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Metal
• General characteristics


- Excellent conductors of heat & electricity


- Ductile and malleable


- Shiny surface that reflects visible light (λ = 380~780 nm)


• Explaining metallic characteristics = A starting point of modern solid-state physics!


• Earliest model by Paul Drude (1900)


- Simple and practical model that has been used even today for rough estimation


(e.g. electrical conductivity)


- Fails to explain a majority of experimental data of metals


- Requires quantum mechanics to improve its validity

Crystalline gold Crystalline silver Crystalline Bismuth

Paul K. L. Drude

(Germany)

1863-1906



Drude model
• Tried to explain electrical and thermal conduction of a metal


• Applied a kinetic theory of gases to electrons in a metal

eZa

−e (Za − Z)

−eZ  : Atomic number


 : Weakly-bound valence electrons (mobile)


 : Tightly-bound core electrons (immobile)

Za

Z

Za − Z

A single isolated atom 

of the metallic element

- Conduction electrons move far away from their parent atoms


- A gas of conduction electrons move against a background of heavy immobile ions

An electron gas

moving against ions



Key assumptions in the Drude’s model (1/2)
① Electrons move in straight lines until they collide with immobile ions


(i.e., no other forces during their travel)


- No electron-electron interaction (Independent electron approx.)


- No electron-ion interaction (Free-electron approx.) (* except collisions)


- Under external E & H-fields, electrons move according to Newton’s law of motion


② Electrons bounce off ion cores instantaneously so that their velocities are abruptly changed.


(i.e., no time delay due to the collision)


③ Electrons achieve thermal equilibrium with their surroundings only through collision


- After each collision, the velocity  of the electron randomly oriented


- Speed  determined by the temperature where the collision occurred

(v0)
(|v0| = v0)



Key assumptions in the Drude’s model (2/2)
④ An electron undergoes a collision with a probability per unit time 


 = Mean-free time or collision time


- Right after a collision, an electron travels for a time  on the average before the next collision


-  = An average survival time for an electron between collisions 


-  is independent of electron’s position and velocity (i.e., the unique property of a metal)


-  = The probability that an electron undergoes a collision during , where 

(P ≜ 1/τ)
τ

τ

τ

τ
dt
τ

dt 0 ≤ dt ≤ τ



Electrical conductivity by the Drude model (1/2)
• Ohm’s law


,  where  : electrical conductivity


• Electrical current by electrons moving with an average speed  with a volume density 

J = σE σ

⟨v⟩ (n)

‣
Average speed  →  


‣ Volume  →  


‣ # of electrons within the volume  →  


‣ Charge carried by these electrons  →  


‣ Current density [A/m2]  →  


‣ Current density in 3D →   ,      : average electronic velocity

⟨v⟩ =
1
N ∑

j

vj

V = A ⟨v⟩ dt

N = n ⋅ V = nA ⟨v⟩ dt

dQ = − e ⋅ N = − enA ⟨v⟩ dt

J =
I
A

=
1
A

⋅
dQ
dt

= − en ⟨v⟩

J = − ne ⟨v⟩ ⟨v⟩

A
⟨v⟩

L = ⟨v⟩ dt



Electrical conductivity by the Drude model (2/2)
• Average electronic velocity


-
In the absence of E-field : 


- In the presence of E-field :


‣ Velocity after some time  :  , where 


‣ Average velocity : 


• Current density (revisited)


                               

∑
j

vj = 0 → ⟨v⟩ = 0 → J = 0

t v = v0 −
eEt
m

0 ≤ t ≤ τ

⟨v⟩ = ⟨v0⟩ −
eE ⟨t⟩

m
= −

eEτ
m

J = − ne ⟨v⟩ = ( ne2τ
m ) E ≜ σE ∴ σ =

1
ρ

=
ne2τ

m

: velocity of the electron

right after a collision

v0

Electrical conductivity



The density of electrons in a metal (1/2)
• Needed parameters for the metallic atom


- Avogadro’s number : 


- Mass density : 


- Atomic mass : 


- Number of conduction electrons : 


• Electron density of a metal


 


- Typically,  for metals

NA = 6.022 × 1023 (atoms/mol)

ρm (g/cm3)

A (g/mol)

Z

n =
N
V

= NA [ atoms
mol ] ×

ρm

A [ mol
cm3 ] × Z [ electrons

atom ] = NA
Zρm

A [ electrons
cm3 ]

n ∼ 1022 [electrons/cm3]



