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in braca . in Eqgs. (3.3.16) and (3.3.17) are thus the ;  :tical deflection

and moment amplification factors.

To simplify the expressions for the maximum deflection equation
(3.3.16) and the maximum moment equation (3.3.17), we use the power
series expansion for tan u

15.2 .17 ,
— Pyt — e
tan u u+3u 15u 315u =

Upon substituting Eq. (3.3.18) into Egs. (3.3.16) and (3.3.17) and
simplifying, it can be shown that these equations can be written
approximately as

(3.3.18)

1-0.18(P/P.)] _ 1—0.2(P/P=)
1-(P/P,) ]~M°[ 1-(P/P) ] i

in which the terms in brackets in the above equations are the design
deflection and moment amplification factors, respectively.

Tables 3.3 and 3.4 show a numerical comparison of the theoretical and
design deflection and moment amplification factors, respectively. Good
correlation between the theoretical and design amplification factors are
observed.

At this point, the reader should recognize the similarity in form of the
deflection amplification factors in Egs. (3.2.35) and (3.3.19) and the

(3.3.19)

Ymax = Yo

M= M|

Table 3.3 Theoretical and Design Deflection
Amplification Factor for a Beam-Column with a
Concentrated Lateral Load at Midspan

u=kL_= \/E Theoretical Design

2 2VE  Eq (33.16) Eq.(33.19)
0 1.000 1.000
0.20 1.016 1.016
0.40 1.068 1.069
0.60 1.169 1.171
0.80 1.346 1.350
1.00 1.672 1.681
1.20 2.382 2.402
1.40 4.808 . 4.863
ﬂ/2 =] -]
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Tc 3.4 Theoretical and Design Moment
Ampiification Factors for a Beam-Column with a
Concentrated Lateral Load at Midspan

e kL =% \/E Theoretical Design
£ 2 2VP,  Eq.(3317) Egq.(3.3.20)
S\ WA Che
, B. Chen 0 1.000 1.000

g, 0.20 1.014 1.013

0.40 1.057 1.055

= L 0.60 1.140 1.137

E.M. Lu. 0.80 1.287 1.280

; ; 1.00 1.557 1.545

et 1.20 2.143 2.122

) ] 1.40 4.141 4.090
S—hé:/."y" 72 ® -

- Elsever —

similarity in form of the moment amplification factors in Eqgs. (3.2.41)
and (3.3.20) for the simply supported beam-column under uniformly
distributed and midspan concentrated lateral loads. We shall take
advantage of these similarities in developing design formulas for beam-
columns. This will be discussed later.

3.4 BEAM-COLUMNS SUBJECTED TO END MOMENTS

3.4.1 The Closed-Form Solution (Fig. 3.4)

So far, we have considered only the cases in which the primary bending
moments in the beam-columns are caused by in-span lateral loads. In this
section, we shall consider the case in which the primary bending moment
is caused by end moments in the beam-column. Shown in Fig. 3.4a is'a
beam-column acted on by end couples M, and Mg at the left and right
ends of the member, respectively, and acted on by an axial force P.
Using the free-body diagram of a segment of beam-column of length x
from the left end (Fig. 3.4b), the external moment acting on the cut
section is

MA+MBx
L

Equating this to the internal moment of —EIy" and rearranging, we
have

M.o=Ma + Py — (3.4.1)

My + Mg

Ely"+ Py = 3

X = MA (3.4.2)
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FIGURE 3.4 Beam-column with end couples (double-curvature bending)

or, using k> = P/EI, we can write

N M, + M, M
y + k?* =—;{FB.X‘ —E—? (343)
The general solution is
: M, + M, M
y = A sin kx + B cos kx + £EIszx—E122 (3.4.4)

The constants A and B can be evaluated by using the boundary
conditions

y(0)=0, y(L)=0 (3.4.5)
From the first boundary condition, we obtain
Ma

=EIc (3.4.6)

and from the second boundary condition, we obtain

1 :
A=——5——

EIC sin kL (Mj coskL + MB) (3.4.7)

3.4 Beam-Lolumns dUDjeCIea (0 tna momens www

Therefore, F¢3.4.4) can now be written as

¥ _(MAcoskL+MB) . M,
= T ElPsnkL  Snkxtppaceskx

My + Mg M,

— 3.4,
LEIK* * EIK® G48)
from which
o (MACOSkL‘l‘MB) MA . MA+MB
 Sabsar e L R
and
(My cos kL + Mp) . M,
"= —=2 4.
El sin kL sin kx El cos kx (3.4.10)
and
k(M cos kL + M) kM, .
" —A 4.
Flsin kL cos kx + 7l sin kx (3.4.11)

To determine the location of the maximum moment, we set the shear
force (—EIy™), or Eq. (3.4.11), equal to zero. In doing so, we obtain the
location X .

5 _(MA Ccos kL + MB)
tan kx = M sinkL (3.4.12)
From Fig. 3.5, it can be seen that
o (M, cos kL + Mg)
S0k = S 2, My cos kL + M G4
—M, sin kL
¥ = 3.4.
e T Gl

FIGURE 3.5 Trigonometric relationship

IJM§+ 2MyM cos kL + M3

Macos kL + Mg

= Mpsin kL
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Table 3.6 Theoretical and Design Moment
Amplification Factors for a Fixed-Ended
Beam-Column Loaded by a Uniformly Distributed
Lateral Load

E. kL 7w [P  Theoretical Design

2 2K VP, Eq.(3.631) Eq.(3.6.19)

0 0 0

0.20 1.003 1.002
0.40 1.011 1.010
0.60 1.025 1.023
0.80 1.045 1.042
1.00 1.074 1.068
1.20 1.111 1.102
1.40 1.161 1.149

T © -}

Eq. (3.6.19), M, is now wL?/12, P..= n’EI/(KL)* where K =0.5. The
value of W is

i o
‘p—(P/Pek)l

Again, the value of ¥ does not vary too much for various values of
P/P... By choosing a W-value equal to —0.4, we will observe a good
correlation between the theoretical M,,,, as expressed in Eq. (3.6.31) and
the approximate M,,,, as expressed in Eq. (3.6.19) (Table 3.6).

3(tanu — u)
u’tanu

[n-era-1]  Gen)

3.7 SLOPE-DEFLECTION EQUATIONS

In this section, we will develop the slope-deflection equations for a
beam-column. Consider the beam-column shown in Fig. 3.17; we now
want to establish a relationship between the end moments (M,, Mg) and
the end rotations (60 4, 0g).

