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Composition of linear transformations

⌅⌅ The composition UT of T : V ! W and U : W ! Z is a linear

transformation such that 8x 2 V , (UT )(x) = U(T (x))

⌅⌅ Theorem 2.9 and 2.10: S, T , T1, T2, U , U1, and U2 are linear

transformations with appropriate domains and co-domains; I is an

identity transformation; a 2 F . Then we have as belows:

1. UT is a linear transform.

2. distributivity(1): U(T1 + T2) = UT1 + UT2

3. distributivity(2): (U1 + U2)T = U1T + U2T

4. associativity: S(UT ) = (SU)T

5. identity: IT = TI = T (Note that the two I’s are different.)

6. a(UT ) = (aU)T = U(aT )

I4)=X
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⌅⌅ matrix representation of composition

⌅⌅ Theorem 2.11: [UT ]�
↵
= C = AB = [U ]�

�
[T ]�

↵



Page 3

⌅⌅ example:

U : P3(R) ! P2(R), U(f ) = f
0

T : P2(R) ! P3(R), T (f ) =
R
x

0 f (t) dt

[UT ]
↵
= [U ]↵

�
[T ]�

↵
= [IP2]↵

[TU ]
�
= [T ]�

↵
[U ]↵

�
= 6= [IP3]�

⌅⌅ identity matrix: I: Iij = �ij =

(
1, if i = j

0, else (i 6= j)
,

where �ij is the Kronecker Delta.
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left-multiplication transformation LA for a matrix A:

LA : F
n ! F

m
such that LA(x) = Ax

Theorem 2.15 and 2.16: A is an m ⇥ n matrix; a 2 F . Then the

followings hold:

1. LA is a linear transformation.

2. [LA]
�

�
= A

3. LA = LB , A = B: uniqueness of LA given A

4. LA+B = LA + LB; LaA = aLA

5. T : F
n ! F

m
is linear

rm※ p

mxn.mx/LAtBbd=(AtB)x
⇒ B = ?
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) 9 a unique m⇥ n matrix C such that

T = LC and C = [T ]�
�

6. G is an n⇥ p matrix ) LAG = LALG

7. G is an n⇥ p matrix; H is an p⇥ q matrix

) LA(GH) = LALGH = LALGLH = LAGLH = L(AG)H
) A(GH) = (AG)H
: associativity of composition ) associativity of matrix multipli-

cation

8. m = n ) LIn
= IFn

proof: Once we have [LA]
�

�
= A, all these can be proven through

the properties of linear transformations and their matrix representa-

tions.

( i
'

工殆 a)-x = In K = L대쇼) )
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Invertibility and isomorphism

⌅⌅ inverse U of a linear transformation T : V ! W :

U : W ! V such that TU = IW and UT = IV

⌅ notation: U = T
�1

, T = U
�1

⌅⌅ Theorem 2.17a including Theorem 2.17: T : V ! W is a linear

transformation. Then the followings hold.

1. T is invertible , T is one-to-one and onto

2. T
�1

is unique.

3. T
�1

is linear. * T
�1(cy1 + y2) = T

�1(cT (x1) + T (x2)) =
T
�1

T (cx1 + x2) = cx1 + x2 = cT
�1(y1) + T

�1(y2).

4. (T�1)�1 = T. * (T�1)�1(x1) = U
�1(x1) = y1 = T (x1),

5. (UT )�1 = T
�1

U
�1

.* ((UT )�1)(x1) = x1 = T
�1(y1) =

T
�1(U�1(x1)) = T

�1
U
�1(x1)

謎蕉
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⌅⌅ inverse B of a matrix A: AB = I and BA = I

⌅ notation: B = A
�1

⌅⌅ Theorem 2.17b: A and B are n⇥ n invertible matrices. Then the

followings hold.

1. A
�1

is unique.

2. (A�1)�1 = A

3. (AB)�1 = B
�1

A
�1

⌅⌅ Theorem 2.17c: dim(V ) = dim(W ) < 1;

T : V ! W and U : W ! V are linear transformations.

Then UT = IV , TU = IW .