The density of electrons in a metal (2/2)
• A widely used measure of electron density


-  : A radius of a sphere whose volume is the volume per 

conduction electron as





- A typical range of  :  for metals


, where  : Bohr radius


- Bohr radius 


‣ A radius of a hydrogen atom in its ground state

‣ A scale for measuring atomic distances

rs

V
N

=
1
n

=
4
3

πr3
s ⟶ rs = ( 3

4πn )
1
3

rs [Å]
rs

a0
: 2 ∼ 6 a0

(a0)

Element Z n[1]  
(1022 cm-3)

rs  
(Å) rs/a0

Li (78 K) 1 4.70 1.72 3.25
Na (5 K) 1 2.65 2.08 3.93
K (5 K) 1 1.40 2.57 4.86

Rb (5 K) 1 1.15 2.75 5.20
Cs (5 K) 1 0.91 2.98 5.62

Cu 1 8.47 1.41 2.67
Ag 1 5.86 1.60 3.02
Au 1 5.90 1.59 3.01
Be 2 24.7 0.99 1.87
Mg 2 8.61 1.41 2.66
Ca 2 4.61 1.73 3.27
Sr 2 3.55 1.89 3.57
Ba 2 3.15 1.96 3.71
Nb 1 5.56 1.63 3.07
Fe 2 17.0 1.12 2.12

Mn (α) 2 16.5 1.13 2.14
Zn 2 13.2 1.22 2.30
Cd 2 9.27 1.37 2.59

Hg (78 K) 2 8.65 1.40 2.65
Al 3 18.1 1.10 2.07
Ga 3 15.4 1.16 2.19
In 3 11.5 1.27 2.41
Tl 3 10.5 1.31 2.48
Sn 4 14.8 1.17 2.22
Pb 4 13.2 1.22 2.30
Bi 5 14.1 1.19 2.25
Sb 5 16.5 1.13 2.14

R. W. G. Wyckoff, Crystal Structures, 2nd ed., Interscience, New York, 1963.



Estimation of collision time  (1/2)(τ)
• Collision time from the Drude model





- At ,  . (What is the physical significance of this  value?)


• Mean free path 





- The average distance an electron travels between collisions


-  : Average electronic speed. From classical thermodynamics,


 at 


 ~ Interatomic distance

σ =
1
ρ

=
ne2τ

m
⟶ τ =

m
ρne2

T = 300 K τ : 10−15 ∼ 10−14 [s] τ

l = v0τ

v0

1
2

mv2
0 =

3
2

kBT ⟶ v0 =
3kBT

m
∼ 107 [cm/s] T = 300 K

∴ l = 1 ∼ 10 [Å]



Estimation of collision time  (2/2)(τ)
• Drude’s conclusion from the mean-free path


-  ~ Interatomic distance


- Collision process = an electron bumps into the large heavy ion!


• Limitation of Drude’s model (What is missing?)


- The classical estimate of  is way too small (> x100!)


-  → temp-dependent,   → temp-independent


- At very low ,    (Electrons do not simply bump off the ions!)


• In the absence of theory of collision and thus of , 


finding -independent quantities has remained of fundamental interest even now!

l = 1 ∼ 10 [Å]

v0

τ v0

T l ≫ 103 ∼ 108 [Å]
τ

τ

Formula from previous slides

τ =
m

ρne2
, v0 =

3kBT
m



The equation of motion for Electron momentum (1/3)

Electrons subject to an external force  (e.g., an electric field) 

• Average electronic velocity at any time   :  


• Current density  :  


• Electron momentum after a time   :  


- Two types of electrons


‣ Electrons undergoes collisions during  with a probability 


‣ Electrons survive to  without collisions with a probability 


- An additional momentum acquired by these electrons : 

F (t)

t v (t) =
p (t)
m

J = − nev = −
nep
m

dt p (t + dt)

[t, t + dt] dt
τ

t + dt 1 −
dt
τ

F (t) dt + O (dt)2

Momentum per electron at a time t

External force



The equation of motion for Electron momentum (2/3)

• Momentum acquired by the “un-collided” electron





                


• Momentum acquired by the “collided” electron





 : an average time “after a collision at ” 

p (t + dt) = (1 −
dt
τ ) [p (t) + F (t) dt + O (dt)2]

= p (t) −
dt
τ

p (t) + F (t) dt + O (dt)2

p (t + dt) =
dt
τ

F (t) T ≤
dt
τ

F (t) dt =
F (t)

τ (dt)2

T t (T ≤ dt)

Absorbed!

