Intro. to Electro-physics Drude's model (1st)

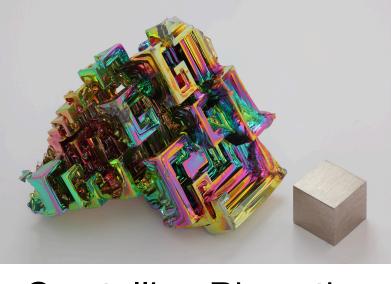
Jaesang Lee Dept. of Electrical and Computer Engineering Seoul National University (email: jsanglee@snu.ac.kr)

Metal

- General characteristics
 - Excellent conductors of heat & electricity
 - Ductile and malleable
 - Shiny surface that reflects visible light ($\lambda = 380 \sim 780$ nm)
- Explaining metallic characteristics = A starting point of modern solid-state physics!
- Earliest model by Paul Drude (1900) ullet
 - Simple and practical model that has been used even today for rough estimation (e.g. electrical conductivity)
 - Fails to explain a majority of experimental data of metals
 - Requires quantum mechanics to improve its validity

Crystalline gold

Crystalline silver

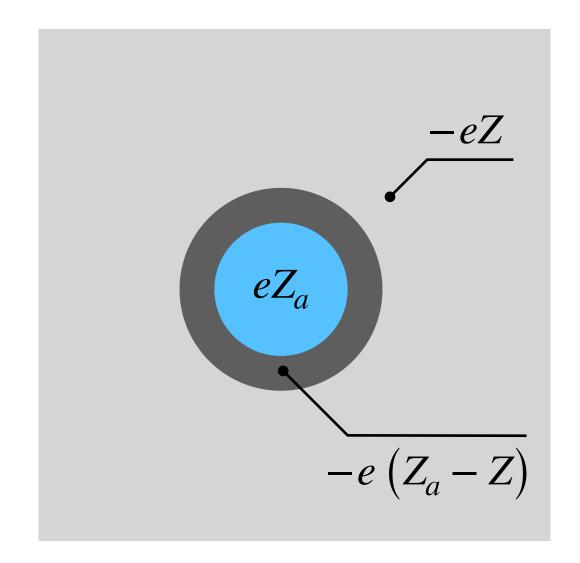


Crystalline Bismuth

Paul K. L. Drude (Germany) 1863-1906

Drude model

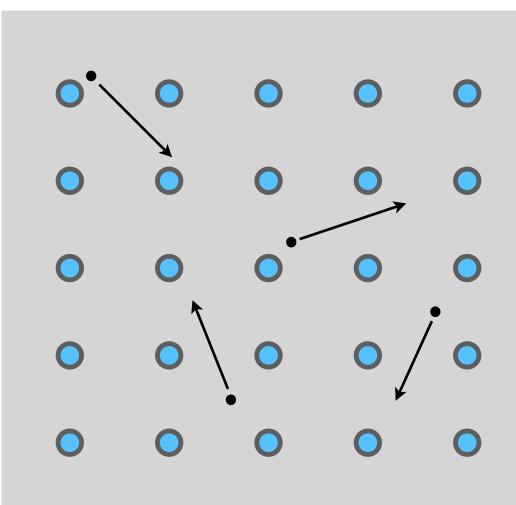
- Tried to explain electrical and thermal conduction of a metal
- Applied a kinetic theory of gases to electrons in a metal •



A single isolated atom of the metallic element Z_a : Atomic number

- Conduction electrons move far away from their parent atoms
- A gas of conduction electrons move against a background of heavy immobile ions

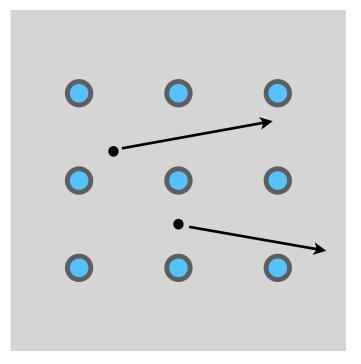
- Z: Weakly-bound valence electrons (mobile)
- $Z_a Z$: Tightly-bound core electrons (immobile)

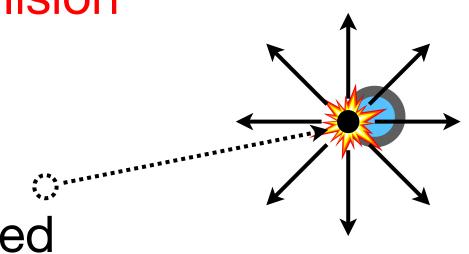


An electron gas moving against ions

Key assumptions in the Drude's model (1/2)

- Electrons move in straight lines until they collide with immobile ions (i.e., no other forces during their travel)
 - No electron-electron interaction (Independent electron approx.)
 - No electron-ion interaction (Free-electron approx.) (* except collisions)
 - Under external *E* & *H*-fields, electrons move according to Newton's law of motion
- ② Electrons bounce off ion cores instantaneously so that their velocities are abruptly changed.
 (i.e., no time delay due to the collision)
- ③ Electrons achieve thermal equilibrium with their surroundings only through collision
- After each collision, the velocity (v_0) of the electron randomly oriented
- Speed $(|v_0| = v_0)$ determined by the temperature where the collision occurred





Key assumptions in the Drude's model (2/2)

④ An electron undergoes a collision with a probability per unit time $(P \triangleq 1/\tau)$

 $\tau =$ Mean-free time or collision time

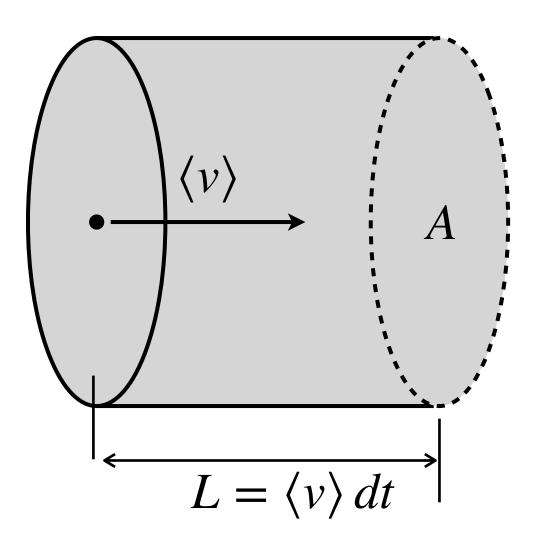
- Right after a collision, an electron travels for a time τ on the average before the next collision
- τ = An average survival time for an electron between collisions
- τ is independent of electron's position and velocity (i.e., the unique property of a metal) dt - — The probability that an electron undergoes a collision during dt, where $0 \le dt \le \tau$

Electrical conductivity by the Drude model (1/2)

Ohm's law

 $J = \sigma E$, where σ : electrical conductivity

Electrical current by electrons moving with an average speed $\langle v \rangle$ with a volume density (n)



Average speed $\rightarrow \langle v \rangle$

- Volume $\rightarrow V = A \langle v \rangle$
- # of electrons within the volume $\rightarrow N = n \cdot V = nA \langle v \rangle dt$
- Charge carried by these electrons $\rightarrow dQ = -e \cdot N = -enA\langle v \rangle dt$
- Current density [A/m²]

$$\langle v \rangle = \frac{1}{N} \sum_{j} v_{j}$$

 $\langle dt \rangle$

$$\rightarrow J = \frac{I}{A} = \frac{1}{A} \cdot \frac{dQ}{dt} = -en\langle v \rangle$$

• Current density in 3D \rightarrow $J = -ne \langle v \rangle$, $\langle v \rangle$: average electronic velocity

Electrical conductivity by the Drude model (2/2)

Average electronic velocity

In the absence of E-field : $\sum v_j = 0 \rightarrow \langle v_j \rangle$

- In the presence of E-field :

Velocity after some time $t: v = v_0 - \frac{eE}{m}$

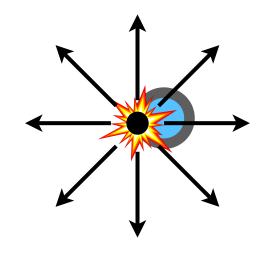
. Average velocity :
$$\langle v \rangle = \langle v_0 \rangle - \frac{eE \langle t \rangle}{m}$$

• Current density (revisited)

$$J = -ne \langle v \rangle = \left(\frac{ne^2\tau}{m}\right) E \triangleq \sigma E$$

$$|v\rangle = 0 \rightarrow J = 0$$

$$\frac{2t}{2}$$
, where $0 \le t \le \tau$



eE au m

 v_0 : velocity of the electron right after a collision

Electrical conductivity

$$\therefore \sigma = \frac{1}{\rho} = \frac{ne^2\tau}{m}$$

The density of electrons in a metal (1/2)