17 7

TU = In UT二死
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⌅⌅ Theorem 2.17d: Let A,B 2 Mn⇥n, Then AB = In , BA = In.

⌅⌅ Lemma 2.18: T : V ! W is a linear transformation;

dim(V ), dim(W ) < 1. Then

T is invertible ) dim(V ) = dim(W ).
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⌅⌅ Theorem 2.18:

proof: “)”: Assume T is invertible.

) dim(V ) = dim(W ) = n [Lemma 2.18] ) [T ]�
�

is n⇥ n

In = [IV ]� = [T�1
T ]

�
= [T�1]

�

�
[T ]�

�

In = [IW ]
�
= [TT�1]

�
= [T ]�

�
[T�1]

�

�

) [T ]�
�

is invertible and [T�1]
�

�
= ([T ]�

�
)�1

“)”: Assume A = [T ]�
�

is invertible and B = A
�1

.

Let U be the linear transformation such that U(wj) =
P

n

i=1Bijvi.

a.a횶○穽崧 IN
Amatrix

←ti

○

⇐ Th대 2 . "

⑤
.

"乃嚼汀
E B

= FTai )
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) [U ]�
�
= B

) U is unique. [Theorem 2.6]

[UT ]
�
= [U ]�

�
[T ]�

�
= BA = In = [IV ]�

[TU ]
�
= [T ]�

�
[U ]�

�
= AB = In = [IW ]

�

) UT = IV , TU = IW [matrix representation is unique]

) T is invertible and U = T
�1

⌅⌅ Corollary 2.18.2: Let A 2 Mn⇥n, then the following is true:

A is invertible , LA is invertible; and (LA)
�1 = L

A�1.

iii)

☆ LA땨 Ax

迎病nig =坐悧
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⌅⌅ isomorphism: invertible linear transformation

⌅ V and W are isomorphic:

9 an invertible linear transformation T : V ! W .

⌅⌅ example:

R4
and P3(R): (a1, a2, a3, a4) $ a1 + a2x + a3x

2 + a4x
3

P3(R) and M2⇥2(R): a0 + a1x + a2x
2 + a3x

3 $
✓
a0 a1
a2 a3

◆

⌅⌅ Theorem 2.19: dim(V ), dim(W ) < 1. Then

V and W are isomorphic , dim(V ) = dim(W )

⌅⌅ Corollary 2.19: V and F
n

are isomorphic , dim(V ) = n

iii_LsRep.Th.eorem@ri.ple
로 표현가능

.
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⌅⌅ Theorem 2.20:

proof: �: L(V,W ) ! Mm⇥n is linear. [Theorem 2.8]

The matrix representation is unique.

⌅⌅ Given a basis � for V ,

��: V ! F
n

defined by

��(x) = [x]
�

is also an isomor-

phism.

LTE: LT → Matrix

浩不

T

t.
A
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⌅⌅ example: T P2(R) ! P1(R) such that T (f ) = f
0

� =
�
1, x, x2

 
, � = {1, x} ) A =

✓
0 1 0
0 0 2

◆

鸞嶸
_ .

녦H잉訂斷
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� =
�
1, 1 + x, 1 + x + x

2
 

, � = {1, 1 + x} ) A =

✓
0 1 �1
0 0 2

◆

⌅⌅ This example illustrates that the representations depend on the

bases. If we change the given set of bases to a new one, how do the

representations change?

T17 = 0

T(1세) = 1

홨럂쐬 脈然旻希,

①
= Time
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Change of Basis

⌅⌅ Consider two bases � = {v1, · · · , vn} and �
0
= {u1, · · · , un} for

the same vector space and the matrix representations of the identity

transformation I .

The i-th column of [I ]�
0

�
is [vi]�0 ; the i-th column of [I ]�

�
0 is [ui]�.

For x 2 V, x =
P

aivi for � ! I
�
0

�
(x) = x, x =

P
biui for �

0
.

) [x]� = (a1, ..., an)
t
, [x]�0 = (b1, ..., bn)

t
.

) (b1, ..., bn)
t = [I ]�

0

�
(a1, ..., an)

t
.

es o
_

En r

Terms 任名略 ?

