation which generally results in more 

accurate results 

 

(17-1) 
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 The most elementary approaches to analytical aerotriangulation consist of the same basic 

steps as those of analog and semianalytical methods and include  

(1) relative orientation of each stereomodel 

(2) connection of adjacent models to form continuous strips and/or blocks 

(3) simultaneous adjustment of the photos from the strips and/or blocks to field-

surveyed ground control 
 

 What is different about analytical methods is that the basic input consists of precisely 

measured photo coordinates of control points and pass points 
 

 Relative orientation is then performed analytically based upon the measured coordinates 

and known camera constants 
 

 Finally, the entire block of photographs is adjusted simultaneously to the ground 

coordinate system 



 Analytical aerotriangulation tends to be more accurate than analog or semianalytical 

methods, largely because analytical techniques can more effectively eliminate systematic 

errors such as film shrinkage, atmospheric refraction distortions, and camera lens 

distortions 
 

 In fact, 𝑋 and 𝑌 coordinates of pass points can quite routinely be located analytically to 

an accuracy of within about 1/15,000 of the flying height, and 𝑍 coordinates can be 

located to an accuracy of about 1/10,000 of the flying height 
 

 With specialized equipment and procedures, planimetric accuracy of 1/350,000 of the 

flying height and vertical accuracy of 1/180,000 have been achieved 
 

 Another advantage of analytical methods is the freedom from the mechanical or optical 

limitations imposed by stereoplotters 
 

 Photography of any focal length, tilt, and flying height can be handled with the same 

efficiency 
 

 The calculations involved are rather complex 

     ⇨ however, a number of suitable computer programs are available to perform analytical  

         aerotriangulation 
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 All different variations in analytical aerotriangulation techniques consist of writing 

condition equations that express the unknown elements of exterior orientation of each 

photo in terms of camera constants, measured photo coordinates, and ground 

coordinates 
 

 The equations are solved to determine the unknown orientation parameters, and either 

simultaneously or subsequently, coordinates of pass points are calculated 
 

 Analytical procedures have been developed which can simultaneously enforce collinearity 

conditions onto units which consist of hundreds of photographs 
 

 The ultimate extension of the principles is to adjust all photogrammetric measurements to 

ground control values in a single solution known as a bundle adjustment 
 

 The bundles from all photos are adjusted simultaneously so that corresponding light rays 

intersect at positions of the pass points and control points on the ground 
 

 The process is an extension of the principles of analytical photogrammetry, applied to an 

unlimited number of overlapping photographs 
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 Figure 17-5a shows a small block consisting of two 

strips with four photos per strip 
 

 The photo block contains images of 20 pass points 

labeled 1 through 20 and 6 control points labeled 

𝐴 through 𝐹, for a total of 26 object points 
 

 Points 3, 8, 13, 18, 𝐵, and 𝐸 also serve as tie points 

which connect the two adjacent strips 
 

 Figure 17-5b shows the individual photos in a 

nonoverlapping configuration 
 

 Note that photos 1, 4, 5, and 8 each contain images 

of 8 points; and photos 2, 3, 6, and 7 each contain 

images of 11 points, for a grand total of 4 × 8 + 4 × 

11 = 76 point images 

Figure 17-5. (a) Block of photos in overlapped 
position. (b) Separated photos showing image points. 
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 The unknown quantities to be obtained in a bundle adjustment consist of :  

(1) the 𝑋, 𝑌, and 𝑍 object space coordinates of all object points  

(2) the exterior orientation parameters (𝜔,𝜑 , 𝜅, 𝑋𝐿 , 𝑌𝐿 , and 𝑍𝐿 ) of all photographs 
 

 The first group of unknowns (object space coordinates) is the necessary result of any 

aerotriangulation, analytical or otherwise 
 

 Exterior orientation parameters, however, are generally not of interest to the 

photogrammetrist, but they must be included in the mathematical model for consistency 
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Figure 17-5. (a) Block of photos in overlapped 
position.  

 In the photo block of Fig. 17-5a the number of 

unknown object coordinates is 26 × 3 = 78 

(number of object points times the number of 

coordinates per point) 
 

 The number of unknown exterior orientation 

parameters is 8 × 6 = 48 (number of photos times 

the number of exterior orientation parameters per 

photo) ⇨ Therefore the total number of unknowns 

is 78 + 48 = 126 

 



 The measurements (observed quantities) associated with a bundle adjustment are : 

(1) x and y photo coordinates of images of object points 

(2) 𝑋, 𝑌, and/or 𝑍 coordinates of ground control points 

(3) direct observations of the exterior orientation parameters (𝜔,𝜑 , 𝜅, 𝑋𝐿 , 𝑌𝐿 , and 𝑍𝐿) of 

the photographs 
 

 The first group of observations, photo coordinates, is the fundamental photogrammetric 

measurements 

 For a proper bundle adjustment they need to be weighted according to the 

accuracy and precision with which they were measured 
 

 The next group of observations is coordinates of control points determined through field 

survey 

 Although ground control coordinates are indirectly determined quantities, they can 

be included as observations provided that proper weights are assigned 
 

 The final set of observations, exterior orientation parameters, has recently become 

important in bundle adjustments with the use of airborne GPS control as well as inertial 

navigation systems (INSs) which have the capability of measuring the angular attitude of 

a photograph 
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 Returning to the block of Fig. 17-5, the number of 

photo coordinate observations is 76 × 2 = 152 

(number of imaged points times the number of 

photo coordinates per point), and the number of 

ground control observations is 6 × 3 = 18 (number 

of three-dimensional control points times the 

number of coordinates per point) 
 

 If the exterior orientation parameters were 

measured, the number of additional observations 

would be 8 × 6 = 48 (number of photos times the 

number of exterior orientation parameters per 

photo) 
 

Figure 17-5. (a) Block of photos in overlapped 
position. (b) Separated photos showing image points. 
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 Thus, if all three types of observations are included, 

there will be a total of 152 + 18 + 48 = 218 

observations; but if only the first two types are 

included, there will be only 152 + 18 = 170 

observations 
 

 Regardless of whether exterior orientation 

parameters were observed, a least squares solution 

is possible since the number of observations is 

greater than the number of unknowns (126) in 

either case 

Figure 17-5. (a) Block of photos in overlapped 
position. (b) Separated photos showing image points. 
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 The observation equations which are the foundation of a bundle adjustment are the 

collinearity equations  
 

 These equations are given below in a slightly modified form as Eqs. (17-2) and (17-3) 

𝑥𝑖𝑗 = 𝑥0 − 𝑓
𝑚11𝑖 𝑋𝑗 − 𝑋𝐿𝑖 +𝑚12𝑖 𝑌𝑗 − 𝑌𝐿𝑖 +𝑚13𝑖 𝑍𝑗 − 𝑍𝐿𝑖
𝑚31𝑖 𝑋𝑗 − 𝑋𝐿𝑖 +𝑚32𝑖 𝑌𝑗 − 𝑌𝐿𝑖 +𝑚33𝑖 𝑍𝑗 − 𝑍𝐿𝑖

 (17-2) 

𝑦𝑖𝑗 = 𝑦0 − 𝑓
𝑚21𝑖 𝑋𝑗 − 𝑋𝐿𝑖 +𝑚22𝑖 𝑌𝑗 − 𝑌𝐿𝑖 +𝑚23𝑖 𝑍𝑗 − 𝑍𝐿𝑖
𝑚31𝑖 𝑋𝑗 − 𝑋𝐿𝑖 +𝑚32𝑖 𝑌𝑗 − 𝑌𝐿𝑖 +𝑚33𝑖 𝑍𝑗 − 𝑍𝐿𝑖

 (17-3) 
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 In these equations, 𝑥𝑖𝑗 and 𝑦𝑖𝑗 are the measured photo coordinates of the image of   

point 𝑗 on photo 𝑖 related to the fiducial axis system 
 

 𝑥0 and 𝑦0 are the coordinates of the principal point in the fiducial axis system 

 𝑓 is the focal length (or more correctly, principal distance) of the camera 

 𝑚11𝑖 ,𝑚12𝑖 , … ,𝑚33𝑖 are the rotation matrix terms for photo 𝑖 

 𝑋𝑗, 𝑌𝑗, and 𝑍𝑗 are the coordinates of point 𝑗 in object space 

 𝑋𝐿𝑖 , 𝑌𝐿𝑖, and 𝑍𝐿𝑖 are the coordinates of the incident nodal point of the camera lens in object space 



 Since the collinearity equations are nonlinear, they are linearized by applying the first-

order terms of Taylor's series at a set of initial approximations 

      ⇨ After linearization the equations can be expressed in the following matrix form: 