From Eq. (3.4.8), the deflection function for this beam-column has the

FIGURE 3.17 Beam-column subjected to end moments (without relative joint
translation)

-
A Mg

M ~.
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L% B|
|
|
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form
(MA cos kL + MB) . MA
Elsmkl St ppacoske

My + Mg M,
LEIkZ x —EIkZ (371)

y:

Rearranging, we have

b o 1 [coskL TINES b x I]M
Y="E08 Lsipkr, "0 08—y 1M,
1 1 X X
T P "Z]MB @74
from which
y_ _ 1 [coskL . 1
y EIk[sinkL P P kL]MA
_L[coskx_i]M
Elk Lsin kL~ kLJ"® (3.7.3)

Using Eq. (3.7.3), the end rotations 6, and 6g can be obtained as

1 [coskL 1
S
a=y'(0) Snkl kL]

Elk
1 1 1
i
_ L [sinkL — kL cos kL
T EI [ (kL)?sin kL ]M"
+£ [sin kL — kL]
EIL(kL)*sinkL]™™®

(3.7.4)

k 1 1
Op=y(L)=—mt 1 _1
s=y'(L)=-zn [sinkL kL]M"

_L[coskL 1
Elk M_E] <

_L [sin kL —kL

" EIL(KL)’sin kL] -

L [sinkL — kL cos kL

El[ (KL)?sin kL ]M" (7
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Equatious (3.7.4) and (3.7.5) can be written in matrix ,orm as

Ll E e
Os fr f2llMg
where
L [sin kL — kL cos kL]
o 3.7.7
fa=fa EI[ (kL)?sin kL G
L [sinkL - kL]
N e e T 3.7.8
fa=fa=g; [(kL)z sin kL e
From Eq. (3.7.6), we can write
[MA] - [f" f”]—l[e"] (3.7.9)
: Mg o fo 0s
or
Lel=1 o) S
Mg €y CppllOg
i where
EI [ kL sin kL — (kL)? cos kL]
i 37810
==y [2—2coskL—kLsinkL D
EI (kL)*— kL sin kL ]
== 3,712
o [2—2005 kL — kL sin kL Gl
Equation (3.7.10) can be written in its expanded form as
MA='EZI(sii0A + 5;08) (3.7.13)
/4
MB=EI'(sji9A+sjjeB) (3'714)
where
- E% E %ZTL (3.7.15)
T (3.7.16)

are referred to as the stability functions.
Equations (3.7.13) and (3.7.14) are the slope-deflection equations for a

Table 3.7 Stab.  Functions (kL= aVP/P,)

185

compression tension
kL P/Pe Si sij Si Si,‘

0. 0. 4. 0000 2. 0000 4. 0000 2. 0000
0. 0500 0. 0003 3. 2997 2. 0001 4. 0003 1. 999%
Q. 1000 0. 0010 3. 9987 2. 00C3 4. 0013 1. 9997
0. 1500 Q. 0023 3. 9970 2. 0008 4. 0030 i. 9993
0. 2000 0. 0041 3. 9947 2.0013 4. 0053 1. 9987
0. 2500 Q. 00463 3. 9917 2. 0021 4.0083 1. 297%
0. 3000 Q. 06071 3. 9876 2. 0028 4. 0120 1. 2970
0. 3500 0.0124 3. 9833 2. 0039 4 0157 1.9958
0. 4000 C. 0162 3. 97846 2. 0054 4. 0211 1. 9944
0. 45C0 Q. 0205 3. 9729 2. 0048 4. 02468 i. 92932
0. 5000 C. 0253 3. 2645 2. 0084 4. 0332 1. 9917
0. 5500 0. 0306 3. 9595 2.0102 4. 0401 1. 990C
0. 6000 0. 0365 3. 9917 2. 0121 4.0477 1. 2831
Q. 6500 Q. 0428 3. 2433 2. 0143 4. 0560 1. 9861
0. 7000 0. 0496 3. 9342 2. 0146 4. 0649 1. SB83%
0. 7500 Q. 0570 3. 9244 2.0191 4. 0744 1. 2816
0. 80CO 0. 0648 3. 9139 2.0218 4. 084646 i. 9791
0. 8500 0. Q732 3. 2027 2. 0244 4. 0954 1. 9764
0. 2000 0. 0821 3. 8908 2. 0277 4. 106% 1. 97237
0. 9500 0. 0914 3. 8782 2. 0309 4.118%9 1. 707
1. 0000 0. 1013 3. 8649 2. 0344 4. 1316 1. 9677
1. 0500 0.1117 3. 8508 2. 0380 4.1449 1. 9645
1. 1000 0. 1226 3. 8360 2. 0419 4. 1588 1. 2611
1. 1500 0. 1340 3. 8205 2. 0460 4. 1734 1. 9577
1. 2000 0. 1459 3. 8043 2. 0502 4.1885 1. 2541
1. 2500 0.1583 3. 7873 2. 0547 4.2042 i. 2503
1. 3000 0.1712 3. 7695 2. 0594 4. 2205 1. 24465
1. 3800 0. 1847 3. 7510 2. 0644 4. 2374 1. 2425
1. 4000 0. 1986 3. 7317 2. 0695 4. 2549 1. 2384
1. 4500 0. 2130 3.7116 2. 0749 4, 2729 1. 9342
~ 1. 5000 G. 2280 3. 6907 2. 0806 4. 2216 1. 92292
1. 5500 0. 2434 3. 6690 2. 0865 4. 3107 1. 9259
1. 6000 0. 2594 3. 6466 2. 0926 4. 3305 1. 2210
1. 6500 0. 2758 3. 6233 2. 0990 4. 3508 1. 9163
1. 7000 0. 2928 3. 5991 2. 1057 4.3716 1. 9116
1. 7500 0. 3103 3. 5741 2. 1127 4. 3929 1. 2068
1. 8000 0. 3283 3. 5483 2. 1199 4. 4148 1. 9019
1 8500 0. 3448 3. 5216 2. 1279 4. 4373 1. B969
1. 2000 0. 3658 3. 4940 2. 1353 4. 4602 1. 87192
1. 2500 0. 3853 3. 46595 2. 1434 4. 483646 1. 88&7
2. 0000 0. 4053 3. 4361 2. 1519 4. 5076 1. 8815
2. 0500 0. 4258 3. 4058 2. 1667 4. 5320 1. 8762
2. 1060 0. 4468 3.3745 |, 2. 1699 4. 5569 1. 8708
2. 1500 0. 4684 3. 3422 2.1794 4. 5823 1. B654
2. 2000 0. 4704 3. 3090 - 2.1893 4. 6082 1. 8599
2. 25600 0.5129 3. 2748 2. 1996 4. 6345 1. 8544
2. 3000 0. 5360 3. 2395 2.2102 4. 6613 1. 8488
(continued)
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FIGURE 3.18 Plot of stability functions

1. The beam is prismatic.

2. There is no relative joint displacement between the two ends of the
member, i.e., the member does not sway.

3. The member is continuous, i.e., there is no internal hinge or
discontinuity in the member.

4. There is no in-span transverse loadings on the member.

5. The axial force in the member is compressive.

If these conditions are not satisfied, modifications to the slope-deflection
equations are necessary. Some of these modifications to special cases of
beam-columns are described below.

