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= Theorem 6.10: V' is an inner product space; dim(V') < oo;

B = {vy, -+ ,vp} is an orthonormal basis for V;T is a linear

operator on V' . Then [T*]5 = [T]; A= [TJF ’ /-Lj:. 47(77),”4/}' /
= Corollary 6.10: A is an n X n matrix. Then L g+ = (LA)*é_ [--—-ij‘;: ﬁ-l—

= Theorem 6.11 and Corollary 6.11: V' 1s an inner product space; T’
and U are linear operators on V'; A and B are n X n matrices; c is
a scalar. Then the following hold.

(@ | (T+U)=T+U" (A+B)"=A"+ B*

(b) (cT) =¢I™ (cA)* =cA*
©| (TU) =UT* (AB)* = B*A*
(d) (T*) =T (A*)*=A

(e) =1 I>=1,
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= least square approximation:
measurements: (t1,y1), (t2, y2), -, (tm, Ym)
approximation: Find a and b such that y = at + b, or
find a, b and ¢ such that y = at® + bt + c.

Yy Yy
. y=at+b . y = at’ bt +c
:“J" \\'o 03 ) L4 | ““f e ole i L ) * a / L 7 C - .
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= minimize F = ||y — Az||?, where y = (y1,--- ,ym)’, and

t; 1 t7 ¢ 1 a n
A= ,x—(a>,0rA— o 1 l,x=10 £R

: .
tm 1 t2 tm 1



= orthogonality principle:
The minimizing x( satisfies
Vo, (Ax,y — Azg) =0
W = R(Ly)
={Ax :x € F"}
={) a;jz; :x € F"},
a; are the column vectors of A.
So W is the column space of A.
The principle 1s quite general.

= Theorem 6.12: A € My, xn(F);y € F'. Then dxy € F" such that

. A*Awg =A%y, (Az, y)m = (0, Ay)p) S <X, AT¢Y-Aro)r=o
2. Vo € Fn, ||A£l?0—yH < ”A:E,y” = 0O
3. rank(A) = n = zg = (A*A)~1A*y. (rank(A*A) = rank(A))

= [End of Review]
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= least energy, least power, etc.

= Theorem 6.13: A € My, xn(F);b € F'™; and s is a minimal solu-

tion of Az = b. 4l

{ ﬂ??//? | l 5 ‘/ A—d— )4
Then Ot Ax=
[
llSER(LA*) é S— A’+M/ ueV l .

= 5 is the only soh;tgm R(L 4+).
({4t D
That is, AA*u =b = s = A*u. Nullit

. Mxhnxopm = = &
== S iS UNique. mxmM D T

proof: Let W = R(L 4+). (So Lutfon Spec2)
veEN(Ly < Av=0<Yu e F™ (u, Av) = <Aﬂ*\u,v,g =0
w LN (54)

U: not uﬂ"ydé’
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This shows that N(L 4) = W—.

(In general, N(T) = R(T*)* and N(T*) = R(T)" are true.)

For any solution x of Ax = b, we have & = s + ¥, such that

s € W is unique and closest to z, and

y e W is unique and closest to . [Thm 6.6]

This y is a homogeneous solution: Ay = 0. s 44 .
= As=As+0=As+ Ay = A(s +y) = Aw=b ¢ . <",
= gsisasolutionin W. ~54+y ,s+q9> =Zs,s7 +=- 17

[sI* < lIsll” + [lyll* = IIs + y[|* = ||=[|” [Pythagorean thm]

= s 1s'a minimal solution in W.

W;ql'maﬂ Sﬂ-ﬂ ;—P L:S
Since x 1s an arbitrary solution, if it is minimal, then

|zl = 1Is]1* + lyll* = lls|1*
=y=0=zx=s5c WV
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So a minimal solution must be in @ “1” @Béﬁ‘d ~
“uniqueness within W”: Assumes’ € W and As’ = b y

/ / AA M:.A
= Als —s')=As—As"=b—-b=20 o =
:>S—S/EN(LA):WJ‘
= 5 = §/[s=s cd NWL={0}] : “2”
“3” follows from “1”” and “2”.