唎城:썲 a.嚴齡墻倻擲
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⌅⌅ example:

for I : P2(R) ! P2(R), let bases for domain and co-domain be

� =
�
1, x, x2

 
and �

0
=
�
1, 1 + x, 1 + x + x

2
 

.

x = a0 + a1x + a2x
2

) [x]
�
= (a0, a1, a2)

t
, [x]

�
0 = (a0 � a1, a1 � a2, a2)

t

x = I(x)

) [x]
�
0 = [I ]�

0

�
[x]

�
, [I ]�

0

�
=

0

@
1 �1 0
0 1 �1
0 0 1

1

A

)

0

@
a0 � a1
a1 � a2

a2

1

A =

0

@
1 �1 0
0 1 �1
0 0 1

1

A ·

0

@
a0
a1
a2

1

A

幾一Tout 一盟
aol.dz

○ ICI ) = 1 1 00

II가 22C 0 / 0

0
IDE) = I o o /
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⌅⌅ example: Consider two bases for R2

� = {(1, 0), (0, 1)} and �
0 = {(cos�, sin�), (� sin�, cos�)} ,

where �
0

is the rotated version of � by the angle �.

x = (a, b)t

) [x]� = (a, b)t, [I ]�
0

�
=

✓
cos� sin�
� sin� cos�

◆
: rotation by ��

) [x]�0 = [I ]�
0

�
[x]� =

✓
cos� sin�
� sin� cos�

◆
·
✓
a

b

◆

) [x]�0 = (acos� + bsin�,�asin� + bcos�)t

image
Too

E

.

_ .

tii叩쮝 .si?:.:'>( 1.0)① - sin (-sina.ws/y 匕一

sina.io#tj
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⌅⌅ [I ]�
0

�
and [I ]�

�
0 are called change-of-coordinate matrices.

⌅ [I ]
�
= [II ]

�
= [I ]�

0

�
[I ]�

�0 = In

) [I ]�
0

�
= ([I ]�

�
0)
�1

,

[I ]�
�
0 = ([I ]�

0

�
)�1

⌅ [x]
�
0 = [I ]�

0

�
[x]

�

[x]
�
= [I ]�

�
0[x]�0

⌅ We can play with these matrices as follows.

[I ]
↵
= [III ]

↵
= I

↵
� I

�

�
I
�
↵ = In

[x]
�
= [I ]�

↵
[x]↵ = [I ]�

�
[I ]�

↵
[x]↵

i i
K

籤
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⌅⌅ What is the relationship between A = [T ]
�

and B = [T ]
�
0 ?

[T ]
�
0 = [ITI ]

�
0 = [I ]�

0

�
[T ]

�
[I ]�

�
0 ;

B = Q
�1

AQ, where Q = [I ]�
�
0 [?]

⌅⌅ Matrix A,B 2 Mn⇥n are similar.

9 invertible Q such that B = Q
�1

AQ.

⌅ So similar matrices can be considered representations of the

same linear transformation.

B = =E'A Q
rTes r

B'釉忠〖咸嘴談邪嘔'
B i'A9
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⌅⌅ example: T : P2(R) ! P2(R) such that T (f ) = f
0

� =
�
1, x, x2

 
, �

0
=
�
1, 1 + x, 1 + x + x

2
 

[T ]
�
=

0

@
0 1 0
0 0 2
0 0 0

1

A, [T ]
�
0 =

0

@
0 1 �1
0 0 2
0 0 0

1

A

Q = [I ]�
�
0 =

0

@
1 1 1
0 1 1
0 0 1

1

A, Q
�1 = [I ]�

0

�
=

0

@
1 �1 0
0 1 �1
0 0 1

1

A

[T ]
�
0 = Q

�1[T ]
�
Q

,

0

@
0 1 �1
0 0 2
0 0 0

1

A =

0

@
1 �1 0
0 1 �1
0 0 1

1

A ·

0

@
0 1 0
0 0 2
0 0 0

1

A ·

0

@
1 1 1
0 1 1
0 0 1

1

A

史品柒 , 1%앩THESE)= 11-2X
= - 1 +2CH
)

⇒ H .
2.0)

TY = - 1.1t 111t의
진로 o.lt 시기사미

시 . (HA제

B = E1 A Q
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⌅⌅ Theorem 2.18:

⌅⌅ Corollary 2.18.2: Let A 2 Mn⇥n, then the following is true:

A is invertible , LA is invertible; and (LA)
�1 = LA�1.