- Needed parameters for the metallic atom •
 - Avogadro's number : $N_A = 6.022 \times 10^{23}$ (atoms/mol)
 - Mass density : ρ_m (g/cm³)
 - Atomic mass : A(g/mol)
 - Number of conduction electrons : Z
- Electron density of a metal •

$$n = \frac{N}{V} = N_A \left[\frac{\text{atoms}}{\text{mol}}\right] \times \frac{\rho_m}{A} \left[\frac{\text{mol}}{\text{cm}^3}\right] \times Z \left[\frac{\text{electrons}}{\text{atom}}\right] = N_A \frac{Z\rho_m}{A} \left[\frac{\text{electrons}}{\text{cm}^3}\right]$$

- Typically, $n \sim 10^{22}$ [electrons/cm³] for metals

The density of electrons in a metal (2/2)

- A widely used measure of electron density
 - r_s : A radius of a sphere whose volume is the volume per

conduction electron as

$$\frac{V}{N} = \frac{1}{n} = \frac{4}{3}\pi r_s^3 \longrightarrow r_s = \left(\frac{3}{4\pi n}\right)^{\frac{1}{3}}$$

- A typical range of $r_s : \begin{bmatrix} \mathring{A} \end{bmatrix}$ for metals

 $\frac{r_s}{-}$: 2 ~ 6, where a_0 : Bohr radius a_0

- Bohr radius (a_0)
 - A radius of a hydrogen atom in its ground state
 - A scale for measuring atomic distances

Element	Z	n ^[1] (10 ²² cm ⁻³)	r _s (Å)	r₅/a₀
Li (78 K)	1	4.70	1.72	3.25
Na (5 K)	1	2.65	2.08	3.93
K (5 K)	1	1.40	2.57	4.86
Rb (5 K)	1	1.15	2.75	5.20
Cs (5 K)	1	0.91	2.98	5.62
Cu	1	8.47	1.41	2.67
Ag	1	5.86	1.60	3.02
Au	1	5.90	1.59	3.01
Ве	2	24.7	0.99	1.87
Mg	2	8.61	1.41	2.66
Са	2	4.61	1.73	3.27
Sr	2	3.55	1.89	3.57
Ва	2	3.15	1.96	3.71
Nb	1	5.56	1.63	3.07
Fe	2	17.0	1.12	2.12
Mn (α)	2	16.5	1.13	2.14
Zn	2	13.2	1.22	2.30
Cd	2	9.27	1.37	2.59
Hg (78 K)	2	8.65	1.40	2.65
AI	3	18.1	1.10	2.07
Ga	3	15.4	1.16	2.19
In	3	11.5	1.27	2.41
ТІ	3	10.5	1.31	2.48
Sn	4	14.8	1.17	2.22
Pb	4	13.2	1.22	2.30
Bi	5	14.1	1.19	2.25
Sb	5	16.5	1.13	2.14

R. W. G. Wyckoff, Crystal Structures, 2nd ed., Interscience, New York, 1963.

5.3												
	-	-	-	-	-	-	-	-	-	-	-	•
	-	-	-	-	-	-	-	-	-	-	-	•
	-	-	-	-	-	-	-	-	-	-	-	•
	-	-	-	-	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	-	-	-	-	•
	-	-	-	-	-	-	-	-	-	-	-	•
	-	-	-	-	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	-	-	-	-	•
	-	-	-	-	-	-	-	-	-	-	-	•
	-	-	-	-	-	-	-	-	-	-	-	
	-	-	-	-	-	-	-	-	-	-	-	•
	-	-	-	-	-	-	-	-	-	-	-	•
	-	-	-	-	-	-	-	-	-	-	-	•
	-	-	-	-	-	-	-	-	-	-	-	•
	-	-	-	-	-	-	-	-	-	-	-	•
	-	-	-	-	-	-	-	-	-	-	-	•
	-	-	-	-	-	-	-	-	-	-	-	•
	-	-	-	-	-	-	-	-	-	-	-	•
	-	-	-	-	-	-	-	-	-	-	-	•
	-	-	-	-	-	-	-	-	-	-	-	•
	-	-	-	-	-	-	-	-	-	-	-	•
	-	-	-	-	-	-	-	-	-	-	-	•
	-	-	-	-	-	-	-	-	-	-	-	•
	-	-	-	-	-	-	-	-	-	-	-	•
33	-	-	-	-	-	-	-	-	-	-	-	•
	-	-		- 2	-	-	-	-	-	-	-	•

Estimation of collision time (τ) (1/2)

Collision time from the Drude model

$$\sigma = \frac{1}{\rho} = \frac{ne^2\tau}{m} \longrightarrow \tau = \frac{m}{\rho ne^2}$$

- At T = 300 K, $\tau : 10^{-15} \sim 10^{-14} [s]$. (What is the physical significance of this τ value?)

Mean free path

$$l = v_0 \tau$$

- The average distance an electron travels between collisions
- v_0 : Average electronic speed. From classical thermodynamics,

$$\frac{1}{2}mv_0^2 = \frac{3}{2}k_BT \longrightarrow v_0 = \sqrt{\frac{3k_BT}{m}} \sim 10^{7}$$

 $\therefore l = 1 \sim 10 \left[\mathring{A} \right] \sim \text{Interatomic distance}$

 7 |cm/s| at T = 300 K

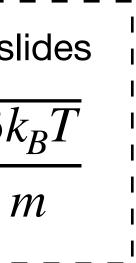
Estimation of collision time (τ) (2/2)

Drude's conclusion from the mean-free path •

 $l = 1 \sim 10 | \mathring{A} | \sim \text{Interatomic distance}$

- Collision process = an electron bumps into the large heavy ion! -
- Limitation of Drude's model (What is missing?) •
 - The classical estimate of v_0 is way too small (> x100!)
 - $\tau \rightarrow$ temp-dependent, $v_0 \rightarrow$ temp-independent
 - _ At very low *T*, $l \gg 10^3 \sim 10^8 \left[\text{\AA} \right]$ (Electrons do not simply bump off the ions!)
- In the absence of theory of collision and thus of τ , finding τ -independent quantities has remained of fundamental interest even now!

Formula from previous slides $\tau = \frac{m}{\rho n e^2}, v_0 = \sqrt{\frac{3k_B T}{m}}$



The equation of motion for Electron momentum (1/3)

Electrons subject to an external force F(t) (e.g., an electric field)

Current density :
$$J = -nev = -\frac{nep}{m}$$

- Electron momentum after a time dt : p(t+dt)
 - Two types of electrons
 - , Electrons undergoes collisions during |t|,
 - , Electrons survive to t + dt without collision
 - An additional momentum acquired by these e

• Average electronic velocity at any time $t : v(t) = \frac{p(t)}{m}$ Momentum per electron at a time t \mathcal{M}

$$t + dt$$
] with a probability $\frac{dt}{\tau}$
ons with a probability $1 - \frac{dt}{\tau}$

electrons :
$$F(t) dt + O(dt)^2$$

External force

The equation of motion for Electron momentum (2/3)

Momentum acquired by the "un-collided" electron

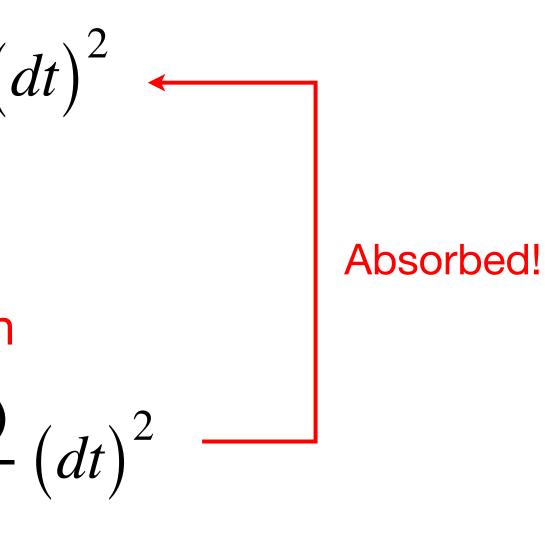
Momentum acquired by the "collided" electron

$$\boldsymbol{p}\left(t+dt\right) = \frac{dt}{\tau} \boldsymbol{F}(t) T \leq \frac{dt}{\tau} \boldsymbol{F}(t) dt = \frac{\boldsymbol{F}(t)}{\tau}$$

T : an average time "after a collision at *t*" $(T \le dt)$

 $\left(dt\right)^2$

entum



The equation of motion for Electron momentum (3/3)