3.8.1 Member with Sway

If there is a relative joint translation between the member ends,
designated as A in Fig. 3.19, the slope-deflection equations are modified

3.8 Modified Slope-Deflection Equations - B 189

il

lumn subjected to end moments (with relative joint

L2

FIGURE 3.19 Beam-co
translation)

o ?g\g; N tz-\

_EI s, A
MamT [n(on-D)va(oa-2)] P2 .
_EI A i
—f [S..BA +Sij93—(sﬁ+sij)z] (3.8.1)
EI A
M= [ss(0a=2) +5(0a-2)]
_E A
—f [SijeA','SﬁBB“(Sii +Sij) Z] (3,8.2)

3.8.2 Member with a Hinge at One End

If a hinge is present at on

e end oy .
the B bnd is i end of the member—as in Fig. 3.20a, in which

moment there is zero, ie.,

El
Mg = T (5604 + 5ifs) =0

(3.8.3)
from which
Sii
BB=——: N (3.8.9)
Upon substituting Eq. (3.8.9) into Eq. (3.7.13), we have

Elf &2
My === (5. _Sii

A= (s,,»_ si,-)eA (3.8.5)

Note that 65 has been
Thus, by using Eq. (3.8.5
can be reduced if the mem

If the member is hinged

condensed out of Eq (3.7.13) in E

« (3.7, . 13.8.5),
. the. degrees of freedom used - )
ber is hinged at one end.

at the A rather than the B end, as shown in

for the analysis
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FIGURE 4.9 Element enrd forces and displaﬁqments notations
fi% ra,

Flement end force;s and end displacements of a frame member. The end
orces and end displacements used in the slope-deflection equation are

shown in Fig. 4.9b. By comparin i
; b. B g the two figures, we can easil
the following equilibrium and kinematic relationships. b

Equilibrium
n=p (4.4.1)
_ My + M
e e (4.4.2)
=My (4.4.3)
=P (4.4.4)
r= MA + MB
sS=T 1 (4.4.5)
Te=Mp (4.4.6)
Kinematic
e=—(ds—dy) (4.4.7)
d ar d?_
9A=ds+( r ) (4.4.8)
= ds~d
O =ds+ (57—2) (4.4.9)

1)

e
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.6) can be written in matrix form as

] Equations (4.4.1) to |

n 1 0 0
1 1

1) 0 I "L
e S ¢ ¢ (4.4.10)
Ts -1 0 0 MA

1 1 Mg
Is 0 L L
6 L 0 0 1

"1 0 0-10 o] /%
d,
¢ 1 1 d
_ 1 1 3 4.4.11
ZA PR TN ’: (4.4.11)
B >
1 1 ds
0 -7 0 ¢ 7 1] s

Equation (4.4.10) and Eq. (4.4.11) can be related by recognizing that
EA

P =Te (4.4.12)
EI

MA=f(sﬁ9A+sij93) (44.13)
EI .

MB=II(Sij9A+s;;BB) (4.4.14)

Equation (4.4.12) relates the axial force P to the axial displacement e
of the member, Eqs. (4.4.13) and (4.4.14) are the slope-deflection
equations of the member, and s;, 5;; are the stability functions. In writing
Eq. (4.4.12), it is tacitly assumed that the effect of member shortening
due to the bending curvature is negligible. This assumption is satisfactory
for most practical purposes.

Putting Eqs. (4.4.12) to (4.4.14) in matrix form, we have

P El i} 0 0 e
Mol=51 g 4 04 (4.4.15)
MB ii su OB

0 sij i
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Substi. .ag Eq. (4.4.15) into Eq. (4.4.10), and thew. . ostituting Eq.
(4.4.11) into the resulting equation, we can relate the element end forces
(7, to rs) with the element end displacements (d, to de) as

4 A 7
7 0 0 -7 0 0
) Asitsy)  (Satsy) 0 =2sitsy)  —(satsy) d,
- iz L L L d
2 2
A0 [ El Si 0 Sy oy 55 ds
Ta L L d4
s A ds
s sym. 7 0 0 .
20sutsy)  Gatsy)
L* L
L Si s
(4.4.16)
Symbolically, Eq. (4.4.16) can be written as
I, = K d (4.4.17)

where the subscript ns is used here to indicate that there is no sidesway
in the member. If the member is permitted to sway as shown in Fig. 4.10,
an additional shear force equal to P A/L will be induced in the member
due to the swaying of the member by an amount A given by

A= d2 - ds (4.4.18)

We can relate this additional shear force due to member sway to the
member end displacement as

0 0 0 0 0 0]

n P P d,
-~ 0 0 = 0
r L 0 o d,
3 00 0 0 d3
= 4.4.1

Ta 0 0 0 dy ( %
Is P dS
76 [ sym. = z 0 d6

L 0.,

or symbolically
r,=kd (4.4.20)
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where the subsc..t s is used to indicate the quantities due to sidesway of
the member.

By combining Eq. (4.4.17) and Eq. (4.4.20), we obtain the general
beam-column element force-displacement relationship as

r=kd (4.4.21)
where
r=r,+r, (4.4.22a)
k=k, +k (4.4.22b)
A A 3
7 0 0 -7 0 0
2(s3 + 535) — (kL) - (53 + 535) 0 —2(s +53) + (KL)* — (s + 53)
P L I’ L
EI Syt s,
= f S 0 ..“T.g Si
A
sym. 7 0 0
2(su +8y5) — (KL)* (55 + sy)
i L
= Sii -
(4.4.23)

Substituting the expressions for the stability functions (s;, s;;) in Eq.
(4.4.23) and simplifying, we obtain

A A 7
7 0 0 - 7 0 0
12 -6 -12 -6
Iz ¢, T ¢, O Iz 1 T o2
6
EI 4¢, 0 3 b2 2¢,
k=" (4.4.24)
A
7 0 0
12 6
sym. * Iz b1 I 2
L ’ 4¢3 _

The expressions for ¢,, ¢,, ¢3, and ¢, are given in Table 4.1. Note
that as P approaches zero, the functions ¢;, ¢,, ¢35, and ¢, become
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g

FIGURE 4.10 Additional shear due to swaying of the member

indefinite. However, by using the L’Hospital’s rule, it can be shown that
these functions will approach unity and Eq. (4.4.24) reduces to the
first-order (linear) element stiffness matrix for a frame member.

Also shown in Table 4.1 are the ¢; functions expressed in the form of a
power series by using the following series expansion for the trigonometric
functions:

For compression

3 S
skl = b o) L -

6 120 (4.4.25a)
I kL (kL)*
coskL=1 g Y (4.4.25b)
For tension
: (kLY (kLY
hkL=kL +~—2— 4222 4 ...
— £ 1T (4.4.26a)
4
COShkL=1+k2—L+-(%+... (4426b)

It has been shown* that these power series expressions are convenient
and efficient to use in a computer-aided analysis because no numerical
difficulties will arise even if the axial force P is small. In addition, the
expressions in the series are the same regardless of whether P is tensile or
compressive. For most cases, the series will converge to a high degree of
accuracy if n =10 is used.

If the axial force in the member is small, Eq. (4.4.24) can be simplified
by using a Taylor series expansion for the ¢;’s. If we retain only the first
two terms in the Taylor series, it can be shown that the resulting stiffness

Table 4.1 Expre 1s for ¢,, @, ¢5, and ¢,

¢ P
Compressive Zero Tensile
(kL)?sin kL (kL)?sinh kL
12¢, t
(kL)*(1 — cos kL) § (kL)*(cosh kL — 1)
o 69 69,
(kL)(sin kL — kL cos kL) 1 (kL)(kL cosh kL — sinh kL)
. 9. 49,
(kKL)(kL —sin kL) 1 (kL)(sinh kL — kL)
i 2. 29,
where

¢.=2—2cos kL — kL sin kL

¢,=2—2cosh kL + kL sinh kL

Alternatively, the ¢, functions can be expressed in the form of power series, as

in reference 4:

- 1
1+ L s

[F&LYT

0= 12¢

= 1
1 ———
it L o)

[(F&L)T

¢, = 60
= 2(n+1)
a=1(2n + 3)!

