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Drude vs. Sommerfeld models

Drude model Sommerfeld model

Electronic velocity 
distribution

Maxwell-Boltzmann 
Distribution

Fermi-Dirac 

Distribution

Formula
The number of electrons per unit volume 

with velocities in the range of  about :
dυ υ
f (υ) dυ

fMB (υ) = n ( m
2kBT )

3
2

e− mυ2
2kBT fFD (υ) = 1

4 ( m
πℏ )

3 1

exp (
1
2 mυ2 − E0

kBT ) + 1

• Drude model shows…

- Good agreement with a Wiedemann-Franz law 


- discrepancy in specific heat , mean-square electronic velocity , thermopower  and etc.


• What is wrong about Drude’s model?

- Assumption that electronic velocity distribution follows the Maxwell-Boltzmann distribution (X)


(∵ Electrons are Fermion that must obey Fermi-Dirac Distribution (O)!)

(κ/σ = CT)
(cV) (υ2) (Q)

• Sommerfeld model = Drude’s free electron model + Fermi-Dirac distribution!



Quantum theory of the electron gas
• Ground-state characteristics of an electron gas (at )


[Step 1] Find the energy levels available for  electrons in a volume 


[Step 2] Fill these levels up in a manner consistent with the Pauli Exclusion Principle


• Characteristics of a single electron


- A wavefunction for a single electron : 


-  satisfies time-independent Schrödinger’s equation:


,  where  : an associated energy level with 


(Q: Why is there no potential energy term?)


- , i.e., the behavior of the electron in , determined by Boundary Condition!

T = 0 (K)
N V

ψ (r)
ψ (r)

− ℏ2

2m
∇2ψ (r) = ℰψ (r) ℰ ψ (r)

ψ (r) V



Boundary condition
• Boundary condition for a single electron


- In a sufficiently large metal, bulk properties NOT affected by its interface → Freedom in choosing B.C.!

- Widely used “periodic B.C.”:


 


- Solution to T.I.S.E. with the given B.C.:


 ,   where  is a wavevector associated with 


Here,  obtained by using 

ψ (x, y, z + L) = ψ (x, y, z)
ψ (x, y + L, z) = ψ (x, y, z)
ψ (x + L, y, z) = ψ (x, y, z)

ψk (r) = 1
V

eik⋅r k ℰ (k) = ℏ2|k|2

2m

1/ V ∫V
ψk (r) 2

dr = ∫V
P (r) dr = 1

L

L

L

x
y

z

− ℏ2

2m
∇2ψ (r) = ℰψ (r)

T.I.S.E.

L3 = V → ∞



Wavevector k
• Meaning of 


- As a particle


‣ Momentum of the electron :  


‣ a velocity of the electron :  


‣ Kinetic energy :   

k

p = ℏk

υ = p
m

= ℏk
m

ℰ = 1
2 m|υ|2 = ℏ2|k|2

2m

- As a wave


‣  a wave-vector for the plane wave  that 

propagates in a direction parallel to 


‣  = constant in any plane perpendicular to 


‣  = periodic along the line parallel to  


with a wavelength 

k : eik⋅r

k

eik⋅r k

eik⋅r k

λ = 2π
|k |

de Broglie wavelength
• How to obtain  ?


-  satisfies the given B.C., only if


 , where : integers

k

ψk (r) ∼ eik⋅r

eikxL = eikyL = eikzL = 1 ⟶ kx = 2πnx

L
, ky =

2πny

L
, kz =

2πnz

L
nx, ny, nz

ψ (x, y, z + L) = ψ (x, y, z)
ψ (x, y + L, z) = ψ (x, y, z)
ψ (x + L, y, z) = ψ (x, y, z)

Periodic B.C.