Additional momentumPrevious
Probability



The equation of motion for Electron momentum (3/3)

• Overall electron momentum











p (t + dt) = p (t) −
dt
τ

p (t) + F (t) dt + O (dt)2

→ lim
dt→0

p (t + dt) − p (t)
dt

= lim
dt→0 (−

p (t)
τ

+ F (t)) + O (dt)

∴
dp (t)

dt
= −

p (t)
τ

+ F (t)

Frictional damping term

due to collisions
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Hall effects
• Conditions


- An electrical conductor carries an electric current  in  direction


- A magnetic field  applied transverse to the electric current 


in  direction


- Due to the Lorentz force , electrons are deflected 


in  direction and are accumulated at that side of the conductor

• Hall fields


- To oppose the further accumulation of the electrons, 


a Hall field in  direction  is induced!


- In equilibrium the Hall field  counterbalances the Lorentz force 

and an electric current only flows in  direction

(Jx) +x

(B)
+z

(F = − ev × B)
−y

−y (Ey)
(Ey)

+x

Jx

Ex

Ey

x
z y

v

B

x
z y

−ev × B

−eEy

B



Hall coefficient
• Two quantities of interest


- Magnetoresistance  and Hall field 


• A Hall coefficient:      (∵  may depend on  since it balances Lorenz force)

(ρ =
Ex

Jx ) (Ey)

RH ≜
Ey

JxB
Ey B

Jx

B

- Negative charge : RH < 0

v

ev × B

eEy

Ey

Jx

B

v

−ev × B

−eEy

Ey

- Positive charge : RH > 0

x
z y



Drude’s analysis of the Hall effect (1/3)
• Equation of motion for electron momentum


,  where  


                                            Here,  .


• In the steady-state 


dp (t)
dt

= −
p (t)

τ
+ F (t) F = − e (E + v × B) = − e (E +

1
m

p × B)
p × B =

ax ay az
px py pz

0 0 B
= axpyB − aypxB

(dp/dt → 0)

ax : −
px

τ − e (Ex +
pyB

m ) = 0

ay : −
py

τ − e (Ey +
pxB
m ) = 0

px=mvx

py=mvy

−
vx

mτ − e (Ex + vyB) = 0

−
vy

mτ − e (Ey − vxB) = 0



Drude’s analysis of the Hall effect (2/3)
• In equilibrium


- The Hall field  prevents the electron moving in  direction 





- The Hall coefficient :


               

(Ey) +y (i.e., vy = 0)
−

vx

mτ − e (Ex + vyB) = 0

−
vy

mτ − e (Ey − vxB) = 0 ⟶ Ey = vxB

RH =
Ey

JxB
=

vxB
−nevxB

= −
1
ne

∴ RH = −
1
ne



Drude’s analysis of the Hall effect (3/3)
• Is  (the Hall coefficient) reliable?


-  by Drude’s model.


Here,  by definition.


- Drude’s analysis only roughly valid at very low T and 

Strong  in very pure samples

• Also in reality,


-  depends on both  and T 


(although temp-dependent  uninvolved)


- But,  in some metals 


(only quantum theory of solids can explain these)

RH

RH = −
1
ne

→ n = −
1

eRH

RH =
Ey

JxB

B

RH B
τ

RH > 0

Metal Valence nD/n
Li 1 0.8
Na 1 1.2
K 1 1.1

Rb 1 1.0
Cs 1 0.9
Cu 1 1.5
Ag 1 1.3
Au 1 1.5
Be 2 -0.2
Mg 2 -0.4
In 3 -0.3
Al 3 -0.3

,  nD = −
1

eRH
n = NA

Zρm

A

Negative RH

Positive RH



AC electrical conductivity of a metal (1/2)
• The current induced in a metal by a time-varying E-field


- E-field : 


- The equation of motion for the electron momentum :


,  where  





- The current density by the E-field


,  where  


,  where  

E (t) = ℜ(Ẽ (ω) e−jωt)

dp (t)
dt

= −
p (t)

τ
+ F (t) F (t) = − e ⋅ ℜ(Ẽ (ω) e−jωt)