Vi & ==ce e [ RORLYY

3 7

gz 1
1 o
_°+..§1(2n +3)!

[F&LYT

Ps= 70
where '
o 2(n+1)

o=h+2 o

Use the minus sign if the axial force is compressive.
Use the plus sign if the axial force is tensile.

[(F*LYT
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~matrix the .s valid for small axial force is given by

J 7 [ -
é0 0 —é 0 0 00 0 O 0 0
I 4
2 6 , 12 -6 6 -L , 6-L
E2 - L? L 5 10 5 10
6 2I? L =I?
k=% S e U [ 0 03
A
}- 0 0 0 0 0
2 s 6 L
1> L 5 10
2172
4 e
| 5 N 15 ]
(4.4.27)

in which the negative sign preceding the second matrix corresponds to a
compressive axial force and the positive sign corresponds to a tensile
axial force. ‘

Symbolically, Eq. (4.4.27) can be written as

k=ko+kg (4.4.28)

where k; is the first-order (linear) elastic stiffness matrix and kg is the
geometric stiffness matrix (sometimes referred to as the initial stress
stiffness matrix), which accounts for the effect of the axial force P on the
bending stiffness of the member.

The following example will be used to demonstrate the procedure of
using the stiffness matrix method to obtain the critical load of frames.

4.4.2 Sway Buckling of a Pinned-Base Portal Frame

The matrix stiffness method is applied here to determine the critical load
P.. for the frame shown in Fig. 4.5a. Because of symmetry, we consider
only one half of the structure in the analysis. This is shown in Fig. 4.11a
together with the structural nodal forces and displacements. To reduce
the number of degrees of freedom of the structure, we assume that all
members are inextensible (i.e., the change in length due to axial force is
neglected). As a result, only four degrees of freedom, are labeled: three
rotational degrees of freedom, D,;, D,, and D,, and one translational
degree of freedom, D,. The corresponding structural nodal forces,
Ry,...,Ry, are also shown in Fig. 4.11a. The directions of these

4.4 Hlastic Critical Loads by Matrix Stifiness Method 261

Rz D, Rg P
I ot TN, A
T & "
L 1
7\
o BB,
L/2
(a)
r.d r_d
gy 2'"2 5'"s
rz,d2 d 2 d
3% 's'%
1
rd FIGURE 4.11 Structure and
N |55 member forces and displace-
Ts+dg (b) ments notations

rotations, translations, and forces are shown in their positive sense in the
figure. '

Because of the assumption of inextensional behavior, the axial
force-axial displacement relationship expressed in Eq. (4.4.12) is not
valid anymore. As a consequence, the 6 X6 element stiffness matrix
relating the element end forces to the element end displacements will be
reduced to a 4 X 4 matrix as

12 6 12 6] [e6 L 6 L ]
IS SR T N i 18 5
6 ) S R
EI - e ) & P 15 10 30
=T 2 6 |°L Al
sym. -EZ' z, sym. ’5' E‘
P 2L2

4 | i —E.A

(4.4.29)
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slope-deflection equation approaches. However, it shouws be noted that
the steps shown above can easily be programmed in a digital computer,
and so P, can be obtained quite conveniently for any type of frame.

4.5 SECOND-ORDER ELASTIC ANALYSIS

In the preceding sections, we determined the load that corresponds to a
state of bifurcation of equilibrium of a perfect frame by an eigenvalue
analysis. In an eigenvalue analysis, the system is assumed to be perfect.
There will be no lateral deflections in the members until the load reaches
the critical load P,. At the critical load P, the original configuration of
the frame ceases to be stable and with a slight disturbance, the lateral
deflections of the members begin to increase without bound as indicated
by curve 1 in Fig. 4.2. However, if the system is not perfect, lateral
deflections will occur as soon as the load is applied, as shown by curve 2
in Fig. 4.2. For an elastic frame, curve 2 will approach curve 1
asymptotically. To trace this curve, a complete load-deflection analysis of
the frame is necessary. A second-order elastic analysis will generate just
such load-deflection response of the frame.

In a second-order analysis, such secondary effects as the P — 4§ and
P — A effects, which we discussed previously in Chapter 3, can be
incorporated directly into the analysis procedure. As a result, the use of
P — § and P — A moment magnification factors (denoted as B, and B, in
Chapter 3) are not necessary.

Because for a second-order analysis the equilibrium equations are
formulated with respect to the deformed geometry of the structure, which
is not known in advance and is constantly changing with the applied
loads, it is necessary to employ an iterative technique to obtain solutions.
In a numerical implementation, one of the most popular solution
techniques is the incremental load approach. In this approach, the
applied load is divided into increments and applied incrementally to the
structure. The deformed configurations of the structure at the end of each
cycle of calculation is used as the basis for the formulation of equilibrium
equations for the next cycle. At a particular cycle of calculation, the
structure is assumed to behave linearly. In effect, the nonlinear response
of the structure as a result of geometric changes is approximated by a
series of linear analyses, the geometry of the structure used in the
analysis for a specific cycle is the deformed geometry of the structure
corresponding to the previous cycle of calculation. Because of the
linearization process, equilibrium may be violated and the external force
may not always balance the internal force. This unbalanced force must be
reapplied to the structure and the process repeated until equilibrium is
satisfied.

For a second-order elastic frame analysis, the iteration process is
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summarized in  following steps (in the following discuss.ui1, a subscript
refers to the load step and a superscript refers to the cycle of calculation
within each load step):

1. First, discretize the frame into a number of beam-column elements.

2. Next, formulate the element stiffness matrix k for each and every
element. The element stiffness matrix is given in Eq. (4.4.24), or in
its approximate form, Eq. (4.4.27). (P can be set equal to zero in
these equations for the first cycle of calculations.)

3. Assemble all these element stiffness matrices to form the structure
stiffness matrix K.

4. Solve for the incremental displacement vector using

AR, =K! AD} (4.5.1)
from which

AD} = (K})‘1 AR; (4.5.2)
where

AR,; = prescribed incremental load vector of the i load step
K| = structure secant stiffness matrix at the beginning of i load
step
AD] = incremental structure nodal displacement vector at i load
step.

5. Update the structure nodal displacement vector from
D! =D, + AD{ (4.5.3)
where

D} = structure nodal displacement vector at the end of the first
cycle of calculation at the i load step
D; = structure nodal displacement vector at the beginning of th
i load step '
AD) = incremental structure nodal displacement vector evaluated
at Step 4.

6. Extract the element end displacement vector d; from D} for each and
every element in the structure.

7. For each element, evaluate the element axial displacement e and
element end rotations 6,, 65 from Egs. (4.4.7) to (4.4.9).