The -spacek
• The -space = momentum space = reciprocal space*


- Allowed -vectors are given by integer multiples of  along 


three axes, i.e., 


- Number of allowed -points in the unit volume in -space:





- At each  with the associated , 


only two electrons are allowed with two spin projection directions 

(∵ Pauli Exclusion Principle)

k

k 2π/L

k = (kx, ky, kz) = ( 2π
L

nx,
2π
L

ny,
2π
L

nz)
k k

1
(2π/L)3 = L3

8π3 = V
8π3

k ℰ = ℏ2|k|2

2m

kx

ky

kz

2π/L

k or ℰ

0



The Fermi sphere
• The Fermi wavevector 


- Within a sphere of a radius ,


the energy levels (or  values) are occupied by  electrons; 


Outside the sphere, the energy levels are NOT occupied!


- Number of allowed  points within the Fermi sphere:


 (volume x density)


- In order for these points to accommodate  electrons,


kF

kF = kF

k N

k

nF ≜ ( 4
3 πk3

F) × ( V
8π3 )

N

N = 2 × nF = 2 × ( 4
3 πk3

F × V
8π3 ) ⟶ N

V
= k3

F

3π2 ⟶
The ground state of  electrons within a 
volume  is formed by occupying all electron 
levels with  and leaving all those with 

 unoccupied

N
V

k < kF
k > kF

k

0

kF

 electronsN

kx

ky

kz

kF

Fermi sphere



The Fermi parameters (1/2)
• Electronic property vs. 


- Recall the volume per conduction electron in real space, i.e.,





- From the Fermi sphere, 


,  where  


- For most metallic elements, 

kF

V
N

= 1
n

= 4πr3
s

3 ⟶ rs = ( 3
4πn )

1
3

n = N
V

= k3
F

3π2 = 3
4πr3s

⟶ kF = 3.63
rs/a0

(Å−1) a0 = ℏ2

me
= 0.529 (Å)

rs/a0 = 2 ∼ 6 ⟶ kF ∼ Å−1 ⟶ λF = 2π
kF

∼ Å

N
V

= k3
F

3π2

Metallic electron’s wavelength  
by de Broglie wavelength

 vs. N kF



The Fermi parameters (2/2)
• Electronic property vs.  (contd.)


- Fermi velocity (i.e., the velocity of the electron in the highest occupied state at the Fermi surface)





c.f.) Thermal velocity of a classical particle, 


Even at ,   ,   where  : the speed of light


- Fermi Energy (i.e., the kinetic energy of the electron in the highest occupied state)


.      for metals

kF

υF = ℏkF

m
= 4.20

rs/a0
× 106 (m/s)

υth ≈ 3kBT
m

∼ {102∼3 (m/s) at T = 298 K
0 (m/s) at T = 0 K

T = 0 K υF ≈ 0.01c ≫ υth = 0 c

ℰF = ℏ2k2
F

2m
= ( e2

2a0 ) (kFa0)2 = 50.1

(rs/a0)2 (eV) ℰF = 1.5 ∼ 15 (eV)



Ground state energy of an electron gas (1/2)
• Ground state energy of  electrons in a volume 


  (within the Fermi sphere)


- Conversion of summation to integral


N V

E = 2 ∑
|k|<|kF|

ℏ2|k|2

2m

∑
k

F (k) = V
8π3 ∑

k
F (k) Δk = V

8π3 ∫ dkF (k) ⟶ lim
V→∞

1
V ∑

k
F (k) = 1

8π3 ∫ dkF (k)




: The volume in a -space

per allowed  value

Δk = 8π3

V
k

k




In a macroscopically large volume , 


 does not significantly vary over distances of order  in -space.

lim
V→∞ (Δk → 0)

(V → ∞)

F (k) 2π
k

k



Ground state energy of an electron gas (2/2)
• Ground state energy of  electrons in a volume  (contd.)