𝐵 𝑖𝑗∆ 𝑖 + 𝐵 𝑖𝑗∆ 𝑗= 𝜀𝑖𝑗 + 𝑉𝑖𝑗  (17-4) 

𝐵 𝑖𝑗 =
𝑏11𝑖𝑗 𝑏12𝑖𝑗 𝑏13𝑖𝑗 −𝑏14𝑖𝑗 −𝑏15𝑖𝑗 −𝑏16𝑖𝑗
𝑏21𝑖𝑗 𝑏22𝑖𝑗 𝑏23𝑖𝑗 −𝑏24𝑖𝑗 −𝑏25𝑖𝑗 −𝑏26𝑖𝑗

 

𝐵 𝑖𝑗 =
𝑏14𝑖𝑗 𝑏15𝑖𝑗 𝑏16𝑖𝑗
𝑏24𝑖𝑗 𝑏25𝑖𝑗 𝑏26𝑖𝑗

 

∆ 𝑖=

𝑑𝜔𝑖

𝑑𝜙𝑖
𝑑𝜒𝑖
𝑑𝑋𝐿𝑖
𝑑𝑌𝐿𝑖
𝑑𝑍𝐿𝑖

 Δ 𝑗 =

𝑑𝑋𝑗
𝑑𝑌𝑗
𝑑𝑋𝑗

 𝜀𝑖𝑗 =
𝐽𝑖𝑗
𝐾𝑖𝑗

 𝑉𝑖𝑗 =
𝑣𝑥𝑖𝑗
𝑣𝑦𝑖𝑗

 

where 
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 Matrix 𝐵 𝑖𝑗 contains the partial derivatives of the collinearity equations with respect to the 

exterior orientation parameters of photo 𝑖, evaluated at the initial approximations 
 

 Matrix 𝐵 𝑖𝑗 contains the partial derivatives of the collinearity equations with respect to the object 

space coordinates of point 𝑗, evaluated at the initial approximations 
 

 Matrix ∆ 𝑖 contains corrections for the initial approximations of the exterior orientation 

parameters for photo 𝑖, and matrix Δ 𝑗 contains corrections for the initial approximations of the 

object space coordinates of point 𝑗 
 

 Matrix 𝜀𝑖𝑗 contains measured minus computed 𝑥 and 𝑦 photo coordinates for point 𝑗 on photo 𝑖, 

and finally matrix 𝑉𝑖𝑗 contains residuals for the 𝑥 and 𝑦 photo coordinates 



 Proper weights must be assigned to photo coordinate observations in order to be 

included in the bundle adjustment  
 

 Expressed in matrix form, the weights for 𝑥 and 𝑦 photo coordinate observations of 

point 𝑗 on photo 𝑖 are : 

 The reference variance is an arbitrary parameter which can be set equal to 1, and in 

many cases, the covariance in photo coordinates is equal to zero 

      ⇨ In this case, the weight matrix for photo coordinates simplifies to 

𝑊𝑖𝑗 = 𝜎0
2

𝜎𝑥𝑖𝑗
2 𝜎𝑥𝑖𝑗𝑦𝑖𝑗

𝜎𝑦𝑖𝑗𝑥𝑖𝑗 𝜎𝑦𝑖𝑗
2

−1

 (17-5) 

𝑊𝑖𝑗 =

1

𝜎𝑥𝑖𝑗
2 0

0
1

𝜎𝑦𝑖𝑗
2

 (17-6) 
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 where 𝜎0
2 is the reference variance; 𝜎𝑥𝑖𝑗

2  and 𝜎𝑦𝑖𝑗
2  are 

variances in 𝑥𝑖𝑗 and 𝑦𝑖𝑗  

 𝜎𝑥𝑖𝑗𝑦𝑖𝑗=𝜎𝑦𝑖𝑗𝑥𝑖𝑗 is the covariance of 𝑥𝑖𝑗 with 𝑦𝑖𝑗 

 The next type of observation to be considered is ground control, and observation 

equations for ground control coordinates are 

 where 𝑋𝑗 , 𝑌𝑗 , and 𝑍𝑗 are unknown coordinates of point 𝑗,  

 𝑋𝑗
00, 𝑌𝑗

00 and 𝑍𝑗
00 are the measured coordinate values for point 𝑗  

 𝑣𝑋𝑗, 𝑣𝑌𝑗 and 𝑣𝑍𝑗 are the coordinate residuals for point 𝑗 

𝑋𝑗 = 𝑋𝑗
00 + 𝑣𝑋𝑗  

𝑌𝑗 = 𝑌𝑗
00 + 𝑣𝑌𝑗  

𝑍𝑗 = 𝑍𝑗
00 + 𝑣𝑍𝑗  

(17-7) 
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 Even though ground control observation equations are linear, in order to be consistent 

with the collinearity equations, they will also be approximated by the first-order terms 

of Taylor's series 

 𝑋𝑗
0, 𝑌𝑗

0 and 𝑍𝑗
0 are initial approximations for the coordinates of 

point 𝑗 

 𝑑𝑋𝑗, 𝑑𝑌𝑗, and 𝑑𝑍𝑗 are corrections to the approximations for the 

coordinates of point 𝑗 

𝑋𝑗
0 + 𝑑𝑋𝑗 = 𝑋𝑗

00 + 𝑣𝑋𝑗  

𝑌𝑗
0 + 𝑑𝑌𝑗 = 𝑌𝑗

00 + 𝑣𝑌𝑗 

𝑍𝑗
0 + 𝑑𝑍𝑗  = 𝑍𝑗

00 + 𝑣𝑍𝑗 

(17-8) 

 Rearranging the terms of Eq. (17-8) and expressing the result in matrix form gives 

Δ 𝑗 = 𝐶 𝑗 + 𝑉 𝑗  (17-9) 

𝐶 𝑗 =

𝑋𝑗
00 − 𝑋𝑗

0

𝑌𝑗
00 − 𝑌𝑗

0

𝑍𝑗
00 − 𝑍𝑗

0

 𝑉 𝑗 =

𝑣𝑋𝑗
𝑣𝑌𝑗
𝑣𝑍𝑗

 

where Δ 𝑗 is as previously defined and 



 As with photo coordinate measurements, proper weights must be assigned to ground 

control coordinate observations in order to be included in the bundle adjustment 
 

 Expressed in matrix form, the weights for 𝑋, 𝑌, and 𝑍 ground control coordinate 

observations of point 𝑗 are 

 As before, the reference variance can be arbitrarily set equal to 1 

     ⇨ however, in general, since ground control coordinates are indirectly determined  

         quantities, their covariances are not equal to zero 

𝑊 𝑗 = 𝜎0
2

𝜎𝑋𝑗
2 𝜎𝑋𝑗𝑌𝑗 𝜎𝑋𝑗𝑍

𝜎𝑌𝑗𝑋𝑗 𝜎𝑌𝑗
2 𝜎𝑌𝑗𝑍𝑗

𝜎𝑍𝑗𝑋𝑗 𝜎𝑍𝑗𝑌𝑗 𝜎𝑍𝑗
2

−1

 (17-10) 
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 where 𝜎0
2 is the reference variance 

 𝜎𝑋𝑗
2 , 𝜎𝑌𝑗

2  and 𝜎𝑍𝑗
2  are the variances in 𝑋𝑗

00, 𝑌𝑗
00 and 𝑍𝑗

00 

 𝜎𝑋𝑗𝑌𝑗 = 𝜎𝑌𝑗𝑋𝑗 is the covariance of 𝑋𝑗
00 with 𝑌𝑗

00 

 𝜎𝑋𝑗𝑍 = 𝜎𝑍𝑗𝑋𝑗 is the covariance of 𝑋𝑗
00 with 𝑍𝑗

00  

 𝜎𝑌𝑗𝑍𝑗 = 𝜎𝑍𝑗𝑌𝑗 is the covariance of 𝑌𝑗
00 with 𝑍𝑗

00 



 The final type of observation consists of measurements of exterior orientation 

parameters 
 

 The form of their observation equations is similar to that of ground control and given as 

Eq. (17-11) 

 The weight matrix for exterior orientation parameters has the following form: 

𝜔𝑖 = 𝜔𝑖
00 + 𝑣𝜔𝑖

 

𝜙𝑖 = 𝜙𝑖
00 + 𝑣𝜙𝑖

 

𝜒𝑖 = 𝜒𝑖
00 + 𝑣𝜒𝑖   

𝑋𝐿𝑖 = 𝑋𝐿𝑖
00 + 𝑣𝑋𝐿𝑖

 

𝑌𝐿𝑖 = 𝑌𝐿𝑖
00 + 𝑣𝑌𝐿𝑖

 