⌅⌅ isomorphism: invertible linear transformation

⌅⌅ Theorem 2.19: dim(V ), dim(W ) < 1. Then

V and W are isomorphic , dim(V ) = dim(W )

⌅⌅ Corollary 2.19: V and Fn
are isomorphic , dim(V ) = n



Page 2

⌅⌅ Theorem 2.20:

Given a basis � for V ,

��: V ! Fn
defined by

��(x) = [x]� is also an isomor-

phism.

⌅⌅ example:

� =
�
1, x, x2

 
,

� = {1, x}

) A =

✓
0 1 0
0 0 2

◆
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Change of Basis

⌅⌅ matrix representations of the identity transformation I .

⌅⌅ for I : P2(R) ! P2(R), let bases for domain and co-domain be

� =
�
1, x, x2

 
and �

0
=
�
1, 1 + x, 1 + x + x2

 
.

x = a0 + a1x + a2x
2

) [x]� = (a0, a1, a2)
t
, [x]

�0
= (a0 � a1, a1 � a2, a2)

t

x = I(x)

) [x]
�0

= [I ]�
0

� [x]�, [I ]�
0

� =

0

@
1 �1 0
0 1 �1
0 0 1

1

A

)

0

@
a0 � a1
a1 � a2

a2

1

A =

0

@
1 �1 0
0 1 �1
0 0 1

1

A ·

0

@
a0
a1
a2

1

A
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⌅⌅ [I ]�
0

� and [I ]�
�0

are called change-of-coordinate matrices.

⌅ [I ]� = [II ]� = [I ]��0[I ]
�0

� = In

) [I ]�
0

� = ([I ]�
�0
)�1

,

[I ]�
�0

= ([I ]�
0

� )�1

⌅ [x]
�0

= [I ]�
0

� [x]�

[x]� = [I ]�
�0
[x]

�0

⌅⌅ [T ]
�0

= [ITI ]
�0

= [I ]�
0

� [T ]�[I ]
�

�0
;

B = Q�1AQ, where Q = [I ]�
�0

! Matrix A,B 2 Mn⇥n are similar.
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Chapter 3
Elementary matrix operation and system of linear equations

⌅ ⌅ Given bases, we can work on any kinds of vectors and any kinds

of linear transformations using only n-tuple vectors in Fn
and

matrices in Mm⇥n(F ).

⌅ w = T (v) turns into y = Ax, a system of linear equations.

⌅ We now investigate n-tuples, matrices, and linear equations.

Fctor.com#rix
에 미적분 ⇒ 선형대수 ( 미분 '이정수 → 05태방정4)

(실세계문제 → 최적화tmall.in
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Elementary matrix operation and elementary matrix

⌅ ⌅ elementary row operation, ero, on a matrix:

type 1, ero1: interchange two rows

type 2, ero2: multiply a row by a non-zero scalar

type 3, ero3: add to a row a scalar multiple of another

0

@
a31 a32 a33
a21 a22 a23
a11 a12 a13

1

A

0

@
a11 a12 a13

ba21 ba22 ba23
a31 a32 a33

1

A

0

@
a11 a12 a13
a21 a22 a23

a31 � ca11 a32 � ca12 a33 � ca13

1

A

⌅ Elementary column operations, ecos, are similar.

⌅ You may recall these having being used in solving a system of

linear systems.
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⌅ ⌅ example:0

@
5 6 7 8
1 2 3 4
9 10 11 12

1

A!

0

@
1 2 3 4
5 6 7 8
9 10 11 12

1

A [ero1(r1,r2)]

f !

0

@
1 2 3 4
�5 �6 �7 �8
9 10 11 12

1

A [ero2(r2⇥(-1))]

f !