8. For each element, evaluate element axial force P and element end
moments M,, Mg from Egs. (4.14.12) to (4.4.14).

9. For each element, evaluate element end forces from Eq. (4.4.10).

10. Form the structure internal force vector R} at the end of the first

cycle of calculation by assembling the element end forces evaluated
in Step 9 for all the elements.
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“11. Calcwate the external force vector from

Ri+1 = Ri =t AR, (4.5.4)
12. Evaluate the unbalanced force AQ! at the end of the cycle from
AQxl =Riv1— Ri1 (4-5-5)

13. Using the current value of axial force P, update the element stiffness
matrix k for each and every element. Assemble k for all the elements
to form an updated secant structure stiffness matrix K?. Evaluate the
incremental displacement vector AD? from

AD?= (K} AQ! (4.5.6)

where AQ} is the unbalanced force vector calculated in the previous
cycle of calculation.
14. Update the structure nodal displacement vector from

2
D?=D;+ >, AD} (4.5.7)
k=1

15. Extract the element end displacement vector d; from D7 calculated in
Eq. (4.5.7) for each and every element. Update e, 0,4, and O3 and,
hence, P, M,, and Mg as done in Steps 7 and 8 for all elements in
the frame.

16. Update the element end forces for all the elements and form the new
structure internal force vector R?.

17. Evaluate the new unbalanced force AQ? from

AQi2 =Ry~ Ri2 (4.5.8)

18. Repeat Steps 13 through 17 as many times as possible until
convergence. Convergence is said to have been attained if the
unbalanced force AQ4, where the superscript j refers to the j cycle of
calculation, falls within a prescribed tolerance.

19. After convergence the structure nodal displacement at the end of the
i load step is obtained by

D, =D!=D,+ >, ADf (4.5.9)

k=1
20. Prescribe another load increment and repeat Step 2 to 19.

A schematic representation of the above procedure is shown in Fig.
4.12a,b for a one degree of freedom structure. In performing the above
procedure, the complete load-deflection response of the frame can be
traced, and the stability limit point is obtained as the peak point of this
load-deflection curve. '

As the stability limit point is approached in the analysis, convergence
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FIGURE 4.12 Iteration technique for second-order elastic frame analysis

of the solution may be slow. To facilitate convergence, a smaller load
increment should be used.

The numerical procedure described above can be programmed in a
computer. By using the computer to perform a second-order analysis, the
design moments for the members can be obtained directly. Comparative
studies using second-order elastic analysis and first-order elastic analysis
in conjunction with B;, B, moment amplification factors described on
Chapter 3 have been made.*® It was demonstrated that for rigidly



trategies for Tracing ¢ Nonlinear Response Near Limit
Points
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Abstract

For the prebuckling range an extensive literature of effective
.solutiontechniques exists for the numerical solution of structural
problems butonlya few algorithms have been proposed to trace
nonlinear response from the pre-limit into the post-limit range.
Among these are the simple method of suppressing equilibrium
iterations, the introduction of artificial springs, the displace-
ment control method and the ''constant-arc-length method" of
Riks /Wempner. It is the purpose of this paper to review these
methods and to discuss the modifications to a program that are
necessary for their implementation. Selected numerical exam-
ples show that a modified Riks /Wempner method can be espe-
cially recommended.

1. Introduction

. Usually postcritical states are not tolerated in the design of a
structure. However, the prediction of response in this range
may still be of great value. Atypicalexample is the imperfection
sensitivity of certain structures which in general is directly
related to the posteritical response. Inparticularthis is true
for structures exhibiting a decreasing post-limit characteristic.
This may result ina dynamic snap-throughor snap-back phenom-
enon depending on whether the load or the displacement controls
the system. However, a static analysis traces the whole post-
critical range allowing for a better judgement of the overall

structural response.

It is well known that the usually applied Newton-Raphson iteration

methods are not very efficient and often fail in the néighborhood

i
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of ériticalpoints. The stiffness matrix approaches singularity result-
_ing in an increasing number of iterations and smaller and smaller
"load steps. Finally the solution diverges. In recent years several
strategies have been proposed to overcome these problems and to

trace the response beyond the critical point.

It is the purposeof this paper to describe some of the most commonly
used techniques. These are the method of suppressing the equilibrium
iterations in the neighborhood of the critical point, the method of
artificial springs, the displacement control technique and the "'con-
stant - arc - length method'' of Riks [1], [2] and Wempner [3]. In
particular an attempt is made to show the correlation of the latter
procedures. Special emphasis is given to some modifications of the
Riks /Wempner method leading to an efficient iterative technique

throughout the entire range of loading and not only near the critical
point, Other methods for solving the same type of problem, e. g. the

perturbation method or dynammic relaxation, are not studied.

Thediscussion refers to limit points only, Bifurcation problems may
b¢ included either by introducing a small perturbation in geometry
orload ~(imperfect approach) or by superimposing on the displacement
field of the critical load a part of the eigenmode (perfect approach).
Theprocedures are described in conjunction with the Newton-Raphson
method in its standard or modified versions. A combination with
accelerated quasi Newton methods is possible. eProportional loading

isassumed but few changes are necessary for non proportional load-
ing.

2. Starting Point and Notation

The study is based on the incremental/iterative solution procedure
ina nonlinear finite element analysis; i.e. t_he nonlinear problem is
stepwise linearized and the linearization error is correctgd by addi-
tionalequilibrium iterations, see for instance [4]. Aleft superscript

o I
indicates the current configuration of the total displacements Ty , the

s 65
m : . m .
load vector P, the internal forces  F o and the out-of-balance
forces "R . Ior proportional loading the loads may be expressed
by one load factor Bk,
= ‘
P:="\P (1)

where P isavectorof reference loads. Within one increment from
configuration m to m + 1, the positions i and j =i+ 1, before and

after an arbitrary iteration cycle, are distinguished (figure 1).

load
Py
i
a i aN?!
Il N =
A)(\”= )\(1)
}\n) )\m
i=1,2,3
m
)\ e
UH): AU(”
-
Uli) AUU)
} .
"y 'y 'u Ju displacement
Figure 1: Notation

The totalincrements between positions m and i are denoted by u(’),

P (1) and Xm whereas the changes in increments from i to j are
denoted by AU(J), AP(‘]) and A)\(J), respectively:

ip=" ., P, "  ang Iy 2™ W )
P A

Iy =™y o+ o gy
o) (2)



In view of the fact that iteration takes place in the displacement and
load space the load level may change from one iterate to the other,
i

Inthis case anintermediate position j’ for the same load level j'k = A

is introduced before the final state J is reached (figure 1),

Supposedly configuration i has already been determined and the in-
cremental equilibrium equations may be expressed by the linearized

stiffness expression,

'K - au'= gP% P - F (3a)
If the out-of-balance forces 'R = P _ s inserted

i () A\ i

K'AU =aX'P + 'R (3b)

The tangent stiffness matrix iK at position i mayinclude all possible
nonlinear effects, It may be kept unchanged through several iteration
cycles following the modified Newton-Raphson technique, Eq. (3) is
the basic relation used as the starting point for the different iterative

techniques described below,

The static stability criterion indicates a limit or bifurcation point by

‘K- au®=0 (4)

where 4uC® is the eigenmode of the critical point. The singularity is

usually checked by the determinant
det °’K = 0 » (5)

The determinant can easily be calculated as the product of all diagonél
terms inthe triangularized matrix during Gaussian elimination. Note
that a positive determinant is not a sufficient criterion for stable
equilibrium. Rather, the signs of the diagonal terms should be moni-
tored todetect negative eigenvalues. This is the pc;int when the limit

load is passed and unloading should start,

8. Desceription of Some Iterative T'echniques

3.1 Suppressing Fquilibrium Tterations

As mentionced the equilibrium iterations usually break down near the
limit point even if the load increment is small. I'he simplest way of
avoiding this difficulty is to suppress the iterations in the critical
zone, This procedure is used with great success by Bergan [5] who
introduced the "current stiffness parameter' to guide the algorithm