𝑍𝐿𝑖 = 𝑍𝐿𝑖
00 + 𝑣𝑍𝐿𝑖

 

(17-11) 

Δ𝑖 = 𝐶𝑖 + 𝑉𝑖  (17-12) 

𝑊 𝑖 =

𝜎𝜔𝑖
2 𝜎𝜔𝑖𝜙𝑖 𝜎𝜔𝑖𝜒𝑖

𝜎𝜙𝑖𝜔𝑖
𝜎𝜙𝑖

2 𝜎𝜙𝑖𝜒𝑖

𝜎𝜒𝑖𝜔𝑖
𝜎𝜒𝑖𝜙𝑖

𝜎𝜒𝑖
2

𝜎𝜔𝑖𝑋𝐿𝑖
𝜎𝜔𝑖𝑌𝐿𝑖

𝜎𝜔𝑖𝑍𝐿𝑖
𝜎𝜙𝑖𝑋𝐿𝑖

𝜎𝜙𝑖𝑌𝐿𝑖
𝜎𝜙𝑖𝑍𝐿𝑖

𝜎𝜒𝑖𝑋𝐿𝑖
𝜎𝜒𝑖𝑌𝐿𝑖

𝜎𝜒𝑖𝑍𝐿𝑖

𝜎𝑋𝐿𝑖𝜔𝑖
𝜎𝑋𝐿𝑖𝜙𝑖

𝜎𝑋𝐿𝑖𝜒𝑖
𝜎𝑌𝐿𝑖𝜔𝑖

𝜎𝑌𝐿𝑖𝜙𝑖
𝜎𝑌𝐿𝑖𝜒𝑖

𝜎𝑍𝐿𝑖𝜔𝑖
𝜎𝑍𝐿𝑖𝜙𝑖

𝜎𝑍𝐿𝑖𝜒𝑖

𝜎𝑋𝐿𝑖
2 𝜎𝑋𝐿𝑖𝑌𝐿𝑖

𝜎𝑋𝐿𝑖𝑍𝐿𝑖
𝜎𝑌𝐿𝑖𝑋𝐿𝑖

𝜎𝑌𝐿𝑖
2 𝜎𝑌𝐿𝑖𝑍𝐿𝑖

𝜎𝑍𝐿𝑖𝑋𝐿𝑖
𝜎𝑍𝐿𝑖𝑌𝐿𝑖

𝜎𝑍𝐿𝑖
2

−1

 (17-13) 
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 With the observation equations and weights defined as above, the full set of normal 

equations may be formed directly. In matrix form, the full normal equations are 

𝑁Δ = 𝐾 (17-14) 

𝑁 𝑖 = 𝐵 𝑖𝑗
𝑇𝑊𝑖𝑗𝐵 𝑖𝑗

𝑛

𝑗=1

 𝑁 𝑖𝑗 = 𝐵 𝑖𝑗
𝑇𝑊𝑖𝑗𝐵 𝑖𝑗 𝑁 𝑗 = 𝐵 𝑖𝑗

𝑇𝑊𝑖𝑗𝐵 𝑖𝑗

𝑚

𝑖=1

 

𝐾 𝑖 = 𝐵 𝑖𝑗
𝑇𝑊𝑖𝑗𝜀𝑖𝑗

𝑛

𝑗=1

 𝐾 𝑗 = 𝐵 𝑖𝑗
𝑇𝑊𝑖𝑗𝜀𝑖𝑗

𝑚

𝑖=1
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where 

 The submatrices in the above forms are 



 In the above expressions, 𝑚 is the number of photos, 𝑛 is the number of points, 𝑖 is the 

photo subscript, and 𝑗 is the point subscript 
 

 Note that if point 𝑗 does not appear on photo 𝑖, the corresponding submatrix will be a 

zero matrix 
 

 Note also that the 𝑊 𝑖 contributions to the 𝑁 matrix and the 𝑊 𝑖𝐶 𝑖 contributions to the 𝐾 

matrix are made only when observations for exterior orientation parameters exist; and 

the 𝑊 𝑗 contributions to the 𝑁 matrix and the 𝑊 𝑗𝐶 𝑗 contributions to the 𝐾 matrix are made 

only for ground control point observations 
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𝑁 𝑖 = 𝐵 𝑖𝑗
𝑇𝑊𝑖𝑗𝐵 𝑖𝑗

𝑛

𝑗=1

 𝑁 𝑖𝑗 = 𝐵 𝑖𝑗
𝑇𝑊𝑖𝑗𝐵 𝑖𝑗 𝑁 𝑗 = 𝐵 𝑖𝑗

𝑇𝑊𝑖𝑗𝐵 𝑖𝑗

𝑚

𝑖=1

 

𝐾 𝑖 = 𝐵 𝑖𝑗
𝑇𝑊𝑖𝑗𝜀𝑖𝑗

𝑛

𝑗=1

 𝐾 𝑗 = 𝐵 𝑖𝑗
𝑇𝑊𝑖𝑗𝜀𝑖𝑗

𝑚

𝑖=1

 



 While the normal equations are being formed, it is recommended that the estimate for 

the standard deviation of unit weight be calculated  
 

 Assuming the initial approximations are reasonable, matrices 𝜀𝑖𝑗, 𝐶 𝑖, and 𝐶 𝑗 are good 

estimates of the negatives of the residuals 
 

 Therefore, the estimate of the standard deviation of unit weight can be computed by 

 In Eq. (17-15), n.o. is the number of observations and n.u. is the number of unknowns in 

the solution 
 

 If all observations have been properly weighted, 𝑆0 should be close to 1 

𝑆0 =
  𝜀𝑖𝑗

𝑇𝑊𝑖𝑗𝜀𝑖𝑗
𝑚
𝑖=1 +  𝐶 𝑖

𝑇𝑊 𝑖𝐶 𝑖
𝑚
𝑖=1 +  𝐶 𝑗

𝑇𝑊 𝑗𝐶 𝑗
𝑛
𝑗=1

𝑛
𝑗=1

n. o. −n. u.
 (17-15) 

Seoul National University  

Aerotriangulation 

17-6. Simultaneous Bundle Adjustment 



 After the normal equations have been formed, they are solved for the unknowns Δ, 

which are corrections to the initial approximations for exterior orientation parameters 

and object space coordinates 
 

 The corrections are then added to the approximations, and the procedure is repeated 

until the estimated standard deviation of unit weight converges 
 

 At that point, the covariance matrix for the unknowns can be computed by 

 Computed standard deviations for the unknowns can then be obtained by taking the 

square root of the diagonal elements of the ΣΔΔ matrix 

ΣΔΔ = 𝑆0
2 𝑁−1 (17-16) 

Seoul National University  

Aerotriangulation 

17-6. Simultaneous Bundle Adjustment 



 Since the equations are nonlinear, Taylor's series was used to linearize the equations; 

     ⇨ therefore, initial approximations are required for the unknowns 
 

 Several methods may be used to obtain initial approximations 

     ⇨ however, preliminary strip adjustments are most commonly employed 
 

1) The first step is to perform analytical relative orientation for each stereopair in the block 

 The photo coordinate residuals should be inspected at this point as an initial check 

on the measurements 
 

2) Next, the relatively oriented models are connected to form strips  

 Residuals from this step can also provide a quality check on the photo coordinate 

measurements and point identification 
 

3) After all the strip models have been formed and validated, each strip is individually 

adjusted to ground control points located within each strip 

 This adjustment to ground control can be performed either by a three-dimensional 

conformal coordinate transformation or by a three-dimensional polynomial 

transformation  

 Residuals from this step provide a check on the ground control coordinates as well 

as point identification 
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 Ground coordinates will have been calculated for all points in the photo block and an 

additional check can be performed to validate the identification of tie points between 

strips 
 

 If the identification of tie points is consistent, their coordinates as determined in adjacent 

strips should agree within a small tolerance 
 

 Assuming everything is consistent at this point, the resulting ground coordinates can be 

used as initial approximations for the bundle adjustment 
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 Approximations for the exterior orientation parameters can also be obtained directly 

from the strip adjustment if the adjustment is performed using a three-dimensional 

conformal coordinate transformation 
 

 In that case, since perspective centers (camera stations) are included when adjacent 

models are connected, their object space coordinates will be available after the final 

adjustment to ground control 
 

 Assuming vertical photography, zeros can be used as approximations for 𝜔 and 𝜑  
 

 Approximations for 𝜅 can be obtained directly from the final three-dimensional 

conformal coordinate transformation to ground control, which contains a compatible 