0

@
1 2 3 4
0 4 8 12
9 10 11 12

1

A [ero3(r2+r1⇥5)]

f !

0

@
1 2 3 4
0 4 8 12
0 �8 �16 �24

1

A[ero3(r3+r1⇥(-9))]

十灣
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⌅ ⌅ elementary matrix, em: matrix obtained by an ero on In ⇤

type 1:

0

@
1 0 0
0 0 1
0 1 0

1

A: em1(r2, r3)

type 2:

0

@
-2 0 0
0 1 0
0 0 1

1

A: em2(r1⇥(-2))

type 3:

0

@
1 0 0
0 1 -2
0 0 1

1

A: em1(r2+r3⇥(-2))

⌅ ⌅ Theorem 3.1: An elementary row operation on a matrix A is the

same as pre-multiplying an elementary matrix of the same type

to A; and an elementary column operation is the same as post-

multiplying and elementary matrix of the same type. ⇤

''

繼鷄憔簫
"

( " 卜們彈;
"

x

( a 化州測"

EA 튿 I HE= E
'
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⌅ ⌅ example:0

@
5 6 7 8
1 2 3 4
9 10 11 12

1

A!

0

@
1 2 3 4
5 6 7 8
9 10 11 12

1

A =

0

@
0 1 0
1 0 0
0 0 1

1

A

0

@
5 6 7 8
1 2 3 4
9 10 11 12

1

A

f !

0

@
1 2 3 4
�5 �6 �7 �8
9 10 11 12

1

A =

0

@
1 0 0
0 �1 0
0 0 1

1

A

0

@
1 2 3 4
5 6 7 8
9 10 11 12

1

A

f !

0

@
1 2 3 4
0 4 8 12
9 10 11 12

1

A =

0

@
1 0 0
5 1 0
0 0 1

1

A

0

@
1 2 3 4
�5 �6 �7 �8
9 10 11 12

1

A

f !

0

@
1 2 3 4
0 4 8 12
0 �8 �16 �24

1

A=

0

@
1 0 0
0 1 0
�9 0 1

1

A

0

@
1 2 3 4
0 4 8 12
9 10 11 12

1

A
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f

0

@
1 2 3 4
5 6 7 8
9 10 11 12

1

A

0

BB@

0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

1

CCA =

0

@
4 3 2 1
8 6 7 5
12 10 11 9

1

A [eco1(c1,c4)]

f

0

@
1 2 3 4
5 6 7 8
9 10 11 12

1

A

0

BB@

1 �2 0 1
0 1 0 0
0 0 1 0
0 0 0 1

1

CCA =

0

@
1 0 3 4
5 �4 7 8
9 �8 11 12

1

A [eco3(c2+c1⇥(-2))]

⌅ ⌅ Theorem 3.2: Elementary matrices are invertible, and the inverse of

an elementary matrix is an elementary matrix of the same type. ⇤
⌅ Also the transpose of an elementary matrix is an elementary matrix

of the same type.

23

i

o

o
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⌅ ⌅ example:

em1(r2,r3) $
em1(r2,r3)

em1(c2,c3) $
em1(c2,c3)

:

0

@
1 0 0
0 0 1
0 1 0

1

A
�1

=

0

@
1 0 0
0 0 1
0 1 0

1

A

em2(r1⇥(-2)) $
em2(r1⇥(�1

2))

em2(c1⇥(-2)) $
em2(c1⇥(�1

2))

:

0

@
�2 0 0
0 1 0
0 0 1

1

A
�1

=

0

@
�1
2 0 0
0 1 0
0 0 1

1

A

em3(r2+r3⇥(-2)) $
em3(r2+r3⇥2)

em3(c3+c2⇥(-2)) $
em3(c3+c2⇥2)

:

0

@
1 0 0
0 1 �2
0 0 1

1

A
�1

=

0

@
1 0 0
0 1 2
0 0 1

1

A
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Rank and inverse of matrix
⌅ ⌅ rank of a matrix A, rank(A): rank(LA) ⇤

⌅ A 2 Mn⇥n; rank(A) = n [full rank]

) nullity(LA) = 0 [dim thm]

) LA is one-to-one. [Thm 2.4]

) LA is onto. [Thm 2.5]

) LA is invertible.