Overall electron momentum

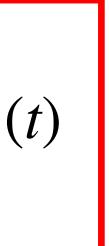
$$\boldsymbol{p}\left(t+dt\right) = \boldsymbol{p}\left(t\right) - \frac{dt}{\tau}\boldsymbol{p}\left(t\right) + \boldsymbol{F}\left(t\right)dt + O\left(dt\right)$$

$$\rightarrow \lim_{dt \to 0} \frac{p\left(t + dt\right) - p\left(t\right)}{dt} = \lim_{dt \to 0} \left(-\frac{p\left(t\right)}{\tau} + F\left(t\right)\right) + O\left(dt\right)$$

dt)²

$$\therefore \frac{dp(t)}{dt} = -\frac{p(t)}{\tau} + F$$

Frictional damping term
due to collisions



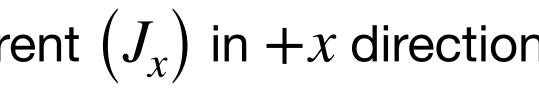
Intro. to Electro-physics Drude's model (2nd)

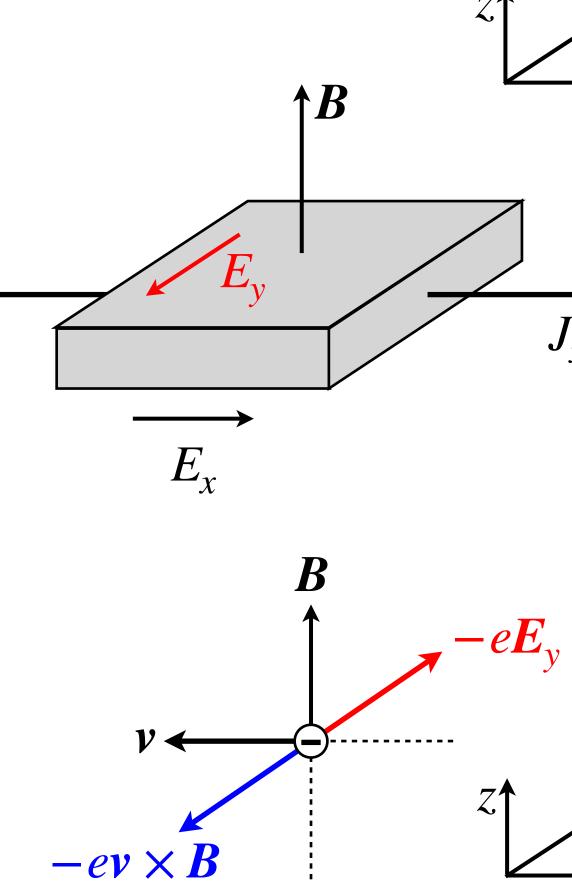
Jaesang Lee Dept. of Electrical and Computer Engineering Seoul National University (email: jsanglee@snu.ac.kr)

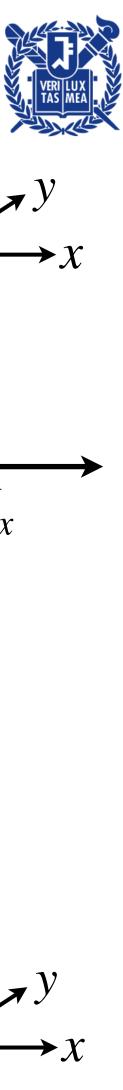
Hall effects

- Conditions
 - An electrical conductor carries an electric current (J_x) in +x direction
 - A magnetic field (B) applied transverse to the electric current in +z direction
 - Due to the Lorentz force $(F = -ev \times B)$, electrons are deflected
 - in -y direction and are accumulated at that side of the conductor
- Hall fields •
 - To oppose the further accumulation of the electrons, **a Hall field in** -y **direction** $\left(E_{y}\right)$ is induced!
 - _ In equilibrium the Hall field (E_y) counterbalances the Lorentz force

and an electric current only flows in +x direction







Hall coefficient

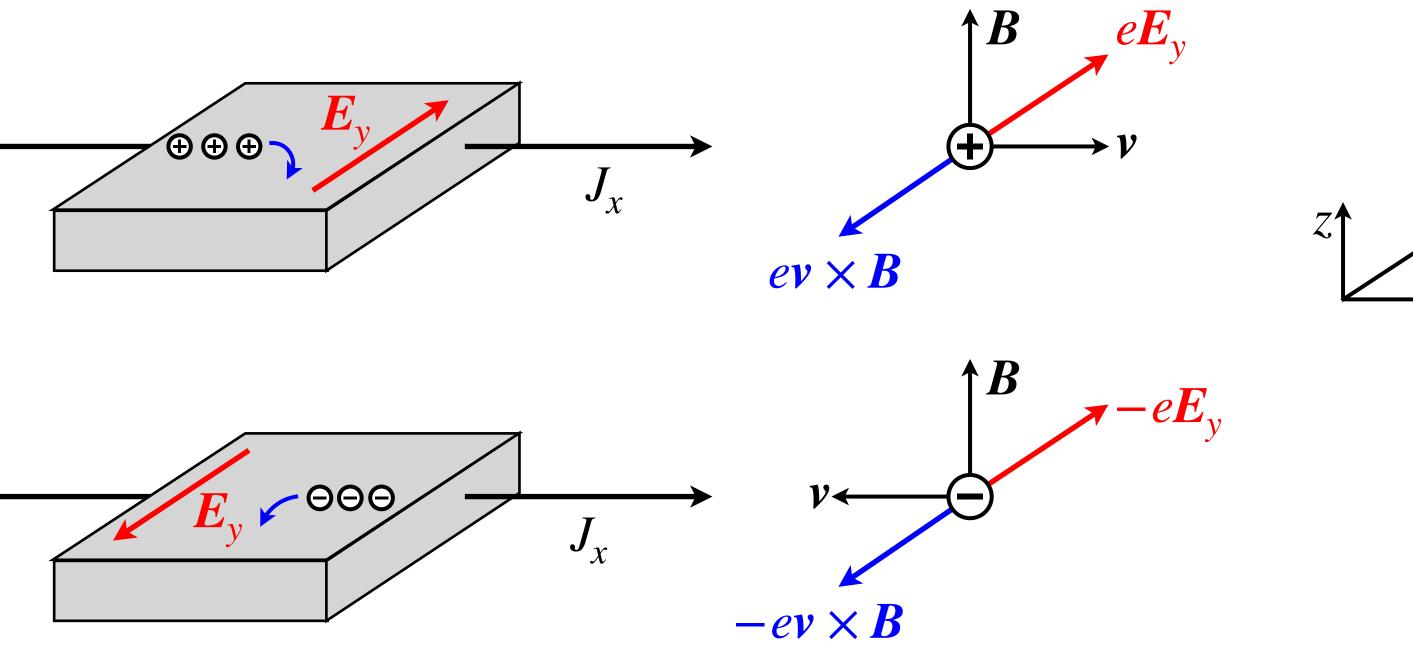
• Two quantities of interest

- Magnetoresistance
$$\left(\rho = \frac{E_x}{J_x}\right)$$
 and Hall field

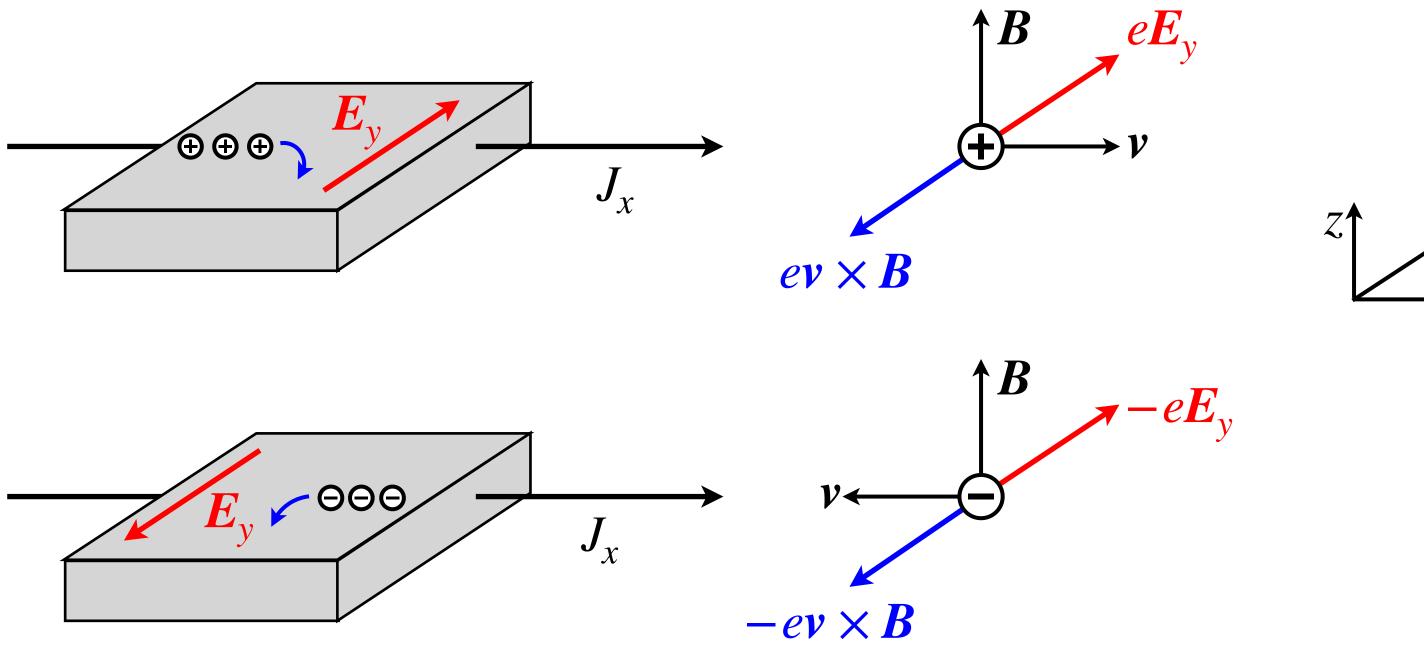
• A Hall coefficient:

