•• Theorem 6.10: V is an inner product space; $\dim(V) < \infty$;

 $\beta = \{v_1, \dots, v_n\}$ is an orthonormal basis for V; T is a linear operator on V. Then $[T^*]_{\beta} = [T]^*_{\beta}$. $A = [T]_{\beta}$, $A = [T]_{\beta$

• Corollary 6.10: A is an $n \times n$ matrix. Then $L_{A^*} = (L_A)^*$

Theorem 6.11 and Corollary 6.11: V is an inner product space; T and U are linear operators on V; A and B are $n \times n$ matrices; c is a scalar. Then the following hold.

least square approximation:

measurements: $(t_1, y_1), (t_2, y_2), \dots, (t_m, y_m)$ approximation: Find *a* and *b* such that y = at + b, or

find a, b and c such that $y = at^2 + bt + c$.

orthogonality principle:

The minimizing x_0 satisfies $\forall x, \langle Ax, y - Ax_0 \rangle = 0$ $W = R(L_A)$ $= \{Ax : x \in F^n\}$ $= \{\sum a_i x_i : x \in F^n\},\$ a_i are the column vectors of A.

So W is the column space of A. The principle is quite general.

•• Theorem 6.12: $A \in M_{m \times n}(F)$; $y \in F^m$. Then $\exists x_0 \in F^n$ such that

1.
$$A^*Ax_0 = A^*y$$
. $(\langle Ax, y \rangle_m = \langle x, A^*y \rangle_n) \Rightarrow \langle x, A^*y \rangle_n \Rightarrow \langle x, A^$

• [End of Review]

- $= \text{ minimal solution of } Ax = b: = 436 (\text{ full rank of order of } Page 4) \\ \text{solution with the smallest norm} \\ \text{Nullity $= 0$}$
 - least energy, least power, etc.
- Theorem 6.13: $A \in M_{m \times n}(F)$; $b \in F^m$; and s is a minimal solu- $\int min \|z\|$ tion of Ax = b. $A (= AA^*)$ Then $\blacksquare s \in R(L_{A^*}). \iff \texttt{St} A^* u, u \in \mathsf{I}$ •• s is the only solution in $R(L_{A^*})$. = s is unique.proof: Let $W = R(L_{A^*})$. (Solution Space) $v \in N(L_A) \Leftrightarrow Av = 0 \Leftrightarrow \forall u \in F^m, \langle u, Av \rangle = \langle A^*u, v \rangle = 0$

This shows that $N(L_A) = W^{\perp}$. (In general, $N(T) = R(T^*)^{\perp}$ and $N(T^*) = R(T)^{\perp}$ are true.) For any solution x of Ax = b, we have x = s + y, such that $s \in W$ is unique and closest to x, and $y \in W^{\perp}$ is unique and closest to x. [Thm 6.6] This y is a homogeneous solution: Ay = 0. $\Rightarrow As = As + 0 = As + Ay = A(s + y) = Ax = b$ $\Rightarrow s \text{ is a solution in } W. \quad \angle s + y, s + y \neq = \angle s, s \neq + \angle y, y \neq$ $||s||^2 < ||s||^2 + ||y||^2 = ||s+y||^2 = ||x||^2$ [Pythagorean thm] \Rightarrow s is a minimal solution in W.

Since x is an arbitrary solution, if it is minimal, then $||x||^2 = ||s||^2 + ||y||^2 = ||s||^2.$ $\Rightarrow y = 0 \Rightarrow x = s \in W$

So a minimal solution must be in
$$W$$
: "1" $() = A^* d$
"uniqueness within W ": Assume $s' \in W$ and $As' = b$
 $\Rightarrow A(s - s') = As - As' = b - b = 0$
 $\Rightarrow s - s' \in N(L_A) = W^{\perp}$
 $\Rightarrow s = s'[s - s' \in W \cap W^{\perp} = \{0\}]$: "2"
"3" follows from "1" and "2".

- So all the solutions to Ax = b are of the form x = s + y, where s is the unique minimal solution and y varies in W[⊥].
 Compare this argument with Theorem 3.9: K = {s} + K_H.
- •• example:

$$\begin{aligned} x_1 + 2x_2 + x_3 &= 4 \\ x_1 - x_2 + 2x_3 &= -11, \ A &= \begin{pmatrix} 1 & 2 & 1 \\ 1 & -1 & 2 \\ 1 & 5 & 0 \end{pmatrix}, b &= \begin{pmatrix} 4 \\ -11 \\ 19 \end{pmatrix} \end{aligned}$$

We solve $AA^*u = b$. $\begin{pmatrix} 6 & 1 & 11 & | & 4 \\ 1 & 6 & -4 & | & -11 \\ 11 & -4 & 26 & | & 19 \end{pmatrix} \stackrel{1,3,3}{\to} \begin{pmatrix} 1 & 6 & -4 & | & -11 \\ 0 & -35 & 35 & | & 70 \\ 0 & -70 & 70 & | & 140 \end{pmatrix} \stackrel{2,3,3}{\to} \begin{pmatrix} 1 & 0 & 2 & | & 1 \\ 0 & 1 & -1 & | & -2 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$ $\Rightarrow u = (1, -2, 0)^t, u' = (-1, -1, 1), \text{ two of many solutions}$ $A^*u = A^*u' = (-1, 4, -3)^t \text{ is the minimal solution.}$ Note that $||A^*u|| \leq ||x||$ and also for any other solution x.