= S0 all the solutions to Ax = b are of the form x = s + v,
where s 1s the unique minimal solution and y varies in W,

= Compare this argument with Theorem 3.9: K = {s}+ K.

= example:
r1+ 2x9 + x5 =4 1 2 1 4
r1—x9+2r3=—-11, A=|1-12],b=1—-11
xr1 + drg = 19 1 50 19
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12 1] 4 12 1 4\ ., 3|6\ 5+t
1 —12-11| =% [0-3 1 -15] 3 ~1l 5 |2 -fx=¢
1 50 19 0 3 —1 15 000 0/) *=%
= There are multiple solutions, eg, z = (—6,5,0) or (—11,6, 3)7.
121\ /111 6 1 mrinimh Sk
AA*= |1 -12|(2-15|=[1 ¢
1 50/ \1 20 11 —4 26
We solve AA*u = b.
6 1 11 4 ., (1 6 —4-1 10 21
1 6 —4 —11] "0 —35 35 70 01 —1—2
11 —4 26| 19 0 —70 70| 140 00 00

= u = (1,-2,0)",«/ = (—1,—1,1), two of many solutions

Afw = A*u' = (=1,4;=3)! is the minimal solution.

Note that ||A*u|| < ||«|| and also for any other solution x.
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Normal and self-adjoint operator

= We now investigate diagonalizability of a linear operator on an
inner product space.

= Lemma 6.1€LV is an inner product space; dim(V') < oco;T : V —
V' 1s a linear operator. Then
T has an eigenvector = 1" has an eigenvector.

proof: Assume 7' has an eigenvector, 5 is an orthonormal basis
for V,and A = [Tz

=- JAsuch that det(A — A1) = 0

= det(A — M\)* =det (A* — (\)I) =0

= A* has an eigenvector with the corresponding eigenvalue \.

= T* has an eigenvector with the corresponding eigenvalue \.

A" = T7]4]



Page 9

= Theorem 6.14 (Schur): din(V') < oo0; T : V — V is a linear opera-
tor; and fp(t) splits. Then 3 an orthonormal basis 3 such that [T']
is upper triangular'—s (&= A2 £ 5 5/ 15

proof : induction in n = dim(V)

(i) If dim(V') = 1, all 1 x 1 matrices are triangular.
(i1) Assume that it holds for dim(V) = n — 1.

(iii) Let dim(V') = n, and assume fp(¢) splits.

= 'I" has an eigenvalue and an eigenvector.
= T* has a normalized eigenvector z. [Lemma 6.14]
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Let T*(z) = Azand W = span({z}). (352974
Now show that Wt is T-invatiant, »-/32(%2 DL

-LetyEWJ‘ .

= (T(y),2) = (y, T%(2)) = (y, A\z) = (A){y, 2) =0
= T(y) € Wt

— W+ is T-invariant.

= fTW | (t) divides fp(t). [Thm 5.21]

= fr,., splits. [f7(t) splits]

= 3y ={vy, -+ ,v,_1} € W, orthonormal, such that T)p=1is
(n — 1) x (n — 1) upper triangular. [(ii)]

= [ =~ U {z} is an orthonormal basis for V.
iy d A/ g 2~ O)"’MD}O”J



Page 11

= [Tlg = ([T(v1) |, - - -, [T(vn—1]p, [T(2)]5)

_ [ Ty ily 1T(2)]g
@ }

] 1S . X n upper triangular.
= Schur’s theorem does not say that T'] 5 is invertible.
» Neither does it say that [T 3 is diagonalizable.
= Bin the theorem is not unique; nor |7’} .
« T is diagonalizable Rightgrrow|T'|g is diagonal for some .
@In addition 3 @ orthonormal,.
bon be
= |T*|p = [T} is diagonal.