(figure 2).

load

increm, + > pure _,r..mcrem,* displ.
iteration increment iteration

Figure 2: Suppressing iterations due to Bergan (5]

Ataprescribed value of the stiffness parameter the iteration proceé-
dureis discontinued (point A). Then pure incrementation is used. If
the Euclidean norm of the displacement increments exceeds a certain
prescribed limit (point C’) load and displacements are linearly

scaled back. (point C). Here negative diagonal elements may be de-
tected in which case negative load increments are applied (point D).
The iteration procedure is resumed when the stiffness parameter
againreaches its prescribed value (point E). The limit pointis located
by a zero value of the stiffness.parameter. The technique requires

very small load increments to avoid drifting away from the equilib-

rium path,

3.2 Artificial - Spring - Method

This method was developed for frames by Wright and Gaylord [ 6]

— -



to shell structures by the author [8]. The technique is based on the
observationthat a snap-through problem may be transformed intg one
with a positive definite characteristic if linear artificial springs are

added to the system (figure 3).

load

'G

®

Figure 3: Artificial spring method

The method is described in detail in appendix I. It is an essential
requirement that a separation of the real problem must be possible
after the analysis of the stiffened system is obtained, i.e. for each

stage only one load-reduction factor is defined. Furthermore the

symmetry of the augmented stiffness matrix should be preserved.

These requirements lead to springs at all loaded degrees of freedom,
which are coupled, and depend on one singie reference stiffness.
This parameter has to be found by trial, The coupling of all artificial
stiffnesses may destroy the banded nature of the stiffness matrix,
In [ 8] the elements outside the band were omitted from the stiffness
matrix but were retained on the right hand side to find the proper
internal forces. Augmenting the spring stiffnesses on the band by a

factor of three to five accelerates the convergence,

Because the ''nonlinearity' of the system is diminished by the artifi-
cial springs the total number of iterations can nevertheless be re-
duced compared tothe analysis without springs. Numerical experi-

\

ence shows that the method is snercecafnl Andir dn wand dnn e sl -

problems where the springs can keep the destabilizing structure alive.

The method cannot be recommendecd for structures with local buckling

or when a tendency to bifurcation is present,

3.3 Displacement - Control

The most often used method to avoid the singularity at the critical
pointis the interchange of dependent and independent variables. Here
asingle displacement component selected as a controlling parameter
is prescribed and the corresponding load level is taken as unknown;
The procedure was introduced first by Argyris [ 9] but in the meantime

has been modified by several authors,

For simplicity let us assume that the stiffness expression, eq. (3),
is reordered so that the prescribed component A u;‘i) = 02 is the last
one in the displacemeht vector Au(j), Then equation (3) may be de-
composed into two parts

| (j) . |

Ku Kia| | 4u; e R,
= g\ + (6)
Ko Kzl | 4uz P, R2
Interchanging the variables , -
i () | i
Kn =Py | | 4u, R, Ky
I = - 'U2 (7)
Ky -Py| 4 R, Kz

itis obvious thatthe loss of the symmetrical and banded structure of
the stiffness matrix is a severe handicap. l.ater it was recognized
that the solution of eq. (7) could be formed in two parts, The first
line of eq. (7) '

Ky aud=a0-p + R - 'K, -G, (8)

(3

is linear in the unknown increment at the load parameter A\
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Therefore its solution may be decomposed into (figure 4)

i 1 b
au’ =0 4?7+ ad? (9)

corresponding tothe two parts of the right hand side of eq. (8). 'I'hat
is, both solutions are obtained simultaneously using two-different

"load" vectors

'Ky, -aui’= P, (10a)

i A
s b, ‘(].Ob)

iKn -auf’= 'R, -

| oA
Uy "0, 'u,

Figure 4: Displacement - Control Method

The displacement increment 44 (IJ)' eq. (9), is introduced into the
second part of eq. (7). This allows the determination of the load
parameter AX(J):

i L e o
}\(j) = 'Ry + 'Ky aul + 'Kyp-Up (11)
4 = P e iK . (NI
2 21 " AUy

Thus instead of solving an unsymmetrical equation the modified stiff-
ness expression, eq, (8), is analysed for two right hand sides pro-
vided that iK i1 is not singular. Since the displacement 02 is held
fixed during the iteration the underlined terms in equations (10 b) and

(11) are omitted in all further iteration cycles,

This modified displacement control method was described first by
Pian and Tong [10] without mentioning the out-of-balance terms,
Zienkiewicz [ 11] refers to the standard programming technique and
gi\}es a physicalinterpretationof the two step method. Sabir and Lock
[12] explicitly introduced the out-of-balance terms into the formula-
tion. The method was also described in detail by Stricklin et al, [,
A similar procedure has been applied by Nemat-Nasser and Shatoff
[14] who used a direct substitution method instead of the Newton-

Raphson technique,

A valuable simplification was utilized by Batoz and Dhatt [15]. Since
the technique above described requires a modification of the stiffness

matrix (1 K - 1K ) the authors point out that it is not very likely

11 .
toobtain exactly the singular point. Hence the original matrix 'K may

still be used and equations (10) are replaced by

'K - adl= P (12a)

'K - ade R (12 b)

where the underlined term in eq, (10 b) is not required to be formed,

Again both solutions are added:
au? =aXP gy 1, 40 (13a)

The vector includes also the prescribed component

s G o A L (N &
au} =aNV-auh o+ 4= U, (13b)

This constraint equation used in the first iteration cycle (m=j = 1)
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allows the determination of the incremental load parameter

. Q.= Au(l)II
() - PERN e v
I . Auz(")l (14}

Supposedly the structure is in an equilibrium state at the beginning

(G
9 . Then

AX(I) is simply a scaling factor prdviding the constraint}\A u(2 ). f12.
; SN %

Batoz and Dhatt [ 15]) even drop this first cycle, They update the dis-
(1)
2

of a stepsothe out-of-balance forces vanishand so does 4 u

placement field only by its component A u and start to iterate,

For all further cycles u(zJ) does not change i.e. 4 u(ZJ) is zero and

Ak(j)is

: (I
o TR . A, jeg,J s (15)
au(pl

Applying the modified Newton-Raphson technique eq. (12 a) needs to
be solved only when the stiffness matrixis updated. Then no additional
computer time is required and the only additional vector stored is

au(l ) I. The iterationis continued until all other displacement com-

ponents are adjusted and the new equilibrium position is found (fig. 4).