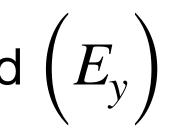
$$R_H \triangleq \frac{E_y}{J_x B} \quad (\because E_y \text{ may dependent})$$

- Positive charge : $R_H > 0$



- Negative charge : $R_H < 0$





nd on B since it balances Lorenz force)

Drude's analysis of the Hall effect (1/3)

• Equation of motion for electron momentum $\frac{dp(t)}{dt} = -\frac{p(t)}{\tau} + F(t), \text{ where } F = -e(E + t)$

Here, $\boldsymbol{p} \times \boldsymbol{B} = \begin{vmatrix} \boldsymbol{a}_x & \boldsymbol{a}_y & \boldsymbol{a}_z \\ p_x & p_y & p_z \\ 0 & 0 & B \end{vmatrix} =$

• In the steady-state $(d\mathbf{p}/dt \rightarrow 0)$

$$\begin{cases} \boldsymbol{a}_{x}: -\frac{p_{x}}{\tau} - e\left(E_{x} + \frac{p_{y}B}{m}\right) = 0 \\ \boldsymbol{a}_{y}: -\frac{p_{y}}{\tau} - e\left(E_{y} + \frac{p_{x}B}{m}\right) = 0 \end{cases} \xrightarrow{p_{x}=mv_{x}} p_{y}=mv_{y}$$

$$(-\mathbf{v} \times \mathbf{B}) = -e\left(\mathbf{E} + \frac{1}{m}\mathbf{p} \times \mathbf{B}\right)$$

$$\begin{vmatrix} a_y & a_z \\ p_y & p_z \\ 0 & B \end{vmatrix} = a_x p_y B - a_y p_x B.$$

$$-\frac{v_x}{m\tau} - e\left(E_x + v_yB\right) = 0$$
$$-\frac{v_y}{m\tau} - e\left(E_y - v_xB\right) = 0$$

Drude's analysis of the Hall effect (2/3)

In equilibrium •

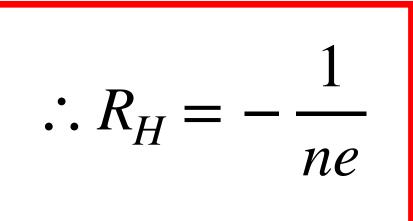
- The Hall field (E_y) prevents the electron moving in +y direction (i.e., $v_y = 0$)

$$\begin{cases} -\frac{v_x}{m\tau} - e\left(E_x + v_y B\right) = 0\\ -\frac{v_y}{m\tau} - e\left(E_y - v_x B\right) = 0 \longrightarrow E_y = v_x \end{cases}$$

- The Hall coefficient :

$$R_H = \frac{E_y}{J_x B} = \frac{v_x B}{-nev_x B} = -\frac{1}{ne}$$

 $B_{r}B$



Drude's analysis of the Hall effect (3/3)

• Is R_H (the Hall coefficient) reliable?

 $R_H = -\frac{1}{ne} \rightarrow n = -\frac{1}{eR_H}$ by Drude's model. Here, $R_H = \frac{E_y}{J_x B}$ by definition.

- Drude's analysis only roughly valid at very low T and Strong **B** in very pure samples
- Also in reality,
 - R_H depends on both **B** and **T**

(although temp-dependent τ uninvolved)

But, $R_H > 0$ in some metals (only quantum theory of solids can explain these)

8.0 Li 1.2 Na Κ 1.1 Rb 1.0 0.9 Cs Cu 1.5 Ag 1.3 1.5 Au 2 -0.2 Be Mg 2 -0.4 -0.3 3 In -0.3 AI 3

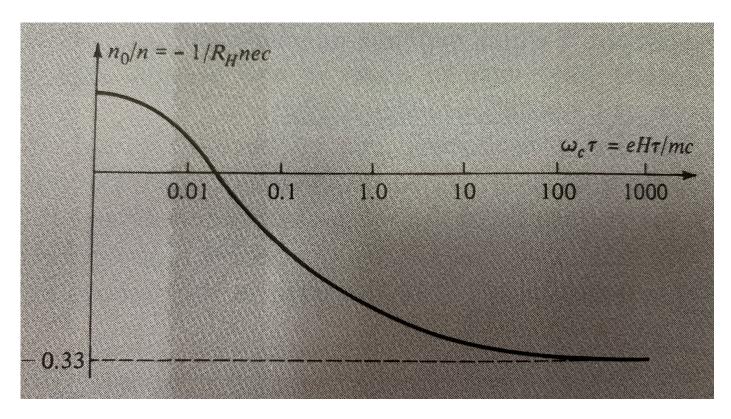
Valence

 n_D/n

Metal

Negative R_H

$$n_D = -\frac{1}{eR_H}, \ n = N_A \frac{Z\rho_m}{A}$$



AC electrical conductivity of a metal (1/2)

The current induced in a metal by a time-varying E-field

- **E**-field :
$$E(t) = \Re(\tilde{E}(\omega) e^{-j\omega t})$$

- The equation of motion for the electron momentum : $\frac{d\boldsymbol{p}\left(t\right)}{dt} = -\frac{\boldsymbol{p}\left(t\right)}{\tau} + \boldsymbol{F}\left(t\right), \text{ where } \boldsymbol{F}\left(t\right) = -$

$$\rightarrow -j\omega\tilde{p}(\omega) = -\frac{\tilde{p}(\omega)}{\tau} - e\tilde{E}(\omega) \rightarrow \tilde{p}(\omega)\left(j\omega - \frac{1}{\tau}\right) = e\tilde{E}(\omega) \quad \dots(1)$$

- The current density by the **E**-field

$$\boldsymbol{J}(t) = \Re \left(\tilde{\boldsymbol{J}}(\omega) \, e^{-j\omega t}
ight)$$
, where $\tilde{\boldsymbol{J}}(\omega) = -$

$$\tilde{J}(\omega) = -\frac{ne}{m} \frac{e\tilde{E}(\omega)}{j\omega - \frac{1}{\tau}} = \sigma(\omega)\tilde{E}(\omega), \text{ where } \sigma(\omega) \triangleq \frac{\frac{ne^{2\tau}}{m}}{1 - j\omega\tau} = \frac{\sigma_{0}}{1 - j\omega\tau}$$

$$e \cdot \Re\left(\tilde{E}(\omega) e^{-j\omega t}\right)$$

$$ne\tilde{v}(\omega) = -nerac{\tilde{p}(\omega)}{m} \cdots (2)$$

Frequency-dependent AC conductivity

AC electrical conductivity of a metal (2/2)

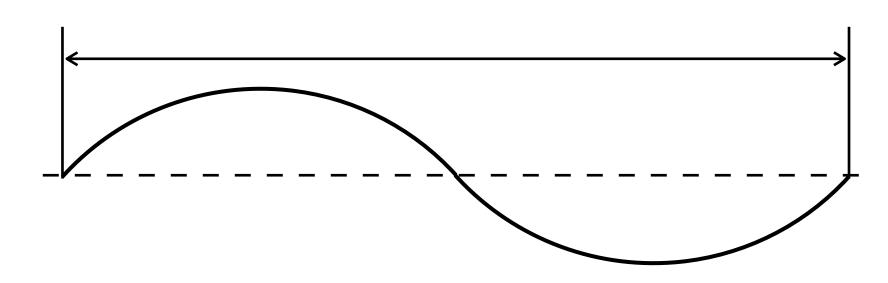
- Two puzzles in the derivation
 - Time-varying **E**-field accompanies **H**-field (i.e., electromagnetic wave) (1)

 \rightarrow The Lorenz force : $F = -e(E + v \times B)$

Negligible compared to **E** $\rightarrow \text{ The equation of motion}: \frac{p}{dt} = -\frac{p}{\tau} - e\left(E + \frac{p}{m} \times B\right)$

E-field of the EM wave depends on both space and time (i.e., E(r, t))! (2)

 \rightarrow But, if a wavelength of the EM wave >> a mean free path of electrons (e.g. $380 \sim 780$ nm for visible light)



 \rightarrow Then, $J(\mathbf{r}, t)$ is entirely determined by $E(\mathbf{r}, t)$ at \mathbf{r} !