= [TT*|3 = [T|3[T)% = [T]3[T] = [T*T) 5 [diagonal]
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= TT* =T*T [repis unique] &z 7 rs 4/ 479;742'; 2able_
J?

Does this commutativity imply di@onalizability?
= normal operator 7" on an inner product space: 11" = T*T
« normal matrix 4 : AA* = A*A
« T'{Z) is normal < [T 3 is normal.

Epenlf (3 is orthonormal, 7' is normal < [T'] 3 is normal.

R I R « 1 1
.example.A—LQ_H:]:>A.{_Z.2_i]

2 24
* * L
= AA" = AA = 59 ¢
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« example: T : R — R is rotation by ; /3 is the standard basis.

cost —sinb

= [T)g = ]

_sme cost
= [T¥FT]" = cosf sinb
ﬂTﬂ | —sinb cosO
= [T15[T)5 = [TT5[T)5 = I
(‘[/anmeé &pmai'br)

= TT™* =T*T = I : orthogonal operator [to be defined]

But since F' = R, no eigenvector, not diagonalizable.

7T /z l')ﬁ)fmo(/ ﬁ? J'Q70hd/‘%
ol 5 48,
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= Theorem 6.15 : V' 1s an inner product space; 17" : V' — V' 1s normal.

Then
1L.Vz € V,||[T(x)|| = ||T(x)|].

2.Ve € F.T' — cl is normal.

3.7(x) = \v & T*(2) = \x
That is, 7" and T™ have the same eigenvector = with the respective
eigenvalues A and A.

4. T(z1) = Mx1; T(x2) = Xxo; A # Ao = (w1, 29) = 0.
proof:

"1 || T(@)]|* = (T(x), T(2)) = (T*T(x), x) = (TT*(x), )
= (T"(x), T*(x)) = ||T*(2)]|"
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(T —c)(T —c)* = (T —c)(T* ="cl)
= TT* — ¢l — cT* + |c]*I

(T —c)"(T —cI) = (T* —el)(T — )

= T*T — cT™* — T + |c]*1

i

= AT
(T M)( )|

(f z)|| [1.2]

)( )]
T*() Az|

QT = el

47 M {1, v9) = (T(1), w2) = (21, T (12))
= (21, Aawo) = Molw1, 12) B] = L, 0> =

I 1; "
T

0
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= Theorem 6.16 : V' is an inner product space over the "complex”
field; dim(V') < oo;T : V — V is linear. Then T is normal if
and only if there exists an orthonormal basis for V' consisting of
eigenvectors of 1.

proof: ”Only 1f””: Assume I’ 1s normal.
fr(t) splits. [All polynomials split over the complex field.]

= 3 orthonormal 8 = {vq, - -- , vy} such that

A = [Tg is upper triangular. [Schur’s Thm]

Show v1, - - , vy are eigenvectors by inductioninz =1,--- , n.
A=[T]e 7s dlegonad Ay =< Tled, v >

(i) 1st column of A : [T'(vq)]g = (A1, 0, - - ,0)" [upper A] =S

= T(v1) = Apfvy o - ijamg

= v1 1S an eigenvector of 7.
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(11) Assume vy, - - - , vj._1 are eigenvectors of 7.

(iii) T'(vg.) = Alkvl + - - - + Apdfvy. [upper triangular]
Forj=1,--- kK —1,

A= % vi) = (vg, Aju;) [T is normal; (ii); Thm 6.15]
= \j{vg,vj) = 0 [orthonormal basis]

iﬂ”k) = Ak,"{vk
= v}, 1S an eigenvector.

”1f’: Assume that (5 1s an orthonormal basis of eigenvectors.
= [T7]g = [T]; is diagonal.

TT*|5 = [T]5(TV = [TV3[T]5 = [T°T)5 [diagonal]

= TT™* =T*T. [rep is unique]

» For the real field, normality 1s not enough for diagonalizability.