Normal and self-adjoint operator

- •• We now investigate diagonalizability of a linear operator on an inner product space.
- •• Lemma 6.14 V is an inner product space; $\dim(V) < \infty; T : V \rightarrow V$ is a linear operator. Then T has an eigenvector $\Rightarrow T^*$ has an eigenvector.

proof: Assume T has an eigenvector, β is an orthonormal basis for V, and $A = [T]_{\beta}$ $\Rightarrow \exists \lambda$ such that det $(A - \lambda I) = 0$ $\Rightarrow det(A - \lambda I)^* = det(A^* - \overline{(\lambda)}I) = 0$ $\Rightarrow A^*$ has an eigenvector with the corresponding eigenvalue $\overline{\lambda}$. $\Rightarrow T^*$ has an eigenvector with the corresponding eigenvalue $\overline{\lambda}$. $[A^* = [T^*]_{\beta}]$

Theorem 6.14 (Schur): $din(V) < \infty; T : V \to V$ is a linear operator; and $f_T(t)$ splits. Then \exists an orthonormal basis β such that $[T]_{\beta}$ is upper triangular. $(f_T, f_T) \ge (f_T, f_T) \ge f_T \le f_T \le$

proof : induction in $n = \dim(V)$

(i) If $\dim(V) = 1$, all 1×1 matrices are triangular.

(ii) Assume that it holds for $\dim(V) = n - 1$.

(iii) Let dim(V) = n, and assume $f_T(t)$ splits.

 \Rightarrow T has an eigenvalue and an eigenvector. \Rightarrow T* has a normalized eigenvector z. [Lemma 6.14]

Let
$$T^*(z) = \lambda z$$
 and $W = span(\{z\})$. (3) for all $z \in \mathbb{Z}$

• Let $y \in W^{\perp}$ $\Rightarrow \langle T(y), z \rangle = \langle y, T^{*}(z) \rangle = \langle y, \lambda z \rangle = (\overline{\lambda}) \langle y, z \rangle = 0$ $\Rightarrow T(y) \in W^{\perp}$ $\Rightarrow W^{\perp}$ is *T*-invariant. $\Rightarrow f_{T_{W^{\perp}}}(t)$ divides $f_{T}(t)$. [Thm 5.21] $\Rightarrow f_{T_{W^{\perp}}}$ splits. [$f_{T}(t)$ splits]

 $\Rightarrow \exists \gamma = \{v_1, \cdots, v_{n-1}\} \in W^{\perp}$, orthonormal, such that $[T]_{\beta} = is$ $(n-1) \times (n-1)$ upper triangular. [(ii)]

 $\Rightarrow \beta = \gamma \cup \{z\} \text{ is an orthonormal basis for } V.$

$$\Rightarrow [T]_{\beta} = ([T(v_1)]_{\beta}, \cdots, [T(v_{n-1}]_{\beta}, [T(z)]_{\beta})]$$
$$= \begin{bmatrix} [T_{W^{\perp}}]_{\gamma} & [T(z)]_{\beta} \\ O & \downarrow \end{bmatrix} \text{ is } n \times n \text{ upper triangular.}$$

- Schur's theorem does not say that $[T]_{\beta}$ is invertible.
- Neither does it say that $[T]_{\beta}$ is diagonalizable.
- β in the theorem is not unique; nor $[T]_{\beta}$.
- T is diagonalizable $Rightorrow[T]_{\beta}$ is diagonal for some β . (i) In addition β is orthonormal.

$$\Rightarrow [T^*]_{\beta} = [T]^*_{\beta}$$
 is diagonal.

$$\Rightarrow [TT^*]_{\beta} = [T]_{\beta}[T]_{\beta}^* = [T]_{\beta}^*[T]_{\beta} = [T^*T]_{\beta} \text{ [diagonal]}$$

 $\Rightarrow TT^* = T^*T \text{ [rep is unique]} \quad \text{from } T \text{ is dragonalizable}$ Does this commutativity imply diagonalizability?

- normal operator T on an inner product space: $TT^* = T^*T$
- normal matrix $A : AA^* = A^*A$
- $T(\varDelta)$ is normal $\Leftrightarrow [T]_{\beta}$ is normal.