𝜅 angle 
 

 If a polynomial strip adjustment is performed, the perspective centers are not included in 

the adjustment 
 

 In that case, after the polynomial adjustment is completed, the space resection problem 

can be solved for each photo  
 

 In these calculations, the ground coordinates obtained for the pass points in the 

polynomial adjustment are used as control coordinates 
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 In cases where more precise initial approximations are needed, one can “chain” together 

the rotations of a full strip through relative orientation to obtain estimates of 𝜔,𝜙 , and 𝜅 
 

 Precise initial approximations decrease the number of iterations required for convergence, 

and can therefore significantly increase the speed of bundle adjustment solutions 
 

 The final three-dimensional conformal coordinate transformation from sequential 

independent model triangulation provides the approximations of orientation angles for 

the first photo in the strip 
 

 Next, a rotation matrix from ground to strip, 𝑀3𝐷 is formed from these angles, and a 

rotation matrix from the first photo to the second photo, 𝑀1−2, is formed from the 

rotation angles of the first relative orientation  
 

 The product of these matrices 𝑀1−2𝑀3𝐷, yields the rotation matrix from ground to the 

second photo and can therefore be used to obtain approximations of 𝜔2, 𝜙2 , and 𝜅2 for 

the second photo 
 

 Approximations for all other photos in the strip can be obtained by repeating this process 
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 Kinematic GPS and INS observations can be taken aboard the aircraft as the photography 

is being acquired to determine coordinates and angular attitude for exposure stations 
 

 Use of GPS and INS in the aircraft to control a bundle adjustment of a block of 

photographs is termed airborne control 
 

 By including coordinates of the exposure stations and angular attitude of the camera in 

the adjustment, the amount of ground control can be greatly reduced 
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Figure 17-6. Configuration of camera, IMU, and GPS 
antenna for airborne GPS control. 

 Figure 17-6 illustrates the geometric 

relationship between a camera, inertial 

measurement unit (IMU), and GPS antenna 

on an aircraft 



 In the Fig. 17-6, 𝑥, 𝑦, and 𝑧 represent the 

standard three-dimensional coordinate 

system of a mapping camera; and 𝑥𝐴, 𝑦𝐴 and 

𝑧𝐴 represent the coordinates of the GPS 

antenna relative to the camera axes, often 

referred to as the lever arm 

Figure 17-6. Configuration of camera, IMU, and GPS 
antenna for airborne GPS control. 
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 The 𝑥 axis of the camera is parallel to the longitudinal axis of the aircraft, the 𝑧 axis is 

vertical, and the 𝑦 axis is perpendicular to the 𝑥 and 𝑧 axes 
 

 Since object space coordinates obtained by GPS pertain to the phase center of the 

antenna but the exposure station is defined as the incident nodal point of the camera 

lens, the GPS coordinates of the antenna must be translated to the camera lens 
 

 To properly compute the translations, it is necessary to know the angular orientation of 

the camera with respect to the object space coordinate system 
 

 Determining the correct angular orientation is complicated by the use of a gimbaled 

camera mount which allows relative rotations between the camera and the aircraft frame 



 If the camera in its mount was fixed, the rotation matrix 𝑀𝑖 , consisting of angular 

orientation parameters of the camera (ω𝑖, 𝜑𝑖 and 𝜅𝑖) would translate directly to angular 

orientation of the camera-to-antenna vector 
 

 However, differential rotation from the airframe to the camera, represented by 𝑀𝑖
𝑚 (the 

superscript m stands for mount), must also be taken into account in order to determine 

the angular attitude of the camera-to-antenna vector in object space 
 

 Note that even in a so-called fixed mount there will generally be a crab adjustment, 

rotation about the z axis of the fixed-mount coordinate system, to ensure proper 

photographic coverage  
 

 Some camera mounts such as the Leica PAV30 have the capability of measuring the 

differential rotations, and they can be recorded by a computer 
 

 The following equation specifies the rotation of the camera-to-antenna vector with 

respect to object space: 

𝑀𝑖
′ = 𝑀𝑖

𝑚𝑀𝑖  (17-17) 
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 In Eq. (17-17), 𝑀𝑖 is the conventional rotation matrix consisting of angular exterior 

orientation parameters of the camera with respect to the object space coordinate system 

(ω𝑖, 𝜑𝑖 and 𝜅𝑖) 
 

 

 

 

 𝑀𝑖
𝑚 in the rotation matrix of the camera with respect to the mount 

 

 𝑀𝑖
′ is the rotation matrix of the camera-to-antenna vector with respect to object space 

coordinates 
 

 Once has been determined, the rotation angles (ω𝑖, 𝜑𝑖 and 𝜅𝑖) can be computed 
 

 After 𝑀𝑖
′  has been computed, the coordinates of the camera lens can be computed by Eq. 

(17-18) (Note: subscript i has been dropped.) 

𝑀𝑖
′ = 𝑀𝑖

𝑚𝑀𝑖  (17-17) 

𝑋𝐿
𝑌𝐿
𝑍𝐿

=
𝑋𝐺𝑃𝑆
𝑌𝐺𝑃𝑆
𝑍𝐺𝑃𝑆

−𝑀′𝑇

𝑥𝑎
𝑦𝑎
𝑧𝑎

 (17-18) 
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 When a camera mount is used which does not provide for measurement of the 

differential rotation from the airframe to the camera, it is assumed to be equal to zero, 

resulting in errors in the computed position of the camera lens 
 

 This error can be minimized by mounting the GPS antenna vertically above the camera in 

the aircraft, which effectively eliminates the error due to unaccounted crab adjustment, 

rotation about the 𝑧 axis of the fixed-mount coordinate system 
 

 As long as the differential tilt rotations are small (less than a couple of degrees) and the 

antenna-to-camera vector is short (less than 2 m), the lens positional error will be less 

than 10 cm 
 

 One last comment must be made concerning the translation of GPS antenna 

coordinates to the lens 
 

 Since the values of 𝜔, 𝜑, and 𝜅 are required to compute the translation, the antenna 

offset correction must be included within the iterative loop of the analytical bundle 

adjustment 
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 In order to use airborne control, it is necessary to have accurate values for the lever arm 

between the camera and GPS antenna 
 

 The most common method for determining this vector is direct measurement using 

conventional surveying techniques  
 

 However, it is possible to include their values as unknowns in the bundle adjustment 

solution 
 

 Equations (17-19) show the collinearity equations for an imaged point with observations 

from GPS and lever arm parameters included 
 

 Note that the lever arm parameters are included under the assumption that the camera 

mount is fixed and should otherwise reflect the change in angular attitude due to 

rotation of the mount 

𝑥𝑖𝑗 = 𝑥0 − 𝑓
𝑚11𝑖 𝑋𝑗 − 𝑋𝐺𝑃𝑆 +𝑚12𝑖 𝑌𝑗 − 𝑌𝐺𝑃𝑆 +𝑚13𝑖 𝑍𝑗 − 𝑍𝐺𝑃𝑆 + 𝑥𝐴

𝑚31𝑖 𝑋𝑗 − 𝑋𝐺𝑃𝑆 +𝑚32𝑖 𝑌𝑗 − 𝑌𝐺𝑃𝑆 +𝑚33𝑖 𝑍𝑗 − 𝑍𝐺𝑃𝑆 + 𝑧𝐴
 

𝑦𝑖𝑗 = 𝑦0 − 𝑓
𝑚21𝑖 𝑋𝑗 − 𝑋𝐺𝑃𝑆 +𝑚22𝑖 𝑌𝑗 − 𝑌𝐺𝑃𝑆 +𝑚23𝑖 𝑍𝑗 − 𝑍𝐺𝑃𝑆 + 𝑦𝐴

𝑚31𝑖 𝑋𝑗 − 𝑋𝐺𝑃𝑆 +𝑚32𝑖 𝑌𝑗 − 𝑌𝐺𝑃𝑆 +𝑚33𝑖 𝑍𝑗 − 𝑍𝐺𝑃𝑆 + 𝑧𝐴
 

(17-19) 
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 In order to use airborne control, it is necessary to have accurate values for the lever arm 

between the camera and GPS antenna 
 

 The most common method for determining this vector is direct measurement using 

conventional surveying techniques  
 

 However, it is possible to include their values as unknowns in the bundle adjustment 

solution 
 

 Equations (17-19) show the collinearity equations for an imaged point with observations 

from GPS and lever arm parameters included 
 

 Note that the lever arm parameters are included under the assumption that the camera 

mount is fixed and should otherwise reflect the change in angular attitude due to 

rotation of the mount 
 

 The lever arm parameters are highly correlated with both the interior and exterior 

orientation parameters 
 

 This can greatly affect the precision of their solution in the bundle adjustment, which is 

why the lever arm parameters are normally measured using conventional surveying 

techniques 
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 The boresight angles that define the orientation of the IMU with respect to the camera 

can be found by the difference between results from a bundle adjustment using ground 

control, and the values obtained from using airborne control 
 

 Alternatively, as with the lever arm parameters, these values can also be included in a 

bundle adjustment as unknowns 
 

 In this case, the 𝑚 s in Eq. (17-19) correspond to matrix entries of 𝑀𝑖, the product of the 

rotation matrix determined by the INS, 𝑀𝑖
𝐼𝑀𝑈, and the boresight rotation matrix, Δ𝑀 as 

shown in Eq. (17-20) 

 Since two rotation matrices are included, there are six unknown rotation angles in Eq. 