- Energy per unit volume and per electron: 


. And since ,    


-
Overall energy at ,  

N V

E = 2 ∑
k<kF

ℏ2k2

2m
⟶ E

V
= 2

8π3 ∫k<kF

dk ℏ2k2

2m
= 1

4π3 ∫k<kF

(4πk2dk) ℏ2k2

2m

E
V

= 1
π2

ℏ2k5
F

10m
n = N

V
= k3

F

3π2
E/V
N/V = E

N
= 3

10
ℏ2k2

F

m
= 3

5 ℰF

T = 0 (K)
Electron gas: ℰF = ℏ2k2

F

2m = 1.5 ∼ 15 (eV)

Classical gas: ℰth = 3
2 kBT = 0 (eV)

Energy per electron

lim
V→∞

1
V ∑

k
F (k) = 1

8π3 ∫ dkF (k)
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Excited state of an electron gas
• Excited state of -electronic system at 


- The property of the system calculated by averaging such a property over all possible states


- The probability of the system being in a state 


,  where 


- Partition function


,  where 


N T > 0 (K)

i

pN (Ei) ∝ e− Ei
kBT =

1
Q

e− Ei
kBT Q ≜ ∑

i

e− Ei
kBT

Q = ∑
i=1

e− Ei
kBT ≜ e− FN

kBT FN = U − TS

∴ pN (Ei) = e− Ei − FN
kBT

‣  : The Helmholtz free energy, the thermodynamic 

potential that measures the useful work obtainable 
from a closed thermodynamic system at a given 

temperature 


‣  : Internal energy


‣  : Entropy

FN

T
U
S



Derivation of Fermi-Dirac distribution (1/4)

• Electronic state for the -electronic system


- In each electronic state,  single-electron levels are filled in a way 


consistent with the Pauli Exclusion principle


- A useful quantity to define :  


• The probability that an electron occupies the -th level of -electronic system: 

  ,   


  ,   

N

N

fi

i N

(1) fi,N ≜ ∑
α

pN (Eα,N) (α = 1,2,⋯)

(2) fi,N ≜ 1 − ∑
β

pN (Eβ,N) (γ = 1,2,⋯)

 : The energy of -th -electronic state whose -th level is occupied


: Sum of probabilities for the system being in any of such states 

Eα,N α N i

∑
α

(α = 1,2,⋯)

 : The energy of -th -electronic state whose -th level is NOT occupied


: Sum of probabilities for a system being in any of such states 

Eβ,N β N i

∑
β

(β = 1,2,⋯)

i

Eb

i + 1

i − 1

i − 2

i + 2

Ea Ec



Derivation of Fermi-Dirac distribution (2/4)
• Electronic state for the -electronic system


- -electronic states having an electron in their -th level ···(case 1) 

= -electronic states without an electron in their -th level, while leaving  


   all the other levels unaltered ···(case 2)


- Energy of the states for case (1) 


- Energy of the -th level 


- Energy of the states for case (2) 

(N + 1)

(N + 1) i

N i

≜ Eα,N+1

i ≜ ℰi

= Eα,N+1 − ℰi

 : The energy of -th -electronic state whose -th level is occupied


 : The energy of -th -electronic state whose -th level is NOT occupied

Eα,N+1 α (N + 1) i

Eα,N+1 − ℰi α N i

• The probability that an electron occupies the -th level of -electronic system: 

  

i N

(3) fi,N = 1 − ∑
α

pN (Eα,N+1 − ℰi)

i i



(Case 1)

(N + 1) − system 

(Case 2)

(N) − system



Derivation of Fermi-Dirac distribution (3/4)
• The probability that an electron occupies the -th electron level of the system: 




Here, 


                                       


                                       ,  where   


i

fi,N = 1 − ∑
α

pN (Eα,N+1 − ℰi)

PN (Eα,N+1 − ℰi) = exp (− (Eα,N+1 − ℰi) − FN

kBT )
= exp (−

Eα,N+1 − FN+1

kBT ) ⋅ exp (
ℰi − (FN+1 − FN)

kBT )
= pN+1 (Eα,N+1) ⋅ exp ( ℰi − μ

kBT ) FN+1 − FN ≜ μ

∴ fi,N = 1 − exp ( ℰi − μ
kBT )∑

α

pN+1 (Eα,N+1) = 1 − exp ( ℰi − μ
kBT ) fi,N+1

pN (E) = exp (−
E − FN

kBT )