) A = [LA]�, in standard basis �, is invertible. [Thm 2.18]

⌅ ⌅ Theorem 3.3:

rank(T ) = rank([T ]��) ⇤

④河乍蔬
州剡i d.im/VFdim 二川

畺互Ki di
RIA) = span 로aj

ranKAfdim.IR/AD=#ofLIvectrs=tofLIG1Um"
in 3

a.tt#0tLIColummsofA
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⌅ ⌅ Theorem 3.4: A 2 Mm⇥n; P 2 Mm⇥m; Q 2 Mn⇥n;

P and Q are invertible. Then

rank(A) = rank(PA) = rank(AQ) = rank(PAQ) ⇤

⌅ nullity(A) = nullity(PA) = nullity(AQ) = nullity(PAQ)

⌅ ⌅ Corollary 3.4: Elementary row and column operations on a matrix

are rank-preserving. ⇤

if MEn
M =

A가 ㅋ Y

Q A P 潚牝PAQ가

til anK
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⌅ ⌅ How do we practically find the rank of a matrix?

⌅ ⌅ column space and row space

⌅ column space of a matrix: span of the columns ⇤
⌅ row space of a matrix: span of the rows ⇤

( Range Space) 20.Amg0
column vector FADEErie

G KA = E aTwww.r.i.in鬪
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⌅ ⌅ Theorem 3.5: rank(A) = dim(column space of A) ⇤
⌅ In other words, the rank of a matrix A is the maximum number of

linearly independent columns of A.

proof: � = {e1, · · · , en} is the standard basis of Fn

such that ej = (0, · · · , 0, 1, 0, · · · , 0)t with 1 in the j-th place.

rank(A) = rank(LA) = dim(R(LA)) [def]

R(LA) = span({LA(e1), · · · , LA(en)} [Thm 2.2]

LA(ej) = Aej is the j-th column. ⇤

⌅ ⌅ example:

rank

0

@

0

@
1 2 1
1 0 3
1 1 2

1

A

1

A = 2[c1⇥3-c2=c3], rank

0

@

0

@
0 0 0
0 0 0
0 0 0

1

A

1

A = 0

←

-

↳{a.az#

彈沽 0 N .
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⌅ ⌅ Theorem 3.6: An m⇥n matrix A of rank r can be transformed into

D =

✓
Ir O1
O2 O3

◆
by elementary row and column operations, where

Oi are zero matrices. ⇤
⌅ ⌅ example:

A =

0

@
1 2 1 1
1 0 3 �1
1 1 2 0

1

A!

0

@
1 2 1 1
0 �2 2 �2
0 �1 1 �1

1

A [ero3(r2+r1⇥(-1))],

f [ero3(r3+r1⇥(-1))]

f !

0

@
1 2 1 1
0 1 �1 1
0 �1 1 �1

1

A [ero2(r2⇥(�1
2))]

→倪剡
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f !

0

@
1 2 1 1
0 1 �1 1
0 0 0 0

1

A [ero3(r3+r2)]

f !

0

@
1 0 3 �1
0 1 �1 1
0 0 0 0

1

A [ero3(r1+r2⇥(-2))]

f ! D =

0

@
1 0 0 0
0 1 0 0
0 0 0 0

1

A [eco3(c3+c1⇥(-3))], [eco3(c4+c1)],

f [eco3(c3+c2)], [eco3(c4+c2⇥(-1))]

f ) rank(A) = 2

熄晁



Page 18

⌅ ⌅ Corollary 3.6.1: D =

✓
Ir O1
O2 O3

◆
= BAC for some invertible ma-

trices B and C. ⇤
proof: D = EpEp�1 · · ·E1AG1G2 · · ·Gp,

where Ei and Gj are elementary matrices. ⇤
⌅ These two equations of elementary matrices are not unique.