→ − jωp̃ (ω) = −
p̃ (ω)

τ
− eẼ (ω) → p̃ (ω) (jω −

1
τ ) = eẼ (ω) ⋯(1)

J (t) = ℜ(J̃ (ω) e−jωt) J̃ (ω) = − neṽ (ω) = − ne
p̃ (ω)

m
⋯(2)

J̃ (ω) = −
ne
m

eẼ (ω)

jω − 1
τ

= σ (ω) Ẽ (ω) σ (ω) ≜
ne2τ

m

1 − jωτ
=

σ0

1 − jωτ
Frequency-dependent AC conductivity



AC electrical conductivity of a metal (2/2)
• Two puzzles in the derivation


(1) Time-varying E-field accompanies H-field (i.e., electromagnetic wave)


  → The Lorenz force : 


  → The equation of motion : 


(2) E-field of the EM wave depends on both space and time !


  → But, if a wavelength of the EM wave  >>  a mean free path of electrons

F = − e (E + v × B)
p
dt

= −
p
τ

− e (E +
p
m

× B)
(i.e., E (r, t))

Negligible compared to E

 → Then,  is entirely determined by  at !J (r, t) E (r, t) r

(e.g. 380 ~ 780 nm for visible light) (1 ~ 10 Å by the Drude’s model)



Complex permittivity
• Maxwell’s equations (in phasor notation)


 


• Complex permittivity





,  where  

∇ ⋅ E = 0
∇ ⋅ H = 0
∇ × E = − μ ∂H

∂t

∇ × H = J + ϵ ∂E
∂t

⟶

∇ ⋅ Ẽ = 0
∇ ⋅ H̃ = 0
∇ × Ẽ = − μ (−jωH̃) = jωμH̃

∇ × H̃ = J̃ − jωϵẼ

∇ × H̃ = J̃ − jωϵẼ = (σ − jωϵ) Ẽ = − jω (ϵ −
σ
jω ) Ẽ ≜ − jωϵcẼ

∴ ϵc = ϵ −
σ
jω

σ =
σ0

1 − jωτ

( ∵ E (r, t) = ℜ(Ẽ (r) e−jωt))



Plasma oscillation (1/3)
• Plasma frequency


- High frequency approximation 





,  where  


- Wave equation :





 , where 

(ωτ ≫ 1)

lim
ωτ≫1

σ =
σ0

−jωτ
⟶ ϵc = ϵ −

σ0/(−jωτ)
jω

= ϵ (1 −
σ0/ϵτ
ω2 ) ≜ ϵ (1 −

ω2
p

ω2 )
ϵc = ϵ (1 −

ω2
p

ω2 ) ω2
p =

σ0

ϵτ
=

ne2τ/m
ϵτ

=
ne2

mϵ

∇ × Ẽ = jωμH̃ ⟶ [∇ × (∇ × Ẽ) = ∇(∇ ⋅ Ẽ) − ∇2Ẽ] = [jωμ (∇ × H̃)]

→ − ∇2Ẽ = ω2μϵcẼ ≜ k2
c Ẽ ⟶ ∇2Ẽ + k2

c ∇2Ẽ = 0

Ex ∼ e−jkcx

Ey ∼ e−jkcy

Ez ∼ e−jkcz

kc = ω μϵc

∇ × H̃ = − jωϵcẼ

σ =
σ0

1 − jωτ
, ϵc = ϵ −

σ
jω

, σ0 =
ne2τ

m

Formula from previous slides



Plasma oscillation (2/3)
• Plasma frequency (contd.)


- (Case 1)     →    : real and negative


 decays exponentially into a metal, and gets reflected off

(i.e. no radiation can propagate “through” the metal)


- (Case 2)     →    : real and positive


 oscillates with a frequency  without attenuation

(i.e. radiation can propagate through the metal  =  the metal becomes transparent!)


• In reality?

- Plasma frequency in other form:


   and   


- Alkali metals satisfy the Drude’s prediction!

- But other metals do not!

ω < ωp ϵc

Ẽ

ω > ωp ϵc

Ẽ ω

νp =
ωp

2π
λp =

c
νp

ϵc = ϵ (1 −
ω2

p

ω2 ),

Ex ∼ e−jkcx

Ey ∼ e−jkcy

Ez ∼ e−jkcz

where kc = ω μϵc

Formula from previous slides



Plasma oscillation (3/3)
• What is really happening in a metal?