Chemical potential 
: The change of free energy due to

  a change of the particle number

 : The energy of -th -electronic state whose -th level is occupied


 : The energy of -th -electronic state whose -th level is NOT occupied

Eα,N+1 α (N + 1) i

Eα,N+1 − ℰi α N i



Derivation of Fermi-Dirac distribution (4/4)
• The probability that an electron occupies the -th electron level of the system: 

If , the change in a probability by the adding an extra electron is negligible!








i

N ≫ 1022 cm−3

fi,N = 1 − exp ( ℰi − μ
kBT ) fi,N+1

lim N→∞
fi,N ≈ 1 − exp ( ℰi − μ

kBT ) fi,N

∴ fi =
1

exp ( ℰi − μ
kBT ) + 1

Fermi-Dirac distribution 

- The probability of the electron occupying the -th level of an -electronic system


- The mean number of electrons that are in -th level:


i N
i

n̄i ≜ 0 × (1 − fi) + 1 × fi = fi ⟶ ∑
i

n̄i = ∑
i

1

exp ( ℰi − μ
kBT )

= N

* The term  is dropped since -dependence is considered in N N μ



Basics of quantum statistics
• Quantum statistics


- determines how particles occupy a system that consists of several energy levels


- Three major types:


‣ Maxwell-Boltzmann stats for distinguishable particles 


‣ Fermi-Dirac stats for indistinguishable particles that obey exclusion principle


‣ Bose-Einstein stats for indistinguishable particles that DON’T obey exclusion principle


• Wavefunction for two particles


- Distinguishable





- Indistinguishable


ψ (r1, r2) = ϕa (r1) ϕb (r2) ≠ ϕa (r2) ϕb (r1) {particle 1 in state a
particle 2 in state b

ψ (r1, r2) =

1

2 (ϕa (r1) ϕb (r2) + ϕb (r1) ϕa (r2)) ≜ ψB (r1, r2) ⋯ Boson

1

2 (ϕa (r1) ϕb (r2) − ϕb (r1) ϕa (r2)) ≜ ψF (r1, r2) ⋯ Fermion

James C. Maxwell

(United Kingdom)


1831-1879

Ludwig Boltzmann

(Austria)


1844-1906

Paul Dirac

(England)


1902-1984

Enrico Fermi

(Italy)


1901-1954

Satyendra N. Bose

(India)


1894-1974

Albert Einstein

(Germany)

1879-1955

state a state b state a state b
≠

1 2 2 1

state a state b state a state b
=

1 2 2 1

Classical particles

Quantum mechanical particles



Implications of Pauli Exclusion principle?
• Pauli exclusion principle


- Fermions cannot occupy the same quantum state!


- If states  and  are the same, 





• General expression for the wavefunctions of Boson and Fermion





• Number of allowed particles per state vs. type of particles

a b

ψB (r1, r2) = 1

2 (ϕa (r1) ϕa (r2) + ϕa (r1) ϕa (r2)) = 2ϕa (r1) ϕa (r2) ≠ 0

ψF (r1, r2) = 1

2 (ϕa (r1) ϕa (r2) − ϕa (r1) ϕa (r2)) = 0 ⟶ No wavefunction exists for such a case!

{
ψ (r1, r2) = ψ (r2, r1) ⋯ Symmetric under particle exchange (Bosons)

ψ (r1, r2) = − ψ (r2, r1) ⋯ Anti-symmetric under particle exchange (Fermions)

Type of particles Particles per state Statistics

Distinguishable Unlimited Maxwell-Boltzmann

Indistinguishable
Boson Unlimited Bose-Einstein

Fermion Only one Fermi-Dirac

ψB (r1, r2) ≜ 1

2 (ϕa (r1) ϕb (r2) + ϕb (r1) ϕa (r2))
ψF (r1, r2) ≜ 1

2 (ϕa (r1) ϕb (r2) − ϕb (r1) ϕa (r2))