 $(1 \sim 10 \text{ Å by the Drude's model})$

Complex permittivity

Maxwell's equations (in phasor notation)

Complex permittivity

$$\nabla \times \tilde{H} = \tilde{J} - j\omega\epsilon\tilde{E} = (\sigma - j\omega\epsilon)\tilde{E} = -j\omega\left(\epsilon - \frac{\sigma}{j\omega}\right)\tilde{E} \triangleq -j\omega\epsilon_c\tilde{E}$$
$$\therefore \epsilon_c = \epsilon - \frac{\sigma}{j\omega}, \text{ where } \sigma = \frac{\sigma_0}{1 - j\omega}$$

Plas

- Pla

Sma oscillation (1/3)
asma frequency
High frequency approximation
$$(\omega \tau \gg 1)$$

$$\lim_{\omega \tau \gg 1} \sigma = \frac{\sigma_0}{-j\omega\tau} \longrightarrow \epsilon_c = \epsilon - \frac{\sigma_0/(-j\omega\tau)}{j\omega} = \epsilon \left(1 - \frac{\sigma_0/\epsilon\tau}{\omega^2}\right) \triangleq \epsilon \left(1 - \frac{\omega_p^2}{\omega^2}\right)$$

$$c_c = \epsilon \left(1 - \frac{\omega_p^2}{\omega^2}\right), \text{ where } \omega_p^2 = \frac{\sigma_0}{\epsilon\tau} = \frac{ne^2\tau/m}{\epsilon\tau} = \frac{ne^2}{m\epsilon}$$
Wave equation :

$$\nabla \times \tilde{E} = j\omega\mu\tilde{H} \longrightarrow \left[\nabla \times (\nabla \times \tilde{E}) = \nabla (\nabla \cdot \tilde{E}) - \nabla^2\tilde{E}\right] = \left[j\omega\mu (\nabla \times \tilde{H})\right]$$

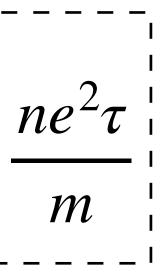
$$\rightarrow -\nabla^2\tilde{E} = \omega^2\mu\epsilon_c\tilde{E} \triangleq k_c^2\tilde{E} \longrightarrow \nabla^2\tilde{E} + k_c^2\nabla^2\tilde{E} = 0$$

$$\begin{cases} E_x \sim e^{-jk_cx} \\ E_y \sim e^{-jk_cy}, \text{ where } k_c = \omega\sqrt{\mu\epsilon_c}. \end{cases}$$

Soma oscillation (1/3)
asma frequency
High frequency approximation
$$(\omega \tau \gg 1)$$

$$\lim_{\omega \tau \gg 1} \sigma = \frac{\sigma_0}{-j\omega\tau} \longrightarrow c_c = \epsilon - \frac{\sigma_0/(-j\omega\tau)}{j\omega} = \epsilon \left(1 - \frac{\sigma_0/\epsilon\tau}{\omega^2}\right) \triangleq \epsilon \left(1 - \frac{\omega_p^2}{\omega^2}\right)$$
 $\epsilon_c = \epsilon \left(1 - \frac{\omega_p^2}{\omega^2}\right)$, where $\omega_p^2 = \frac{\sigma_0}{\epsilon\tau} = \frac{ne^2\tau/m}{\epsilon\tau} = \frac{ne^2}{m\epsilon}$
Wave equation :
 $\nabla \times \tilde{E} = j\omega\mu\tilde{H} \longrightarrow \left[\nabla \times (\nabla \times \tilde{E}) = \nabla (\nabla \cdot \tilde{E}) - \nabla^2\tilde{E}\right] = \left[j\omega\mu (\nabla \times \tilde{H})\right]$
 $\rightarrow - \nabla^2\tilde{E} = \omega^2\mu c_c\tilde{E} \triangleq k_c^2\tilde{E} \longrightarrow \nabla^2\tilde{E} + k_c^2\nabla^2\tilde{E} = 0$
 $\begin{cases} E_x \sim e^{-jk_x x} \\ E_y \sim e^{-jk_y x} \\ E_z \sim e^{-jk_z x} \end{cases}$, where $k_c = \omega\sqrt{\mu c_c}$

$$\begin{split} & \text{formula from previous sildes} \\ & \text{formula from previous sildes} \\ & \sigma = \frac{\sigma_0}{1 - j\omega\tau}, \epsilon_c = \epsilon - \frac{\sigma}{j\omega}, \sigma_0 = 0 \\ & \sigma = \frac{\sigma_0}{1 - j\omega\tau}, \epsilon_c = \epsilon - \frac{\sigma}{j\omega}, \sigma_0 = 0 \\ & \sigma = \frac{\sigma_0}{1 - j\omega\tau}, \epsilon_c = \epsilon - \frac{\sigma}{j\omega}, \sigma_0 = \epsilon \\ & \sigma = \frac{\sigma_0}{1 - j\omega\tau}, \epsilon_c = \epsilon - \frac{\sigma}{j\omega}, \sigma_0 = \epsilon \\ & \sigma = \frac{\sigma_0}{1 - j\omega\tau}, \epsilon_c = \epsilon - \frac{\sigma}{j\omega}, \sigma_0 = \epsilon \\ & \sigma = \frac{\sigma_0}{1 - j\omega\tau}, \epsilon_c = \epsilon - \frac{\sigma}{j\omega}, \sigma_0 = \epsilon \\ & \sigma = \frac{\sigma_0}{1 - j\omega\tau}, \epsilon_c = \epsilon - \frac{\sigma}{j\omega}, \sigma_0 = \epsilon \\ & \sigma = \frac{\sigma_0}{1 - j\omega\tau}, \epsilon_c = \epsilon - \frac{\sigma}{j\omega}, \sigma_0 = \epsilon \\ & \sigma = \frac{\sigma_0}{1 - j\omega\tau}, \epsilon_c = \epsilon - \frac{\sigma}{j\omega}, \sigma_0 = \epsilon \\ & \sigma = \frac{\sigma_0}{1 - j\omega\tau}, \epsilon_c = \epsilon - \frac{\sigma}{j\omega}, \sigma_0 = \epsilon \\ & \sigma = \frac{\sigma_0}{1 - j\omega\tau}, \epsilon_c = \epsilon - \frac{\sigma}{j\omega}, \sigma_0 = \epsilon \\ & \sigma = \frac{\sigma}{1 - j\omega\tau}, \epsilon_c = \epsilon - \frac{\sigma}{j\omega\tau}, \epsilon_c = \epsilon \\ & \sigma = \frac{\sigma}{1 - j\omega\tau}, \epsilon_c = \epsilon - \frac{\sigma}{j\omega\tau}, \epsilon_c = \epsilon \\ & \sigma = \frac{\sigma}{1 - j\omega\tau}, \epsilon_c = \epsilon \\ & \sigma = \frac{\sigma}{1 - j\omega\tau}, \epsilon_c = \epsilon - \frac{\sigma}{j\omega\tau}, \sigma_0 = \epsilon \\ & \sigma = \frac{\sigma}{1 - j\omega\tau}, \epsilon_c = \epsilon \\ & \sigma = \frac{\sigma}{1 - j\omega\tau}, \epsilon_c = \epsilon \\ & \sigma = \frac{\sigma}{1 - j\omega\tau}, \epsilon_c = \epsilon \\ & \sigma = \frac{\sigma}{1 - j\omega\tau}, \epsilon_c = \epsilon \\ & \sigma = \frac{\sigma}{1 - j\omega\tau}, \epsilon_c = \epsilon \\ & \sigma = \frac{\sigma}{1 - j\omega\tau}, \epsilon_c = \epsilon \\ & \sigma = \frac{\sigma}{1 - j\omega\tau}, \epsilon_c = \epsilon \\ & \sigma = \frac{\sigma}{1 - j\omega\tau}, \epsilon_c = \epsilon \\ & \sigma = \frac{\sigma}{1 - j\omega\tau}, \epsilon_c = \epsilon \\ & \sigma = \frac{\sigma}{1 - j\omega\tau}, \epsilon_c = \epsilon \\ & \sigma = \frac{\sigma}{1 - j\omega\tau}, \epsilon_c = \frac{\sigma}{1 - j\omega\tau}, \epsilon_c = \epsilon \\ & \sigma = \frac{\sigma}{1 - j\omega\tau}, \epsilon_c = \frac{\sigma}{1 - j\omega\tau}$$