The displacement control method is usually used only in the neighbor-
hood of the critical point although it m’ay be applied throughout the
entire load range. Obviously the method fails whenever the structure
snaps back from one load level to a lower one (see example 5. 2).
Some knowledge of the failuf'e mode is required for a proper choice
of the controlling displacement. It might even be necessary to change
the prescribed parameter. Therefore an obvious modification is to
relate the procedureto a measure including all displacements rather

than to one single component, This is discussed in the next section,

3.4 Modified Constant - Arc - Length - Method of Riks /Wempner

This iterative technique has Dbeen independently introduced by Riks

[1], (2] and Wempner [3]. Both authors limit the load step A)\(l)

by the constraint equation
¥ 2 2
au” a0+ (aX")° = ds (16)

Thatis, the generalized "arc length' of the tangent at m is fixed to a
prescribed value ds. Thenthe iteration path follows a ""plane' normal
: - (1
tothe tangent (figure 5); so the scalar product of the tangent t( ) and
the vector A_’u(‘]) containing the unknown load and displacement incre-

menﬁs must vanish:
‘{’(1) ; A_Cl(j) = 1 (17a)

z{/): (AMU)) A/\“))'

or in matrix notation

2 ol o M8 g (17b)

' +>(2) //?,
new tangent ty/ :
‘normal plane’ L :"}‘:1

// |
i I

i

______________ d

_-{»(2)
tangent
: 7

Figure 5: Constant - Arc - Length Method
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The constraint equations originally were added to the incremental
stiffness expressiondestroying symmetry and the banded structure of
the matrix. It was realized by Wessels [16] based on geometrical
considerations that these difficulties could be removed by a two step
technique similar to that described in the previous section, It is this

idea followed in this study. *)

Again the unknown vector A"ﬁ(‘]) is formed in two parts
= '
PTORMET L AU (18a)

or in matrix notation equivalent to eq. (13 a).

au ._.A>\(J)_Au(i)1+ AU(I)H (18 b)

W na aaM D

Also here 4uU are obtained by equations (12) using
either the reference load vector P (AX =1) orthe out-of-balance forces
1R as right hand sides. Then eq. (18) is inserted into the constraint
eq, (17) and solved for the unknown load increment AX(")
T ¥
Gy - AU(U 'Au(')n .
ANV = - T _ (19)
a U(U ‘A u(])1+ AA“)

e
Geometrically this is the intersection j of the new tangent t(J) with the

"normal plane" (figure 5). Eq. (19) is equivalent to eq. (15) but con-

tains the influence of alldisplacement components in an integral sense. .

(1)

The load increment AX in the denominator, which obviously has
another dimension, expresses the different scaling of the load axis
with respect to the displacement space, It may be seen for the one
degree-of-freedom systemin figure 6a that a low value'A)\(l) tends to
adisplacement controland a large value to a load control of the itera-
tion. In many degree-of-freedom systems the value AX(I) in eq. (19)

does not play an important role and may be suppressed.

) During the preparation of this study the author became aware
of the valuable paper by Crisfield [17] devoted to the same
subject,

Again the modilied Newton-Raphson technique simplifies the method

because e, (12a) is solvedonly once at the beginning of the step and -

(1)

may even be replaced by the first solution au'™ "

(1) (1)T (')II
a” s Al , i
A}\(” AU(I)T_ AU(” 4 ’(4}\(1))?
S 5 . " " —’(1) . .
Instead of iterating in the 'plane’ normal to the tangent t it might

be usefulto define a ""sphere' with a center at m and a radius ds [17)

(see appendix 11), Alternatively the "normal plane' may be updated
(@)

ineveryiteration cycle (figure 6 b), That is, in eq. (19) 4U is re-
placed by the total increment u(’). It was found that except for very
large load steps the differences resulting from these formulations are

minor,

'M ® "N

@

1

() (1) (
< AN . < 4N
a>\® 4 @ 4. o

a) p

Figure 6: Modification of constant - arc - length method
Numerical experience has shown that this iterative technique is very
efficient in the entire load range particularly when automatic load in-

crementation based on eq. (16) is used. The only additional storage

(1)

required is the vector 4U'"’, The extra computer time is negligible.
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In addition to the "constant-arc-length' the step size may be sealed
by relating the number of iterations, ni, used in the previous step toa,
desired value, ﬁi. It was found that a factor ﬁi/nj results in oscillations
in the number of iterations required from step to step so that «/ ni/ni
is recommended. [f material nonlinearities are involved smaller load
steps should be defined to avoid drifting. Whenever a negative element
inthe triangularized matrix is encountered unloading is initiated. The
conver"gence may be either monotonic or alternating and may in some
cases be slow. Then relaxation factors may accelerate the iteration
process. For instance, in the alternating case a cut-back of the next

load change to 50 % resulted in a considerable improvement.

4, Summary of the Displacement Control and Modified

Riks /Wempner Method

The algorithms for the displacement control method and the modified
Riks /Wempner method differ only in the equation used for the evalua-
tion of X! The algorithm is summarized as follows:
1l Select a basic load increment as the reference load P, thus
defining the length ds in the first step (eq. 16).
2, In any step:
a) Solve the equilibrium equations for P andlinearly scale
the load and displacements to produce the length ds. This
CURR )
b) Adjust the step size to the desired number of iterations ﬁi’
e.g. /A /n.

c¢) Check the triangularized matrix for unloading,

determines A X

3, a)* Update the stiffness matrix 'K

b) and, simultaneously, determine the out-of-balance forces'R .

¢)* Solve for P to determine 4u (1

d) and, simultaneously, solve for the out-of-halance forces ‘R

to determine 4u (J)H.

Note: * indicates a step which is omitted in tha madifiod Neaboan
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4. e constraint eog. (Ph) or (19) to determine the load increment
AX(J) and e¢. (13 a) = ¢q. (18 b) to determine displacement in-

Cerements au(-'). (If needed use acceleration factors, )

5., Update the load level and the displacement field.
6. Repeat steps 3 - 5 until the desired accuracy is achieved.

T Reformulate the stiffness matrix and start a new step by re-

turning to 2.

5. 'Numerical Examples

The examples have been analysed on CDC 6600/Cyber 174 computers
using‘ the nonlinear finite element code NISA [ 18], The geometrical
nonlinearity is based on the total Lagrangian formulation. For the
archexample, an 8 node isoparametric plane stress element is used
[4]. I'he plate and shell structures are idealized by degenerated iso-
parametric elements developed in {8), [19). The modified Riks/
Wempner method, in combination with the modified Newton-Raphson
technique, has been applied exclusively, T'he ratio of the change of
the incremental displacements to the total displacement increments,

using Euclidean norms, is used for the convergence criterion,

5.1 ishallow Arch

The shallow circular arch under uniform pressure (figure 7) has al-
ready been analysed in (8] applying the artificial spring method

(c11 =28 lb/in), see also [7). Ten 8 node isoparametric plane stress
elements were used for one half of the arch. The analysis with a basic
loadoi p= 0.3 and using the constant-arc-length constraint shows the
typical step size reduction in the neighborhood of the limit point,
Thirty steps with 1 to 2 iterations per stcb were needed., The analysis
has been repeated for a basic load step of B = 1.0, The step size has
beenadjusted by the factor »fﬁl/ﬁnl with a desired number of iterations

A
n, = 5, In addition, the load increment was reduced to 50 % whenever
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sufficient, The number of iterations required are indicated in the
figure, The diagram also shows the starting point in each step after
the first Newton-Raphson iterate. Compared to the artificial spring

technique considerable savings are achieved.
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Figure T: Shallow circular arch

5.2 Shallow Cylindrical Shell

The shallow cylindrical shell under one concentrated load (figure 8)
is hinged at the longitudinal edges and free at the curved boundaries,
The structure exhibits snap-through as well as snap-back phenomena

with horizontaland vertical tangents. The shell has been analysed by
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Sabir and Lock [ 20] who used a combination of the displacement and
load control techniques. In the present study one (uarter of the*shell
has beenidealized by four 16 node bicubic clugcnerated shell elements,
As the basic load step, I = 0.4 kN was chosen, Again the load steps
were adjusted with ﬁl—/;: and the acceleration scheme described for
the arch was applied. The entire load deflection diagram is obtained
inone solution with 15 steps and 3 to 9 iterations per step as indicated
in the figure. If the acceleration technique was not used the number

of iterations increased considerably especially at the minimum load.
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Figure 8: Shallow cylindrical shell

This part of the load-deflection curve is numerically difficult because
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the free edge. The structure has also been analysed using 36 bilinear

4 node degenerated elements in combination with an uniform 1 x 1 re-
duced integrationscheme. Approximately the same results have been

obtained but at about 20 % of the CP-time.