- In an electron gas, a charge density oscillates in response to the external E-field.


  


Since ,   


- High frequency approx. 


   (Same as a plasma frequency!)


- Such a charge density wave = Plasma oscillation

Continuity equation : ∇ ⋅ J = − ∂ρ
∂t ⟶ ∇ ⋅ J̃ = jωρ̃

Gauss's law : ∇ ⋅ Ẽ = ρ̃
ϵ

J̃ = σẼ [∇ ⋅ J̃ = jωρ̃] = σ∇ ⋅ Ẽ → ∇ ⋅ Ẽ =
jωρ̃
σ

→
jωρ̃
σ

=
ρ̃
ϵ

→ jωϵ = σ

(ωτ ≫ 1)

jωϵ = [σ =
σ0

1 − jωτ
≃

σ0

−jωτ ] ⟶ ω2 =
σ0

ϵτ
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The most notable success of Drude’s model
• Explanation of the empirical law of Wiedemann and Franz (1853)


,  where  thermal conductivity,   electrical conductivity


-  a proportionality constant that is, to a fair accuracy, the same for all metals!


• Key assumptions to derive thermal conductivity 


- Thermal conduction in a metal is done by the conduction electrons


- Thermal conduction by the ions is negligible


- Thermal energy flows opposite to temperature gradient 

κ
σ

= CT κ : σ :

C :

(κ)

(∇T)

High T Low T

G. H. Wiedemann

(Germany)

1826-1899

∇T



Thermal conductivity
• Thermal flux 


- Direction = Parallel to the direction of heat flow


- Magnitude = thermal energy per unit time crossing a unit area perpendicular to the flow 


,   where  thermal conductivity (W/m-K),  temperature gradient (K/m)


• Revisited assumption of Drude’s model


- After each collision, an electron emerges with a speed appropriate to the local temperature

(JT)

(W/m2)
JT = − κ∇T κ : ∇T :

Hot zone Cool zone



Derivation of thermal conductivity (1/2)
• Simple 1D model


- A half of electrons that had their last collisions at 

 move towards  with a velocity 


- A half of electrons that had their last collisions at 

 move towards  with a velocity 

x − υτ x υ

x + υτ x −υ

• Thermal flux at 


,  where  Electron density per unit volume


    


   

x

JT =
n
2

⋅ υ ⋅ ℰ (T (x − υτ)) +
n
2

⋅ (−υ) ⋅ ℰ (T (x + υτ)) n :

=
nυ
2 [ℰ (T (x − υτ)) − ℰ (T (x + υτ))]

=
nυ
2

⋅ 2υτ ⋅ [ ℰ (T (x − υτ)) − ℰ (T (x + υτ))
2υτ ] υτ→0

nυ2τ
dℰ
dT (−

dT
dx )

T (x − υτ) T (x + υτ)

ℰ (T (x − υτ)) ℰ (T (x + υτ))

x − υτ x x + υτPosition

Temp

Energy

*  : mean free pathx − υτ = l



Derivation of thermal conductivity (2/2)
• Thermal conduction in 3D


- Electronic velocity


, where 


- Electronic specific heat





• Thermal flux in 3D


        

υ = axυx + ayυy + azυz ⟨υ2
x ⟩ = ⟨υ2

y ⟩ = ⟨υ2
z ⟩ ≜

1
3

υ2

n
dℰ
dT

=
N
V

dℰ
dT

=
1
V

dE
dT

≜ cV

JT = axn ⟨υ2
x ⟩ τ

dℰ
dT (−

dT
dx ) ⟶ JT =

1
3

υ2τcV (−∇T) = κ (−∇T) ∴ κ =
1
3

υ2τcV

mean-square electronic speed





* Note that  


   in thermal equilibrium. Corrections to this

   due to  is exceedingly small.