(17-19) 
 

 This makes the linearization of the collinearity equations significantly more complex 

than with the standard formulation 

𝑀𝑖 = Δ𝑀𝑀𝑖
𝐼𝑀𝑈 (17-20) 
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𝑥𝑖𝑗 = 𝑥0 − 𝑓
𝑚11𝑖 𝑋𝑗 − 𝑋𝐺𝑃𝑆 +𝑚12𝑖 𝑌𝑗 − 𝑌𝐺𝑃𝑆 +𝑚13𝑖 𝑍𝑗 − 𝑍𝐺𝑃𝑆 + 𝑥𝐴

𝑚31𝑖 𝑋𝑗 − 𝑋𝐺𝑃𝑆 +𝑚32𝑖 𝑌𝑗 − 𝑌𝐺𝑃𝑆 +𝑚33𝑖 𝑍𝑗 − 𝑍𝐺𝑃𝑆 + 𝑧𝐴
 

𝑦𝑖𝑗 = 𝑦0 − 𝑓
𝑚21𝑖 𝑋𝑗 − 𝑋𝐺𝑃𝑆 +𝑚22𝑖 𝑌𝑗 − 𝑌𝐺𝑃𝑆 +𝑚23𝑖 𝑍𝑗 − 𝑍𝐺𝑃𝑆 + 𝑦𝐴

𝑚31𝑖 𝑋𝑗 − 𝑋𝐺𝑃𝑆 +𝑚32𝑖 𝑌𝑗 − 𝑌𝐺𝑃𝑆 +𝑚33𝑖 𝑍𝑗 − 𝑍𝐺𝑃𝑆 + 𝑧𝐴
 

(17-19) 



 Another consideration regarding airborne GPS positioning is the problem of loss of lock 

on the GPS satellites, especially during banked turns 
 

 When a GPS receiver operating in the kinematic mode loses lock on too many satellites, 

the integer ambiguities must be redetermined  
 

 Since returning to a previously surveyed point is generally out of the question, on-the-fly 

(OTF) techniques are used to calculate the correct integer ambiguities 
 

 With high-quality, dual-frequency, P-code receivers, OTF techniques are often successful 

in correctly redetermining the integer ambiguities 
 

 In some cases, however, an integer ambiguity solution may be obtained which is slightly 

incorrect 
 

 This results in an approximately linear drift in position along the flight line, which causes 

exposure station coordinate errors to deteriorate 
 

 This problem can be detected by using a small number of ground control points at the 

edges of the photo block 
 

 Inclusion of additional parameters in the adjustment corresponding to the linear drift 

enables a correction to be applied which eliminates this source of error 
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 Often, cross strips are flown at the ends of the regular block strips, as shown in Fig. 17-7  

Figure 17-7. Configuration of flight strips for airborne GPS 
control. 
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 The cross strips contain ground control points at each end which allow drift due to 

incorrect OTF integer ambiguities to be detected and corrected 
 

 The corrected cross strips in turn serve to provide endpoint coordinates for the 

remainder of the strips in the block, thus enabling drift corrections to be made for those 

strips as well 



 Two additional precautions regarding airborne GPS should be noted 
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1) Bundle adjustment with analytical self-calibration 

 First, it is recommended that a 

bundle adjustment with analytical 

self-calibration be employed when 

airborne GPS control is used 

 Often, due to inadequate modeling 

of atmospheric refraction distortion, 

strict enforcement of the calibrated 

principal distance (focal length) of 

the camera will cause distortions 

and excessive residuals in photo 

coordinates 

 Use of analytical self-calibration will 

essentially eliminate that effect 

2) Object space coordinate systems 

 Second, it is essential that 

appropriate object space coordinate 

systems be employed in data 

reduction 

 GPS coordinates in a geocentric 

coordinate system should be 

converted to local vertical 

coordinates for the adjustment  

 After aerotriangulation is completed, 

the local vertical coordinates can be 

converted to whatever system is 

desired 

 Elevations relative to the ellipsoid 

can be converted to orthometric 

elevations by using an appropriate 

geoid model 



 After setting up and executing a bundle adjustment, it is essential to analyze and 

interpret the results 
 

 Analysis of the results allows one to identify blunders, maximize the precision of the 

solution, and report the level of confidence in the solved parameters 
 

 The output of a bundle adjustment program can aid in troubleshooting divergent or 

grossly inaccurate solutions 
 

 Similarly, scrutiny of residual statistics provides a guide for the user to tune a priori 

estimates of observation standard deviations, and increase the precision of seemingly 

sufficient solutions 
 

 Problems with bundle adjustments include divergence, convergence with blundered 

observations, and convergence with improper weighting of observations 
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 Divergence occurs when the standard deviation of unit weight, 𝑆0, gets larger at 

successive iterations 
 

 If a bundle adjustment diverges, the initial approximations were not close enough to 

their optimal values in a least squares sense 

     ⇨ This is usually the result of blunders in reporting the initial approximations such as  

         reversed direction of 𝜅, or incorrect geometric configuration of the object space  

         coordinates of points 
 

 Although some software may detect it, the inclusion of a pass point with coordinates for 

only one photo can cause a bundle adjustment to diverge 
 

 A related blunder is misidentification of a point on a photo, which can easily occur if 

multiple points are associated with similar-looking features such as manholes 
 

 The best way to identify blunders in initial approximations is to simply recheck their 

values and make sure they are logical with respect to the geometry of the photo block 
 

 The sequential approach to semianalytical aerotriangulation can be used as quality 

control prior to the bundle adjustment, and provides a check in the form of pass point 

and control point residuals from the relative orientation between images, 

transformations between models, and the transformation from strip to ground 
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 In some cases, a bundle adjustment may converge even with blundered observations 

present 
 

 There are robust methods for least squares adjustments (such as Random Sample 

Consensus, RANSAC) that allow for the automatic identification and elimination of 

blunders 
 

 However, blunders can be identified using simpler methods or manually 
 

 The first indication that a converged bundle adjustment contains one or more blunders is 

an inordinately high 𝑆0  
 

 Blundered observations will have relatively large residuals 
 

 A first check is to look for residuals significantly greater than the estimated a priori 

standard deviation 
 

 Similarly, since the residuals are assumed to be normally distributed, one should be 

suspicious of any observation with a residual greater than 3 times its standard deviation  
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 When a blunder is found, the best course of action is to remeasure the point 
 

 However, if there is sufficient point coverage near the point, then it may be removed 
 

 In some cases a point may seem to be a blunder, but is actually just measured less 

accurately than other points 
 

 This can be caused by the point being in an area on the photo that is less conducive to 

point matching, like a field of grass 
 

 When this happens, the best strategy is to "loosen" the point in the adjustment, i.e., 

increase the a priori standard deviation of the observation relative to other observations 
 

 Once corrections and tuning have been applied to the input, the adjustment should be 

run again 
 

 Sometimes multiple bundle adjustments for a single data set must be executed in order 

to eliminate all blunders and to fine tune a priori precision estimates 
 

 Between each execution, it is sometimes helpful to update initial approximations using 

the previous adjustment allowing for faster convergence 
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 In the best case scenario, the adjustment will converge on a solution and have a 

standard deviation of unit weight close to one  
 

 This indicates that initial approximations for unknown parameters were sufficient and 

that a priori standard deviations reflected the true values of the precision of the 

observations 
 

 It may occur that a bundle adjustment converges and has no blunders but 𝑆0 is either 

too high or too low  
 

 In general, this will not significantly affect the results, but it is still suggested that it be 

corrected  
 

 The reason this occurs is that a priori estimates of standard deviations are incorrect 
 

 If 𝑆0 is higher than one, one should increase the a priori standard deviations, and if 𝑆0 is 

lower than one, the a priori standard deviations should be decreased 
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 Post-bundle adjustment statistics provide an excellent measure of the quality of the 

solution 
 

 After a bundle adjustment converges properly, the standard deviations for both exterior 

orientation parameters and ground coordinates of pass points are obtained using         

Eq. (17-16) 

 

 

 

 These a posteriori standard deviations can be used to quantify the precision of the 

solution 
 

 The geometry of the adjustment (the relative location of photos, pass points, and control 

points), the precision of the observations, and the redundancy of the observations 

influence the standard deviations 
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ΣΔΔ = 𝑆0
2 𝑁−1 (17-16) 



 For example, the exterior orientation parameter 𝜙 for a photo in an east-west strip such 

as the one illustrated in Fig. 17-4 will typically have a lower standard deviation than that 

for 𝜔 
 

 Due to the geometry of the strip, small changes in the position of points (e.g., errors) 

would influence the solved rotation about the 𝑥 axis more than the rotation about the 𝑦 

axis 
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Figure 17-4. (a) Plan view of control extension of a seven-model 
strip. (b) Smooth curves indication accumulation of errors in X, Y, 

and Z coordinates during control extension of a strip. 