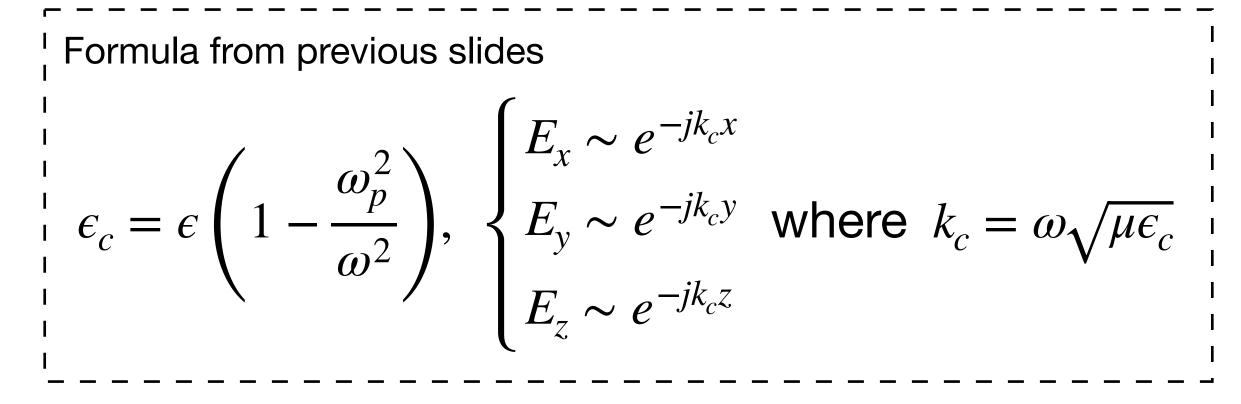


Plasma oscillation (2/3)

- Plasma frequency (contd.)
 - (Case 1) ω < ω_p → ε_c: real and negative *Ē* decays exponentially into a metal, and gets reflected off (i.e. no radiation can propagate "through" the metal)
 (Case 2) ω > ω_p → ε_c: real and positive
 - \tilde{E} oscillates with a frequency ω without attenuation (i.e. radiation can propagate through the metal = the metal becomes transparent!)
- In reality?
 - Plasma frequency in other form:

$$\nu_p = \frac{\omega_p}{2\pi} \quad \text{and} \quad \lambda_p = \frac{c}{\nu_p}$$

- Alkali metals satisfy the Drude's prediction!
- But other metals do not!



ELEMENT	THEORETICAL WAVELED TO LKALI METALS BECOME TRA THEORETICAL ^a λ (10 ³ Å) = 100 nm	OBSERVED (10 ³ Å)
	1.5	2.0
Li	2.0	2.1
Na	2.8	3.1
K Rb	3.1	3.6
Cs	3.5	4.4

^{*a*} From Eq. (1.41).

Source: M. Born and E. Wolf, *Principles of Optics*, Pergamon, New York, 1964.

Plasma oscillation (3/3)

- What is really happening in a metal?
 - In an electron gas, a charge density oscillates in response to the external *E*-field.

 $\begin{cases} \text{Continuity equation} : \nabla \cdot \boldsymbol{J} = -\frac{\partial \rho}{\partial t} & \longrightarrow \\ \text{Gauss's law} : \nabla \cdot \tilde{\boldsymbol{E}} = \frac{\tilde{\rho}}{\epsilon} \end{cases}$

Since
$$\tilde{J} = \sigma \tilde{E}$$
, $\left[\nabla \cdot \tilde{J} = j \omega \tilde{\rho} \right] = \sigma \nabla \cdot \tilde{E}$

- High frequency approx. ($\omega \tau \gg 1$)

$$j\omega\epsilon = \left[\sigma = \frac{\sigma_0}{1 - j\omega\tau} \simeq \frac{\sigma_0}{-j\omega\tau}\right] \longrightarrow \omega^2$$

- Such a charge density wave = Plasma oscillation

$$\nabla \cdot \tilde{\boldsymbol{J}} = j\omega\tilde{\rho}$$

$$\rightarrow \nabla \cdot \tilde{E} = \frac{j\omega\tilde{\rho}}{\sigma} \rightarrow \frac{j\omega\tilde{\rho}}{\sigma} = \frac{\tilde{\rho}}{\epsilon} \rightarrow j\omega\epsilon = \sigma$$

(Same as a plasma frequency!) $\epsilon \tau$

Intro. to Electro-physics Drude's model (3rd)

Jaesang Lee Dept. of Electrical and Computer Engineering Seoul National University (email: jsanglee@snu.ac.kr)

The most notable success of Drude's model

- Explanation of the empirical law of Wiedemann and Franz (1853) $\hat{-} = CT$, where κ : thermal conductivity, σ : electrical conductivity
 - C: a proportionality constant that is, to a fair accuracy, the same for all metals!
- Key assumptions to derive thermal conductivity (κ)
 - Thermal conduction in a metal is done by the conduction electrons
 - Thermal conduction by the ions is negligible
 - Thermal energy flows opposite to temperature gradient (∇T)

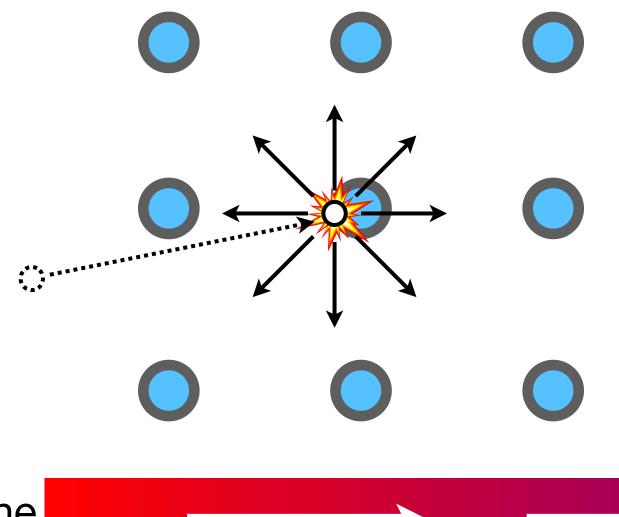
(Germany) 1826-1899

Thermal conductivity

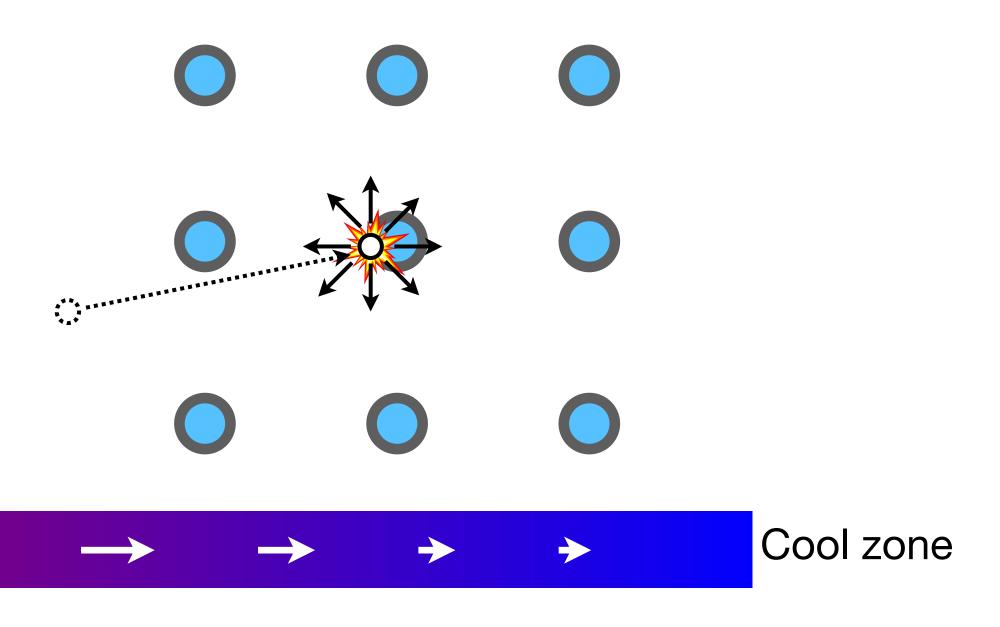
- Thermal flux (\boldsymbol{J}_T)
 - Direction = Parallel to the direction of heat flow -

- Magnitude = thermal energy per unit time crossing a unit area perpendicular to the flow (W/m^2) $J_T = -\kappa \nabla T$, where κ : thermal conductivity (W/m-K), ∇T : temperature gradient (K/m)

- Revisited assumption of Drude's model •
 - After each collision, an electron emerges with a speed appropriate to the local temperature