(υ2 = ⟨υ2
x ⟩ + ⟨υ2

y ⟩ + ⟨υ2
z ⟩)

⟨υx⟩ = ⟨υy⟩ = ⟨υz⟩ = 0

∇T

Thermal flux in 1D

JT = nυ2τ
dℰ
dT (−

dT
dx )

Thermal conductivity

: Required energy to raise unit temperature of an electron gas in the unit volume



(Revisited) Wiedemann and Franz law [1/2]
• Wiedemann and Franz law interpreted by Drude’s model





According to the classical kinetic theory of gases: 





κ
σ

=
1
3 υ2τcV

ne2τ/m
=

1
3

cVmυ2

ne2

cV = 3
2 nkB

1
2 mυ2 = 3

2 kBT

∴
κ
σ

=
3
2 ( kB

e )
2

T

→
κ

σT
=

3
2 ( kB

e )
2

≃ 1.11 [10−8 W ⋅ Ω/K2]

Element 273 K 373 K
Li 2.22 2.43
Na 2.12
K 2.23

Rb 2.42
Cu 2.20 2.29
Ag 2.31 2.38
Au 2.32 2.36
Be 2.36 2.42
Mg 2.14 2.25
Nb 2.90 2.78
Fe 2.61 2.88
Zn 2.28 2.30
Cd 2.49
Al 2.14 2.19
In 2.58 2.60
Tl 2.75 2.75
Sn 2.48 2.54
Pb 2.64 2.53
Bi 3.53 3.35
Sb 2.57 2.69

Kaye and Laby, Table of Physical and Chemical 
Constants, Longmans Green, Longdon, 1966.

Measured 
κ

σT [10−8 W ⋅ Ω/K2]



(Revisited) Wiedemann and Franz law [2/2]
• In reality


- It was fortunate that the Drude’s model roughly predicts Wiedemann-Franz Law!

Drude’s model In reality

~1.1 ~2.2

Electronic heat capacity

Mean square electronic 
velocity

Errors in  and  cancel 


each other out, which leads to 

“nearly correct” results!

cV υ2

- Sommerfeld model (Drude’s model + quantum theory) can correct the discrepancy in each 

parameter and hence more accurately predicts the W-F law!

κ
σT [10−8 W ⋅ Ω/K2]

cV ∼
1

100
cV

1
2

mυ2 ∼ 100 ⋅
1
2

mυ2

κ
σ

=
1
6

cV ( 1
2 mυ2)
ne2



Thermoelectric field (1/2)
• Condition


- A temperature gradient  in an open-circuited, long and thin bar


-  forces electrons to move in a direction opposite to 

- An electric field is induced to oppose the accumulation of electrons

(∇T)
∇T ∇T

Thermal flow
Accumulated

Electrons

∇T
E

• Thermoelectric field


,    where  thermopower (V/K)


- Mean electronic velocity at  due to 





    

E = Q∇T Q :

x ∇T

vQ =
1
2 [υ (x − υτ) − υ (x + υτ)] =

1
2

(2υτ) [ υ (x − υτ) − υ (x + υτ)
2υτ ] = υτ (−

dυ
dx )

= − τ
d
dx ( υ2

2 ) = − τ
d

dT ( υ2

2 ) dT
dx

= − τ
d

dT ( υ2

2 )∇T



Thermoelectric field (2/2)
• Thermoelectric field in 3D (contd.)


- Mean square electronic velocity :





- Mean electronic velocity due to thermoelectric field : 


- In thermal equilibrium : 


,   where   

⟨υ2
x ⟩ = ⟨υ2

y ⟩ = ⟨υ2
z ⟩ =

1
3

υ2 ⟶ υQ = −
τ
6 ( dυ2

dT )∇T
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Thermopower : the ideal and the real
• Thermopower by Drude’s model





• Measured thermopower
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Element Q [V/K]

Na -5 x 10-6

K -12.5 x 10-6

Cu 1.8 x 10-6

Be 1.5 x 10-6

Al -1.8 x 10-6

- A factor of 100 smaller!

- A sign of thermopower is positive for some metals!
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Drude vs. Sommerfeld models

Drude model Sommerfeld model

Electronic velocity 
distribution

Maxwell-Boltzmann 
Distribution
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Formula

The number of electrons per unit volume 
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• Drude model shows…


- Good agreement with Wiedemann-Franz law 


- discrepancy in specific heat , mean-square electronic velocity , thermopower  and etc.


• What is wrong about Drude’s model?

- Assumption that electronic velocity distribution follows the Maxwell-Boltzmann distribution (X)


(∵ Electrons are Fermion that must obey Fermi-Dirac Distribution (O)!)

(κ/σT = C)

(cV) (υ2) (Q)

• Sommerfeld model = Drude’s free electron model + Fermi-Dirac Distribution!