 It is common for the solved horizontal 

ground coordinates of pass points to have 

higher standard deviations than 𝑍 

coordinates 



 One way to visualize why this occurs is to imagine rays from the perspective centers of 

two near-vertical photos intersecting at a point on the ground  
 

 Small changes in either the position of the point in the image or the exterior orientation 

parameters of the camera will affect the point of closest intersection of the rays more in 

the 𝑍 direction than in the 𝑋 or 𝑌 directions 
 

 Another geometric factor to consider is the location of the point in the photo 
 

 For example, and for a similar reason as above, points imaged farther from the 𝑥 axis in 

an east-west strip of photos will have higher standard deviations for 𝑌 ground 

coordinates than those with a more central location in the photo 
 

 In addition to geometry, redundancy of observations can have a large influence on the 

precision of the bundle adjustment solution 
 

 For instance, points measured in tri-lap areas can be expected to have smaller standard 

deviations than points only imaged in two photos 
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 It should be noted that although a posteriori standard deviations can sufficiently 

represent the quality of adjustments, coordinate comparisons with checkpoints— 

precisely measured control points that are not included in the adjustment—are generally 

better measures of the accuracy of the solution 
 

 A drawback of using checkpoints is that they require extra effort in the form of field 

work and/or photogrammetric procedures 
 

 However, their coordinates can be obtained any time after photo acquisition and 

adjustment as long as they are distinguishable in the images can still be physically 

located on the ground 
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 Linear array sensors capture images with different geometry compared to the point 

perspective of a frame camera 
 

 Each scan line has its own set of exterior orientation parameters compared to one set of 

parameters for a frame camera image 
 

 The aircraft must be equipped with a GPS-INS system in order to measure these exterior 

orientation parameters for each scan line of the image 

 

 

Figure 17-8. Three-line linear array sensor scans: 
forward, nadir, and backward. 
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 Aerial three-line linear array sensors, such as the 

Leica ADS80, have the advantage of providing 

three different perspectives of ground points 

along a strip from collection of forward, 

backward, and nadir scans 
 

 This facilitates the use of aerotriangulation 

toward improving the accuracy of the data 
 

 Figure 17-8 illustrates the geometry of a three-

line linear array system 



 Three-line scanners collect three raw image scenes synchronously along a strip 

     ⇨ One scene consists of the collection of scan lines from the backward-looking linear  

         array, another is from the nadir-looking linear array, and the third is from the forward- 

         looking linear array 
 

 In their raw format, Level 0, these scenes are distorted due to aircraft movement during 

collection 
 

 Correcting the data for sensor tilt and aircraft movement using GPS-INS measurements 

yields nominally rectified imagery, Level 1 

 
 

Figure 17-9. Raw (left) and processed (right) linear array imagery. Note that the 
edges of the processed imagery correspond to the tilt of the sensor during 

acquisition. (Courtesy of the University of Florida)  
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 Figure 17-9 shows Level 0 

imagery and Level 1 imagery 



 Three-line scanners collect three raw image scenes synchronously along a strip 

     ⇨ One scene consists of the collection of scan lines from the backward-looking linear  

         array, another is from the nadir-looking linear array, and the third is from the forward- 

         looking linear array 
 

 In their raw format, Level 0, these scenes are distorted due to aircraft movement during 

collection 
 

 In the ADS systems, the transformations from Level 0 to Level 1 are done in real time 
 

Figure 17-9. Raw (left) and processed (right) linear array imagery. Note that the 
edges of the processed imagery correspond to the tilt of the sensor during 

acquisition. (Courtesy of the University of Florida)  
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 In order to increase the 

accuracy of the imagery and 

to facilitate the calibration of 

boresight and lever arm 

parameters, the exterior 

orientation parameters 

obtained by GPS-INS are 

adjusted using a unique 

method of aerotriangulation 



 The first step in three-line scanner aerotriangulation is to obtain pass points between 

the scenes 
 

 Although pass point generation is done in Level 1 scenes to facilitate automated 

matching, the coordinates of the pass points refer to the Level 0 scenes 
 

 In order to apply the collinearity equations, one must have exposure stations with 

multiple image observations 
 

 However, since the orientation data comes from a continuous stream, the observations 

of the exterior orientation parameters are continuous along the flight path and it is 

nearly impossible to have multiple points imaged in a single scan line  
 

 Thus, orientation fixes are used ⇨ Orientation fixes can be considered simulated 

exposure stations 
 

 They are defined at regular intervals along the flight path, and their spacing is chosen 

based on the quality of the GPS-INS data 
 

 The poorer the GPS-INS, the shorter the allowable interval between orientation fixes 
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 The first step in three-line scanner aerotriangulation is to obtain pass points between 

the scenes 
 

 Although pass point generation is done in Level 1 scenes to facilitate automated 

matching, the coordinates of the pass points refer to the Level 0 scenes 
 

 In order to apply the collinearity equations, one must have exposure stations with 

multiple image observations 
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Figure 17-10. Orientation fixes along a flight path for a three-line 
linear sensor array. 

 Figure 17-10 illustrates the 

concept of orientation fixes along 

a flight path 



 Once the orientation fixes have been established, the collinearity equations for each 

point on each scene can be formed 
 

 The exterior orientation parameters associated with the imaging of these points must be 

expressed as functions of the nearest orientation fixes before and after imaging 
 

 The adjustment is similar to relative orientation in that each orientation fix for a scene is 

adjusted based on the weighted exterior orientation parameters of the other orientation 

fixes corresponding to the other scenes 
 

 Each point yields two equations for each of the three scenes 
 

 Care must be taken when selecting the distance between the orientation fixes in order 

to ensure that there will be enough redundancy from pass points to resolve the 

unknown parameters 
 

 In general, the distance between orientation fixes should not exceed the instantaneous 

ground distance between the nadir and backward scan lines 
 

 After the adjustment is completed, the solved orientation fixes are used to update the 

GPS-INS data, which can then be used to rectify Level 0 imagery 
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 For certain applications with low accuracy requirements, aerotriangulation from satellite 

images may be suitable 

 

 For example, for small-scale topographic mapping over mountainous regions, 

panchromatic images from a linear array sensor onboard the French Système Pour 

d'Observation de la Terre (SPOT) satellite may be used 

 

 Stereopairs of SPOT images can be acquired for a region by using the off-axis pointing 

capability of the satellite 

 

 Photogrammetric analysis of the resulting images can be performed through the use of 

modified collinearity equations 
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 Since the satellite is highly stable during 

acquisition of the image, the exterior orientation 

parameters can be assumed to vary in a systematic 

fashion  
 

 Figure 17-11 illustrates an image from a linear 

array sensor. In this figure, the start position (point 

𝑜) is the projection of the center of row 0 on the 

ground 
 

 At this point, the satellite sensor has a particular 

set of exterior orientation parameters 𝜔0, 𝜑0, 𝜅0, 

𝑋𝐿0, 𝑌𝐿0  , and 𝑍𝐿0 
Figure 17-11. Illustration of linear array sensor 

image. 