Hot zone

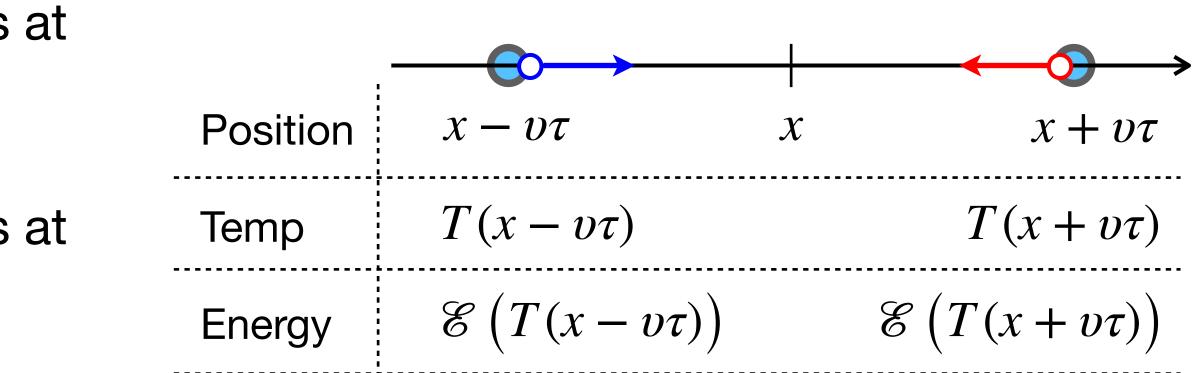


Derivation of thermal conductivity (1/2)

- Simple 1D model
 - A half of electrons that had their last collisions at
 - $x v\tau$ move towards x with a velocity v
 - A half of electrons that had their last collisions at $x + v\tau$ move towards x with a velocity -v
- Thermal flux at *x*

$$\begin{split} J_T &= \frac{n}{2} \cdot v \cdot \mathscr{E} \left(T \left(x - v\tau \right) \right) + \frac{n}{2} \cdot (-v) \cdot \mathscr{E} \left(T \left(x + v\tau \right) \right), \text{ where } n : \text{Electron det} \\ &= \frac{nv}{2} \left[\mathscr{E} \left(T \left(x - v\tau \right) \right) - \mathscr{E} \left(T \left(x + v\tau \right) \right) \right] \\ &= \frac{nv}{2} \cdot 2v\tau \cdot \left[\frac{\mathscr{E} \left(T \left(x - v\tau \right) \right) - \mathscr{E} \left(T \left(x + v\tau \right) \right)}{2v\tau} \right] \xrightarrow[v\tau \to 0]{} nv^2 \tau \frac{d\mathscr{E}}{dT} \left(-\frac{dT}{dx} \right) \end{split}$$

* $x - v\tau = l$: mean free path



ensity per unit volume

Derivation of thermal conductivity (2/2)

- Thermal conduction in 3D •
 - Electronic velocity _

$$\boldsymbol{v} = \boldsymbol{a}_{x}\boldsymbol{v}_{x} + \boldsymbol{a}_{y}\boldsymbol{v}_{y} + \boldsymbol{a}_{z}\boldsymbol{v}_{z}, \text{ where } \langle \boldsymbol{v}_{x}^{2} \rangle = \langle \boldsymbol{v}_{y}^{2} \rangle = \langle \boldsymbol{v}_{z}^{2} \rangle \triangleq \frac{1}{3}\boldsymbol{v}^{2} \checkmark \begin{pmatrix} \boldsymbol{v}^{2} = \langle \boldsymbol{v}_{x}^{2} \rangle + \langle \boldsymbol{v}_{y}^{2} \rangle + \langle \boldsymbol{v}_{z}^{2} \rangle \end{pmatrix}$$

$$\overset{\text{Flectronic specific heat}}{\overset{\text{formula formula of the specific heat}}{\overset{\text{formula formula of the specific heat}}{\overset{\text{formula formula of the specific heat}}}$$

Electronic specific heat ----

$$n\frac{d\mathscr{C}}{dT} = \frac{N}{V}\frac{d\mathscr{C}}{dT} = \frac{1}{V}\frac{dE}{dT} \triangleq c_V \text{ : Required energy}$$

• Thermal flux in 3D

$$\boldsymbol{J}_T = \boldsymbol{a}_x n \left\langle v_x^2 \right\rangle \tau \frac{d\mathscr{C}}{dT} \left(-\frac{dT}{dx} \right) \quad \longrightarrow \quad \boldsymbol{J}_T =$$

Thermal flux in 1D

$$J_T = nv^2 \tau \frac{d\mathscr{C}}{dT} \left(-\frac{1}{2}\right)$$

mean-square electronic speed

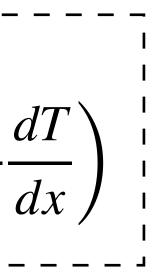
due to VT is exceedingly small.

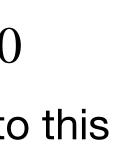
ergy to raise unit temperature of an electron gas in the unit volume

$$=\frac{1}{3}v^2\tau c_V(-\nabla T) = \kappa(-\nabla T)$$

Thermal conductivity

$$\therefore \kappa = \frac{1}{3}v^2\tau c_V$$











(Revisited) Wiedemann and Franz law [1/2]

• Wiedemann and Franz law interpreted by Drude's model

$$\frac{\kappa}{\sigma} = \frac{\frac{1}{3}v^2\tau c_V}{ne^2\tau/m} = \frac{1}{3}\frac{c_Vmv^2}{ne^2}$$

According to the classical kinetic theory of gase

$$\therefore \frac{\kappa}{\sigma} = \frac{3}{2} \left(\frac{k_B}{e}\right)^2 T$$

$$\rightarrow \frac{\kappa}{\sigma T} = \frac{3}{2} \left(\frac{k_B}{e}\right)^2 \simeq 1.11 \ \left[10^{-8} \ W \cdot \Omega\right]$$

es:
$$\begin{cases} c_V = \frac{3}{2}nk_B\\ \frac{1}{2}mv^2 = \frac{3}{2}k_BT \end{cases}$$

 K^2

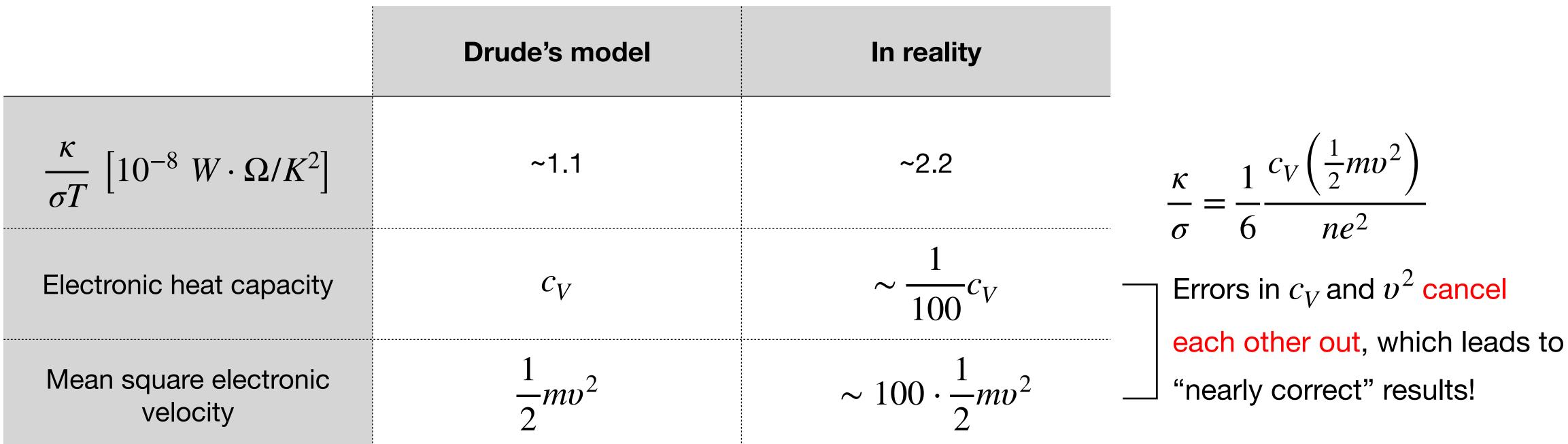
Measured	$\frac{\kappa}{\sigma T} \left[10^{-8} \right]$	$W \cdot \Omega/K^2$
Element	273 K	373 K

Element	273 K	373 K
Li	2.22	2.43
Na	2.12	
K	2.23	
Rb	2.42	
Cu	2.20	2.29
Ag	2.31	2.38
Au	2.32	2.36
Be	2.36	2.42
Mg	2.14	2.25
Nb	2.90	2.78
Fe	2.61	2.88
Zn	2.28	2.30
Cd	2.49	
AI	2.14	2.19
In	2.58	2.60
TI	2.75	2.75
Sn	2.48	2.54
Pb	2.64	2.53
Bi	3.53	3.35
Sb	2.57	2.69
Kave and Laby	Table of Physica	al and Chemi

Kaye and Laby, Table of Physical and Chemical Constants, Longmans Green, Longdon, 1966.