 $\operatorname{Frank} f \beta \text{ is orthonormal, } T \text{ is normal} \Leftrightarrow [T]_{\beta} \text{ is normal.}$

• example:
$$A = \begin{bmatrix} 1 & i \\ 1 & 2+i \end{bmatrix} \Rightarrow A^* \begin{bmatrix} 1 & 1 \\ -i & 2-i \end{bmatrix}$$

 $\Rightarrow AA^* = A^*A = \begin{bmatrix} 2 & 2+2i \\ 2-2i & 6 \end{bmatrix}$

• example: $T : \mathbb{R}^2 \to \mathbb{R}^2$ is rotation by $\theta; \beta$ is the standard basis.

$$\Rightarrow [T]_{\beta} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$
$$\Rightarrow [T^*]_{\beta} [T]_{\beta}^* = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$$

$$\Rightarrow [T]_{\beta}[T]_{\beta}^{*} = [T]_{\beta}^{*}[T]_{\beta} = I$$

$$(Normal operator)$$

$$\Rightarrow TT^{*} = T^{*}T = I : orthogonal operator [to be defined]$$

But since $F = \mathbb{R}$, no eigenvector, not diagonalizable.

Theorem 6.15 : V is an inner product space; $T : V \to V$ is normal. Then $1. \forall x \in V, ||T(x)|| = ||T^*(x)||.$

2. $\forall c \in F, T - cI$ is normal.

3. $T(x) = \lambda x \Leftrightarrow T^*(x) = \overline{\lambda}x$ That is, T and T^* have the same eigenvector x with the respective eigenvalues λ and $\overline{\lambda}$.

4.
$$T(x_1) = \lambda_1 x_1; T(x_2) = \lambda_2 x_2; \lambda_1 \neq \lambda_2 \Rightarrow \langle x_1, x_2 \rangle = 0.$$

proof:
"1":
$$||T(x)||^2 = \langle T(x), T(x) \rangle = \langle T^*T(x), x \rangle = \langle TT^*(x), x \rangle$$

 $= \langle T^*(x), T^*(x) \rangle = ||T^*(x)||^2$

$$\begin{array}{l} "2": (T-cI)(T-cI)^{*} = (T-cI)(T^{*}-cI) \\ = TT^{*} - \overline{c}T - cT^{*} + |c|^{2}I \\ (T-cI)^{*}(T-cI) = (T^{*} - \overline{c}I)(T-cI) \\ = T^{*}T - cT^{*} - \overline{c}T + |c|^{2}I \end{array}$$

"3":
$$T(x) = \lambda x$$

 $\Leftrightarrow 0 = ||(T - \lambda I)(x)||$
 $= ||T - \lambda I)^*(x)|| [1,2]$
 $= ||(T^* - \overline{\lambda} I)(x)||$
 $= ||T^*(x) - \overline{\lambda} x||$
 $\Leftrightarrow ||T^*(x) = \overline{\lambda} x||$
"4": $\lambda_1 \langle x_1, x_2 \rangle = \langle T(x_1), x_2 \rangle = \langle x_1, T^*(x_2) \rangle$
 $= \langle x_1, \overline{\lambda}_2 x_2 \rangle = \lambda_2 \langle x_1, x_2 \rangle [3]$

Theorem 6.16 : V is an inner product space over the "complex" field; dim(V) < ∞; T : V → V is linear. Then T is normal if and only if there exists an orthonormal basis for V consisting of eigenvectors of T.

proof: "Only if": Assume T is normal. $f_T(t)$ splits. [All polynomials split over the complex field.] $\Rightarrow \exists$ orthonormal $\beta = \{v_1, \dots, v_n\}$ such that $A = [T]_{\beta}$ is upper triangular. [Schur's Thm] Show v_1, \dots, v_n are eigenvectors by induction in $i = 1, \dots, n$. $\Rightarrow A = [T]_{\beta}$ is dragonal, (i) 1st column of $A : [T(v_1)]_{\beta} = (A_1 \beta, 0, \dots, 0)^t$ [upper Δ] $\Rightarrow T(v_1) = A_1 v_1$ $\Rightarrow v_1$ is an eigenvector of T. (ii) Assume v_1, \dots, v_{k-1} are eigenvectors of T.

(iii)
$$T(v_k) = A_{1k}v_1 + \dots + A_k v_k$$
 [upper triangular]
For $j = 1, \dots, k - 1$,
 $A_{jk} = \langle T(v_k), v_j \rangle = \langle v_k, \overline{\lambda}_j v_j \rangle$ [T is normal; (ii); Thm 6.15]
 $= \lambda_j \langle v_k, v_j \rangle = 0$ [orthonormal basis]
 $\Rightarrow T(v_k) = A_k v_k$
 $\Rightarrow v_k$ is an eigenvector.

"if": Assume that β is an orthonormal basis of eigenvectors. $\Rightarrow [T^*]_{\beta} = [T]^*_{\beta}$ is diagonal. $[TT^*]_{\beta} = [T]_{\beta}[T]^*_{\beta} = [T]^*_{\beta}[T]_{\beta} = [T^*T]_{\beta}$ [diagonal] $\Rightarrow TT^* = T^*T$. [rep is unique]

• For the real field, normality is not enough for diagonalizability.