Seoul National University  

Aerotriangulation 

17-11. Satellite Image Triangulation 

 These parameters can be assumed to vary systematically as a function of the 𝑥 

coordinate (row in which the image appears) 

 



 Note that according to Eq. (17-21) the variation in 𝑍𝐿 is second order, whereas the other 

variations are linear (first order) 
 

 This is due to the curved orbital path of the satellite and is based on an assumption that a 

local vertical coordinate system (see Sec. 5-5) is being used 
 

 Depending upon the accuracy requirements and measurement precision, the coefficient 

of the second-order term 𝑎7 may often be assumed to be equal to zero 

  𝜔𝑥 = 𝜔0 + 𝑎1𝑥 
  𝜙𝑥 = 𝜙0 + 𝑎2𝑥 
   κ𝑥 = κ0 + 𝑎3𝑥 
 𝑋𝐿𝑥 = 𝑋𝐿0 + 𝑎4𝑥 
  𝑌𝐿𝑥 = 𝑌𝐿0 + 𝑎5𝑥 

𝑍𝐿𝑥 = 𝑍𝐿0 + 𝑎6𝑥 + 𝑎7𝑥
2 

(17-21) 
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 Various functional relationships have been tested for modeling these systematic 

variations, and the following have been found to consistently yield satisfactory results: 

 𝑥 is the row number of some image position 

 𝜔𝑥 , 𝜑𝑥  , κ𝑥, 𝑋𝐿𝑥, 𝑌𝐿𝑥, and 𝑍𝐿𝑥 are the exterior orientation 

parameters of the sensor when row x was acquired 

 𝜔0, 𝜑0, 𝜅0, 𝑋𝐿0, 𝑌𝐿0  , and 𝑍𝐿0 are the exterior orientation 

parameters of the sensor at the start position 

 𝑎1  through 𝑎7 are coefficients which describe the systematic 

variations of the exterior orientation parameters as the image is 

acquired 



 Given the variation of exterior orientation parameters described above, the collinearity 

equations which describe linear array sensor geometry for any image point 𝑎 are : 

0 = −𝑓
𝑚11𝑥 𝑋𝐴 − 𝑋𝐿𝑥 +𝑚12𝑥 𝑌𝐴 − 𝑌𝐿𝑥 +𝑚13𝑥 𝑍𝐴 − 𝑍𝐿𝑥
𝑚31𝑥 𝑋𝐴 − 𝑋𝐿𝑥 +𝑚32𝑥 𝑌𝐴 − 𝑌𝐿𝑥 +𝑚33𝑥 𝑍𝐴 − 𝑍𝐿𝑥

 (17-22) 

𝑦𝑎 = 𝑦0 − 𝑓
𝑚21𝑥 𝑋𝐴 − 𝑋𝐿𝑥 +𝑚22𝑥 𝑌𝐴 − 𝑌𝐿𝑥 +𝑚23𝑥 𝑍𝐴 − 𝑍𝐿𝑥
𝑚31𝑥 𝑋𝐴 − 𝑋𝐿𝑥 +𝑚32𝑥 𝑌𝐴 − 𝑌𝐿𝑥 +𝑚33𝑥 𝑍𝐴 − 𝑍𝐿𝑥

 (17-23) 
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 In Eqs. (17-22) and (17-23),  

 𝑦𝑎 is the 𝑦 coordinate (column number) of the image of point 𝐴 

 𝑦0 is the 𝑦 coordinate of the principal (middle) point of the row containing the image 

 𝑓 is the sensor focal length 

 𝑚11𝑥 through 𝑚33𝑥 are the rotation matrix terms for the sensor attitude when row 𝑥𝑎 was 

acquired 

 𝑋𝐿𝑥, 𝑌𝐿𝑥, and 𝑍𝐿𝑥 are the coordinates of the sensor when row 𝑥𝑎 was acquired  

 𝑋𝐴, 𝑌𝐴, and 𝑍𝐴 are the object space coordinates of point 𝐴 
 

 Note that the exterior orientation terms and hence the rotation matrix terms are 

functions of the form of Eq. (17-21) 
 

 It is also important to note that the units of the image coordinates and the focal length 

must be the same 



 Rational polynomial coefficient (RPC) camera models are commonly used to describe 

satellite imagery and RPCs are considered a replacement model for the actual physical 

characteristics and orientation of the sensor with respect to image coordinates of 

ground points   
 

 They are derived from the physical model of the satellite sensor using least squares 

techniques, and their coefficients are delivered with the imagery 
 

 Much like the collinearity equations, RPCs are a mathematical model for transforming 

three-dimensional ground points to two-dimensional image coordinates 
 

 Thus, RPCs can be used in many of the same applications as the collinearity equations 

such as DEM generation, othorectification, and feature extraction 

 

Seoul National University  

Aerotriangulation 

17-11. Satellite Image Triangulation 



 For example, IKONOS satellite imagery uses the ratio of two cubic 

polynomial functions of three-dimensional ground coordinates to 

describe 𝑥 (line) and 𝑦 (sample) coordinates of a point in the linear 

array sensor image as in Eq. (17-24) 
 

 The image and ground coordinates of the points are normalized 

to avoid ill-conditioning and increase the numerical precision 
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𝑥𝑎 =
Num𝐿(𝑃𝑎, 𝐿𝑎, 𝐻𝑎)

Den𝐿(𝑃𝑎, 𝐿𝑎, 𝐻𝑎)
 

𝑦𝑎 =
Num𝑆(𝑃𝑎, 𝐿𝑎, 𝐻𝑎)

Den𝑆(𝑃𝑎, 𝐿𝑎 , 𝐻𝑎)
 

(17-24) 

 In Eq. (17-24),  

 𝑃𝑎 , 𝐿𝑎, and 𝐻𝑎 are the normalized latitude, longitude, and height of point 𝑎,  

 𝑥𝑎 and 𝑦𝑎 are the normalized image coordinates of point 𝑎,  

 Num𝐿 , Den𝐿, Num𝑆, and Den𝑆 are cubic polynomial functions of 𝑃𝑎 , 𝐿𝑎, and 𝐻𝑎 
 

 Both of the two rational polynomials consist of 39 coefficients (20 in the numerator 

and 19 in the denominator) for a total of 78 coefficients used in the model 
 

 Note that if a point is imaged on two stereo satellite images, the three-dimensional 

object space coordinates can be found via least squares since there would be four 

equations and three unknowns, similar to space intersection via collinearity 



 The RPC model on its own may be sufficient for some applications, however it is possible 

to increase the accuracy by determining bias parameters using a least squares block 

adjustment of stereo satellite imagery 

 

 Equation (17-25) is referred to as the adjustable RPC model, where 𝑎0, 𝑎1, 𝑎2, 𝑏0, 𝑏1, and 

𝑏2 are affine transformation parameters that model biases in image space stemming 

from systematic errors in the physical orientation of the sensor 

𝑥𝑎 + 𝑎0 + 𝑎1𝑥𝑎 + 𝑎2𝑦𝑎 =
Num𝐿(𝑃𝑎, 𝐿𝑎, 𝐻𝑎)

Den𝐿(𝑃𝑎, 𝐿𝑎, 𝐻𝑎)
 

𝑦𝑎 + 𝑏0 + 𝑏1𝑥𝑎 + 𝑏2𝑦𝑎 =
Num𝑆(𝑃𝑎, 𝐿𝑎, 𝐻𝑎)

Den𝑆(𝑃𝑎, 𝐿𝑎 , 𝐻𝑎)
 

(17-25) 
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 The solution for the affine parameters can be found using a block adjustment of stereo 

satellite images with Eq. (17-25) serving as the basis for the observation equations 
 

 Depending on the geometry of the imagery and the type of sensor (e.g., IKONOS versus 

QuickBird) not all of the additional parameters may be statistically significant, and care 

should be taken not to over-parameterize the adjustment 



 For the mathematical form for least squares adjustment of photogrammetric blocks, the 

equations are somewhat inefficient for computational purposes 
 

 Methods are available for reducing the matrix storage requirements and solution time 

for large blocks of photographs 
 

 The first step is to partition the full normal equations [Eq. (17-14)] so that the exterior 

orientation terms and the object space coordinate terms are separated, giving 

𝑁 𝑁 

𝑁 𝑇 𝑁 
Δ 

Δ 
= 𝐾 

𝐾 
 (17-26) 
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 𝑁  is the block-diagonal submatrix from the upper left portion of 𝑁 having dimensions 6𝑚 × 6𝑚, 

where 𝑚 is the number of photos in the block 

 𝑁  is the block-diagonal submatrix from the lower right portion of 𝑁 having dimensions 3𝑛 × 3𝑛, 

where 𝑛 is the number of object points in the block 

 𝑁  is the submatrix from the upper right portion of 𝑁 having dimensions 6𝑚 × 3𝑛 and 𝑁 𝑇 is its 

transpose 

 Δ   is the submatrix from the upper portion of Δ having dimensions of 6𝑚 × 1, consisting of the 

correction terms for the exterior orientation parameters for all photos 

 Δ   is the submatrix from the lower portion of Δ having dimensions of 3𝑛 × 1, consisting of the 

correction terms for the object space coordinates for all points 

 𝐾  is the submatrix from the upper portion of 𝐾 having dimensions of 6𝑚 × 1 

 𝐾  is the submatrix from the lower portion of 𝐾 having dimensions of 3𝑛 × 1 



 A block-diagonal matrix consists of nonzero submatrices along the main diagonal and 

zeros everywhere else 

     ⇨ This kind of matrix has the property that its inverse is also block-diagonal, where the     

         submatrices are inverses of the corresponding submatrices of the original matrix 
 

 As such, the inverse of a block-diagonal matrix is much easier to compute than the 

inverse of a general, nonzero matrix 
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 With this in mind, 

Eq. (17-26) can be 

rearranged to a form 

which can be solved 

more efficiently  
 

Δ = 𝑁 −1(𝐾 − 𝑁 𝑇Δ ) (17-29) 

𝑁 Δ + 𝑁 𝑁 −1 𝐾 − 𝑁 𝑇Δ = 𝐾  (17-30) 

𝑁 − 𝑁 𝑁 −1𝑁 𝑇 Δ = (𝐾 − 𝑁 𝑁 −1𝐾 ) (17-31) 

Equation (17-28) is then rearranged to solve for Δ . 