(Revisited) Wiedemann and Franz law [2/2]

- In reality
 - It was fortunate that the Drude's model roughly predicts Wiedemann-Franz Law!



- Sommerfeld model (Drude's model + quantum theory) can correct the discrepancy in each parameter and hence more accurately predicts the W-F law!

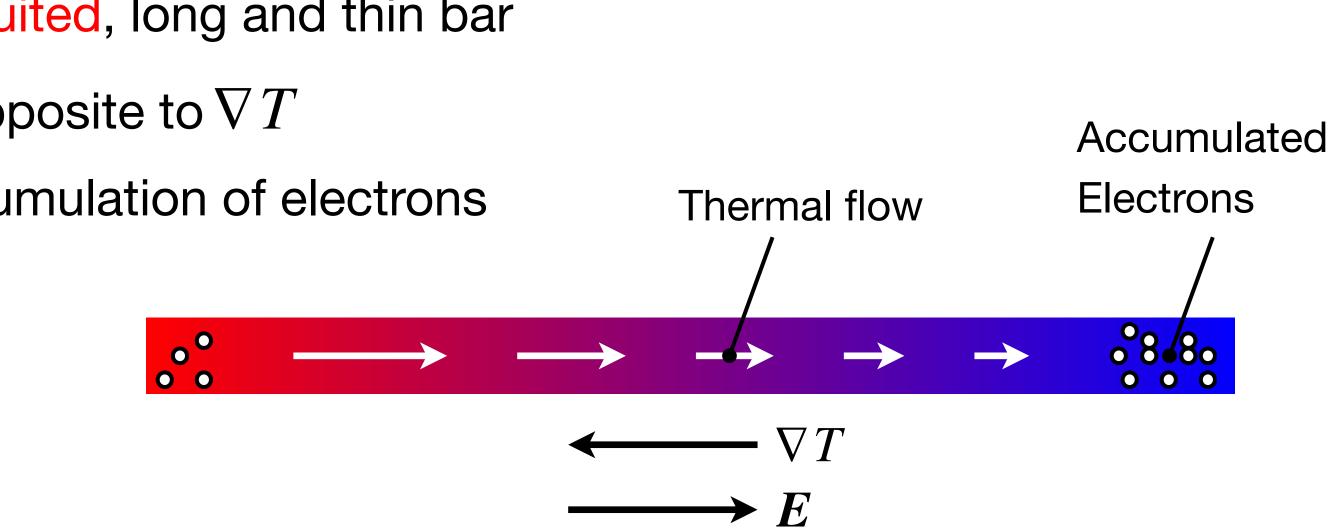
Thermoelectric field (1/2)

- Condition
 - A temperature gradient (∇T) in an open-circuited, long and thin bar
 - ∇T forces electrons to move in a direction opposite to ∇T —
 - An electric field is induced to oppose the accumulation of electrons
- Thermoelectric field

 $E = Q \nabla T$, where Q: thermopower (V/K)

- Mean electronic velocity at x due to ∇T

$$v_Q = \frac{1}{2} \left[v \left(x - v\tau \right) - v \left(x + v\tau \right) \right] = \frac{1}{2} \left(2v\tau \right) \left[\frac{v \left(x - v\tau \right) - v \left(x + v\tau \right)}{2v\tau} \right] = v\tau \left(-\frac{dv}{dx} \right)$$
$$= -\tau \frac{d}{dx} \left(\frac{v^2}{2} \right) = -\tau \frac{d}{dT} \left(\frac{v^2}{2} \right) \frac{dT}{dx} = -\tau \frac{d}{dT} \left(\frac{v^2}{2} \right) \nabla T$$



Thermoelectric field (2/2)

- Thermoelectric field in **3D** (contd.)
 - Mean square electronic velocity :

$$\left\langle v_x^2 \right\rangle = \left\langle v_y^2 \right\rangle = \left\langle v_z^2 \right\rangle = \frac{1}{3}v^2 \longrightarrow v_Q =$$

_ Mean electronic velocity due to thermoelectric

In thermal equilibrium : $\boldsymbol{v}_Q + \boldsymbol{v}_E = 0 \longrightarrow -$

$$\boldsymbol{E} = -\frac{1}{3e}\frac{d}{dT}\left(\frac{mv^2}{2}\right)\nabla T \triangleq Q\nabla T, \text{ where } \boldsymbol{Q} = -\frac{1}{3e}\frac{d}{dT}\left(\frac{mv^2}{2}\right)$$

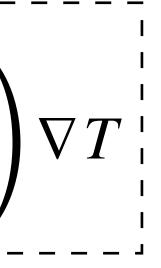
1D velocity due to
$$\nabla T$$

 $v_Q = -\tau \frac{d}{dT} \left(\frac{v^2}{2} \right)$

$$-\frac{\tau}{6} \left(\frac{dv^2}{dT} \right) \nabla T$$

c field :
$$\boldsymbol{v}_E = -\frac{e\boldsymbol{E}\boldsymbol{\tau}}{m}$$

$$\frac{eE\tau}{m} = \frac{-\tau}{6} \left(\frac{dv^2}{dT}\right) \nabla T$$



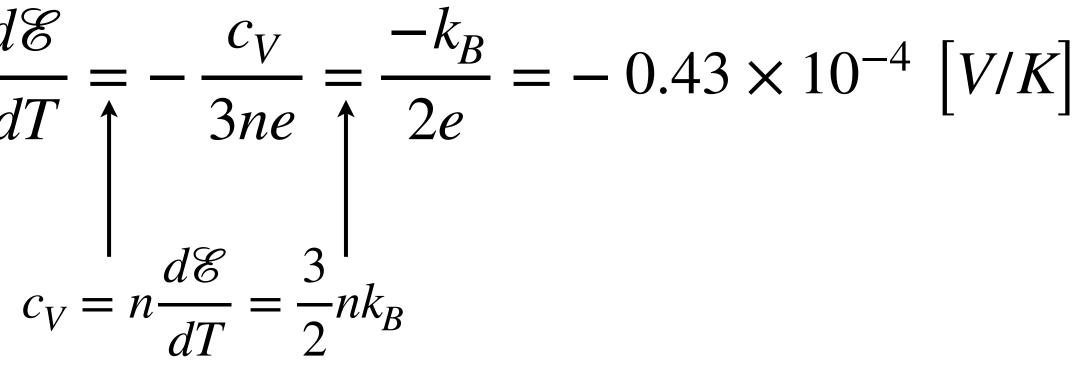
Thermopower : the ideal and the real

• Thermopower by Drude's model

$$Q = -\frac{1}{3e} \frac{d}{dT} \left(\frac{mv^2}{2}\right) = -\frac{1}{3ne} n \frac{d\mathscr{C}}{dT} = -\frac{1}{3ne} n \frac{d\mathscr{C}}{dT} = -\frac{1}{1} \frac{d\mathscr{C}}{dT} = -\frac{1$$

Measured thermopower

Element	Q [V/K]	
Na	-5 x 10 ⁻⁶	- A
K	-12.5 x 10 ⁻⁶	- A
Cu	1.8 x 10 ⁻⁶	
Be	1.5 x 10 ⁻⁶	
AI	-1.8 x 10 ⁻⁶	



A factor of 100 smaller!

A sign of thermopower is positive for some metals!

Drude vs. Sommerfeld models

- Drude model shows...
 - Good agreement with Wiedemann-Franz law ($\kappa/\sigma T = C$)
- What is wrong about Drude's model?
 - - (:: Electrons are Fermion that must obey Fermi-Dirac Distribution (O)!)

	Drude model	
Electronic velocity distribution	Maxwell-Boltzmann Distribution	
Formula	$f_{MB}(\boldsymbol{v}) = n \left(\frac{m}{2k_BT}\right)^{\frac{3}{2}} e^{-\frac{mv^2}{2k_BT}}$	$f_{FD}(oldsymbol{v})$:

Sommerfeld model = Drude's free electron model + Fermi-Dirac Distribution!

- discrepancy in specific heat (c_V) , mean-square electronic velocity (v^2) , thermopower (Q) and etc.

- Assumption that electronic velocity distribution follows the Maxwell-Boltzmann distribution (X)

Sommerfeld model

Fermi-Dirac

Distribution

The number of electrons per unit volume with velocities in the range of $d\boldsymbol{v}$ about \boldsymbol{v} : $f(\boldsymbol{v}) d\boldsymbol{v}$

$$=\frac{1}{4}\left(\frac{m}{\pi\hbar}\right)^{3}\frac{1}{\exp\left(\frac{\frac{1}{2}mv^{2}-E_{0}}{k_{B}T}\right)+1}$$