⌅ ⌅ Corollary 3.6.2: rank(A) = dim(column space of A)

f = dim(row space of A) = rank(At
) ⇤

⌅ In other words, the rank of a matrix A is not only the maximum

number of linearly independent columns but also the maximum

number of linearly independent rows of A.
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⌅ ⌅ Corollary 3.6.3: Every invertible matrix is a product of elementary

matrices. ⇤ [D = I]

proof: A 2 Mn⇥n is invertible ) rank(A) = n
f ) D = In = BAC = EpEp�1 · · ·E1AG1G2 · · ·Gp, [Thm 3.6]

f where Ei and Gj are elementary matrices.

f ) A = E�1
1 E�1

2 · · ·E�1
p InG�1

q G�1
q�1 · · ·G

�1
1 ,

f where E�1
i and G�1

j are elementary matrices. [Thm 3.2] ⇤
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⌅ ⌅ Theorem 3.7:

T : V ! W and U : W ! Z
are linear transformations;

A and B are matrices. Then

1. rank(UT )  rank(U )

2. rank(UT )  rank(T )

3. rank(AB)  rank(A)

3. rank(AB)  rank(B) ⇤

嚥廳,獻索.ua.
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⌅ ⌅ augmented matrix: (A|B) ⇤

⌅ ⌅ matrix inversion by Gaussian elimination:

(A|In) ! (In|B) by eros [not by ecos]

) (In|B) = Ep · · ·E1(A|In)
) In = Ep · · ·E1A,B = Ep · · ·E1In
) In = BA
) In = AB [Thm 2.17d]

⌅ ⌅ example:

(A|I) =

0

@
0 2 4 1 0 0
2 4 2 0 1 0
3 3 1 0 0 1

1

A

f !

0

@
1 2 1 0 1

2 0
0 2 4 1 0 0
3 3 1 0 0 1

1

A[ero1(r1,r2)], [ero2(r1⇥(
1
2))]

" d'ma) edim (B))

-

p
n + (

- 37 ) → o -3 -2 ...
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f !

0

B@
1 2 1 0 1

2 0
0 1 2 1

2 0 0
0 �3 �2 0 �3

2 1

1

CA[ero3(r3+r1⇥(-3))],[ero2(r2⇥(
1
2))]

f !

0

B@
1 2 1 0 1

2 0
0 1 2 1

2 0 0
0 0 4 3

2 �3
2 1

1

CA[ero3(r3+r2⇥3)]

f !

0

B@
1 0 �3 �1 1

2 0
0 1 2 1

2 0 0
0 0 1 3

8 �3
8

1
4

1

CA[ero3(r1+r2⇥(-2))], [ero2(r3⇥(
1
4))]

f !

0

B@
1 0 0 1

8 �5
8

3
4

0 1 0 �1
4

3
4 �1

2
0 0 1 3

8 �3
8

1
4

1

CA
✓

[ero3(r1+r2 ⇥ 3)]

[ero2(r2+r3 ⇥ (-2))]

◆

盤朞
inDX23cmn

逞
A1
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f )

0

@
0 2 4
2 4 2
3 3 1

1

A
�1

=

0

B@

1
8 �5

8
3
4

�1
4

3
4 �1

2
3
8 �3

8
1
4

1

CA

⌅ ⌅ We can find the inverse of a linear transformation T : V ! V
through computing the inverse of its matrix representation in a

basis �.

T ! [T ]� ! [T ]�1
� ! [T�1]� ! T�1

A At
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⌅ ⌅ example: T : P2(IR) ! P2(IR), T (f ) = f + f 0 + f 00, and � =
{1, x, x2}.

[T ]� =

0

@
1 1 2
0 1 2
0 0 1

1

A) [T ]�1
� = [T�1]� =

0

@
1 �1 0
0 1 �2
0 0 1

1

A

g = a0 + a1x + a2x
2 ) [g]� = (a0, a1, a2)

t

[T�1(g)]� = [T ]�1
� [g]� =

0

@
1 �1 0
0 1 �2
0 0 1

1

A

0

@
a0
a1
a2

1

A

f = (a0 � a1, a1 � 2a2, a2)
t

) T�1(g) = (a0 � a1) + (a1 � 2a2)x + a2x
2

= g ⇒ f =T7g)
= ?

A A III의臼列