Next the right side of Eq. (17-29) is substituted for Δ  in Eq. (17-27). 

Rearranging Eq. (17-30) to collect the Δ  terms gives 

𝑁 Δ + 𝑁 Δ = 𝐾  (17-27) 

𝑁 𝑇Δ + 𝑁 Δ = 𝐾  (17-28) 

𝑁 𝑁 

𝑁 𝑇 𝑁 
Δ 

Δ 
= 𝐾 

𝐾 
 (17-26) 

First, Eq. (17-26) is separated into two separate matrix equations 



 This approach is more efficient since the largest system of equations which must be 

solved has only 6𝑚 unknowns, as opposed to 6𝑚 + 3𝑛 unknowns in the full normal 

equations ⇨ This efficiency is made possible by the block-diagonal structure of the 𝑁  

matrix 
 

 One can also use the partitioned 𝑁 matrix to obtain the covariance matrix 
 

 The inverse of 𝑁 can be partitioned as shown in Eq. (17-32) 
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𝑁−1 = 𝐶 =
𝐶1 𝐶12
𝐶12
𝑇 𝐶2

 (17-32) 

𝑁 − 𝑁 𝑁 −1𝑁 𝑇 Δ = (𝐾 − 𝑁 𝑁 −1𝐾 ) (17-31) 

Δ = 𝑁 −1(𝐾 − 𝑁 𝑇Δ ) (17-29)  Matrix Eq. (17-31) is referred to as the 

reduced normal equations 
 

 These equations are solved for Δ , which can 

then be substituted into Eq. (17-29) to 

compute Δ  
 

 Using the relationship between a matrix and 

its inverse shown in Eq. (17-33), the matrix 

𝐶 = 𝑁−1 can be formed using the definitions 

in Eqs. (17-34), (17-35), and (17-36) 

𝐶𝑁 = 𝑁𝐶 = 𝐼 (17-33) 

𝐶1 = (𝑁 − 𝑁 𝑁 −1𝑁 𝑇)−1 (17-34) 

𝐶12 = −𝐶1𝑁 𝑁 
−1 (17-35) 

𝐶2 = 𝑁 −1 +𝑁 −1𝑁 𝑇𝐶1𝑁 𝑁 
−1 (17-36) 



 This can be done by using only the portions of the matrices on the right hand side of Eq. 

(17-36) corresponding to a particular point 𝑗 
 

 The covariance matrix can then be formed using Eq. (17-16) 
 

 An additional enhancement to the solution can be made to increase computational 

efficiency even further 
 

 This enhancement exploits the fact that the coefficient matrix of the reduced normal 

equations is sparse; i.e., it has a large number of elements that are zero  
 

 Special computational techniques and data storage methods are available which take 

advantage of sparsity, reducing both computational time and data storage requirements 
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 While 𝐶2 can be used to form the full covariance 

matrix for point coordinates, the computations 

are normally limited to determining covariance 

values for each point separately 

𝐶2 = 𝑁 −1 +𝑁 −1𝑁 𝑇𝐶1𝑁 𝑁 
−1 (17-36) 

ΣΔΔ = 𝑆0
2 𝑁−1 (17-16) 



 Figure 17-12 shows a small block with three strips of nine photos each, having end lap 

and side lap equal to 60 and 30 percent, respectively 
 

 The outlines of photo coverage for only the first three photos in strips 1 and 2 are shown 

in the figure, and the remainder are represented as neat models  
 

 In Fig. 17-12, the image of a representative pass point A exists on photos 1-1, 1-2, 1-3, 

2-1, 2-2, and 2-3 

 

Figure 17-12. Configuration of a photo block having three 
strips of nine photos each. 

Figure 17-13. Graph showing connections between photos 
caused by shared pass points. 
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 In Fig. 17-12, the image of a representative pass point A exists on photos 1-1, 1-2, 1-3, 

2-1, 2-2, and 2-3 
 

 This pass point causes "connections" between each possible pair of photos from the set 

of six on which it is imaged 
 

 Connections for the entire block are illustrated in Fig. 17-13 
 

 This figure shows a graph which indicates the connections (shown as lines or arcs) 

caused by shared pass points over the entire block 
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Figure 17-12. Configuration of a photo block having three 
strips of nine photos each. 

Figure 17-13. Graph showing connections between photos 
caused by shared pass points. 



 These connections cause nonzero submatrices to appear at corresponding locations in 

the reduced normal equations  
 

 The positions where these nonzero submatrices appear depend upon the order in 

which the photo parameters appear in the reduced normal equation matrix 
 

 Two ordering strategies, known as down-strip and cross-strip, are commonly employed 
 

 In the down-strip ordering, the photo parameters are arranged by strips, so that the 

nine photos from strip 1 appear first, followed by the nine photos of strip 2, and the 

nine photos from strip 3 
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 With cross-strip ordering, the photo 

parameters are arranged so that the 

first photo of strip 1 appears first, 

followed by the first photos of strips 2 

and 3 
 

 Then the second photos of strips 1, 2, 

and 3; and so on 
 

     ⇨ These two photo orders are listed  

         in Table 17-1 
 

 Cross-strip ordering leads to a more 

efficient solution than down-strip 

ordering in this case 

 

Table17-1. Down-Strip and Cross-Strip Ordering for the Photos of Fig. 
17-14 
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 Figure 17-14 shows a schematic representation of the 

reduced normal equations when down-strip ordering is 

employed  
 

 Notice from the figure that the nonzero elements tend to 

cluster in a band about the main diagonal of the matrix 
 

 The width of the band from the diagonal to the farthest 

off-diagonal nonzero element is the bandwidth of the 

matrix ⇨ The bandwidth of the matrix shown in Fig. 17-14 

is 6 × 12 = 72 

 

Figure 17-14. Structure of the reduced 
normal equations using down-strip 

ordering. 

Figure 17-15. Structure of the reduced 
normal equations using cross-strip 

ordering. 
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 With cross-strip ordering of the photos, the reduced 

normal equation matrix shown in Fig. 17-15 results 
 

 The bandwidth is 6 × 8 = 48, which is substantially 

smaller than that for down-strip ordering 
 

 The narrower the bandwidth, the faster the solution and 

the less storage required. 



 Solution time for nonbanded reduced normal equations is 

proportional to the number of unknowns (6𝑚 ) raised to 

the third power 
 

 For the example with 27 photos, the time is proportional 

to (6 ×  27)3 =  4.2 × 106  
 

 For banded equations, the solution time is proportional to 

the bandwidth squared, times the number of unknowns 

Figure 17-14. Structure of the reduced 
normal equations using down-strip 

ordering. 

Figure 17-15. Structure of the reduced 
normal equations using cross-strip 

ordering. 
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 For the example with down-strip number, the time is 

proportional to 722  ×  (6 ×  27)  =  8.4 ×  105 , which is 5 

times faster than the nonbanded case 
 

 With cross-strip numbering, the time is proportional to 

482  ×  (6 ×  27)  =  3.7 ×  105, which is more than 11 

times faster than the nonbanded case 



 Solution time for nonbanded reduced normal equations is 

proportional to the number of unknowns (6m ) raised to 

the third power 
 

 For the example with 27 photos, the time is proportional 

to (6 × 27) = 4.2 × 10  
 

 For banded equations, the solution time is proportional to 

the bandwidth squared, times the number of unknowns 

Figure 17-14. Structure of the reduced 
normal equations using down-strip 

ordering. 

Figure 17-15. Structure of the reduced 
normal equations using cross-strip 

ordering. 
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 Down-strip and cross-strip ordering generally apply only 

to regular, rectangular photo blocks 
 

 In cases where photo blocks cover irregular areas, other 

more complicated approaches should be used to achieve 

a minimal bandwidth 
 

 Details of these other approaches can be found in 

references which follow 