5.3 Elastic - Plastic Buckling of a Plate
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Figure 9: Buckling of a long plate

The simply supported plate shown in figure 9 has“an aspect ratio of
@ =1/4 andis loaded only on its middle part, The plate has an initial

geometrical imperfection, defined by a double sin-function, with a
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maximum amplitude of 0.294 mm, The yield limit oy of the elastic-
ideally plastic steel is 240 N/mm®, Eighteen bicubic degenerated
elements unevenly spaced were used for one quarter of the plate, The
thickness was divided into seven layers. The total load P is non-
dimensionalized with the linear elastic buckling load Pcr of the plate

with uniform load on the entire boundary:

2.0 p3
E‘._,:k-b-ﬂ——E—hz———y ; k=(1+ o?)? (21)
fi=ptta
The basic load step chosen was p = 0.25, In figure 9 the normalized
load is plotted versus the center lateral displacement. The plate fails

under combined geometrical and material failure. The initial yield

" point at a deflection of about 6 mm is immediately followed by the

limit ploint at about 8.3 mm. Thirty steps with 1 or 2 iterations per
step were used, The elasto-plastic analysis was supplemented by a
purely elastic solution also shown in the figure. Here the typical in-

creasing postbuckling response of plates is recognized.

5.4 Cylindrical Shell under Wind load

The buckling analysis of the closed cylindrical shell under wind load

(figure 10) studied in[ 21] has been extended to the postbuckling range.
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Figure 10: Geometry and load function of a cylindrical shell
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The extremely thin structure with a radius to thickness ratio of over
2000 is simply supported at both ends. The variation of the wind load
definedinfigure 10is taken as constant over the length of the cylinder.
The maximalload p at the stagnation point is normalized to the linear

buckling load of the shell under uniform pressure

’ 2
0918 “E(R) 5. P o
& 'u% R™-0.657 ~ Pq

One quarter of the shellis idealized by 2 x 18 bicubic 16 node elements,
Two elements of unequal length are used in the axial direction, while
the 18 elements in the circumferential direction are concentrated near
the stagnation zone. The first load increment defined the basic step
size as p = 0.25. Both the perfect and an imperfect shell have been

analysed., Figure 11 shows the displacement pattern of one quarter of

i

Figure 11: Displacement pattern

the shell near the limit point. A failure mode with one half a wave in
the axial direction and a few buckling waves in the circumferential
direction, located in the compression zone, is indicated. The post-
buckling minimum of the load-deflection diagram (figure 12) is about
60 % of the limit point. The imperfection assumed for the second
analysis corresponds to the failure mode of the perfect structure. The

maximum imperfectionamplitude is 2. 5 times the wall thickness. The

load deflection path (figure 12) indicates a reduction of the limit load
to68 % of that for the perfect shell, The postbuckling minima nearly
coincide. It should be noted that the example is numerically very
sensitive because of the extreme slenderness ratio and the localnature
of the failure mechanism. In both cases over G0 steps were necessary.
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Figure 12: Load - deflection - diagram of a wind loaded shell

6. Conclusions

This study oniterative techniques for passing limit points allows the

following conclusions:

. Suppressionof equilibrium iterations near the limit point may

be a useful procedure but requires very small load steps,

% The method of artificial springs is based on numerical experi-

ANen ane 4 3



The displacement control method requires a proper selection of

the controlling parameter. It fails in snap-back situations.

The constant - arc - length method of Riks /Wempner seems to
be the most versatile technique, being advantageous inthe entire
load range.

Due to modifications of the original method the constraint equa-
tion does not need to be solved simultaneously with the equilib-

rium equations.

Automatic adjustment of the load step and acceleration schemes

xfnay further improve the performance. Only minor changes in

coding are necessary. Applying the modified Newton-Raphson

technique requires the storage of one additional vector. The

extra computer time is negligible.
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Appendix-1: ‘T'he Artificial Spring Method

i

Accordingto figure 3 the vector of the total external loads G of the
| i

modified system is decomposed into the real load vector P and the

: j
part resisted by the springs i

6 = P+ ¢ (A1)

To retain the desired ratio of specified loads it is required that all

components of the real load can be obtained by one common "load-re-

duction-factor' 'y

'P ='r.'6 (A 2)
That is, all components of configur‘ationb i have the same ratio
if . .
-J-in =1 -ig el 3k h (A 3)

It follows that springs have to be attached to all loaded-degrees-of-
freedom and all spring stiffnesses are coupled. The spring stiffness

matrix € is g:lefined by

if =¢.iu (A 4)
Energy principles require € tobea symmetr;cal matrix (C}(L = c“().
Equation (A 3) allows the elements Cht of the matrix to be determined

if one reference stiffness ¢ is prescribed

'G, - G, e
f BBl g (2 7 o (as)
kl ( ’G] )2 1 *

or if the reference load vector P is introduced

Cn_
Pf

fopt (A 6)

The iteration equation, eq. (3a), is modified to

(K + c)-auW=iPp . 14 i~



The ri_ .t hand side expresses the out-of-balance .urces. After itera-

tion (j > m + 1) the real loads are determined by eq. (A 2):
mflP :-Endrrr.MG with mHG :md)\ P (A 8)

The "'load-reduction factor' is obtained by eq. (A 3):

' €
ma+1 - ™ 1" T rnoh A 9)
F =1 1y . P2 P ) (
ms A & P1
It was found that an effective value of ¢ is one which leads to
+
0< ™1y < 0.6 at the beginning of the analysis [ 7], [8].

Appendix II: Iteration on a ''Sphere"

The "sphere' with the center at m and the radius ds of the initial

tangent vector ?(1) (figure 13) is defined by

TW. TW - ds?= 0 (A 10)

A

Figure 13: Iteration on a "sphere"

If the radius vector is feplaced by
T - ) o gt (A 11)
and eq. (16) is taken into consideration eq. (10)results in
2090400 272 o (A 12)
or in matrix notation

U au v 2.0 4 DD 2A0) = 0 (A13)

au () is expressed by eq. (13a), Theneq, (A 13) leads to a quadratic

constraint equation for the load parameter A\ &) whichis the equivalent
to eq. (19)

a (a2 s 2b X + ¢ =0 (A 14)
with the coefficients

a =1 + [ auti gy T

b = AV . (Au(l'”)T(au“’H»r u'ly (A 15)

T "
¢ =(adPI)(au® T o 2.40)
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