Intro. to Electro-physics

Sommerfeld's model (1st)

Jaesang Lee
Dept. of Electrical and Computer Engineering
Seoul National University
(email: jsanglee@snu.ac.kr)

Drude vs. Sommerfeld models

- Drude model shows...
- Good agreement with a Wiedemann-Franz law ($\kappa / \sigma=C T$)
- discrepancy in specific heat $\left(c_{V}\right)$, mean-square electronic velocity $\left(v^{2}\right)$, thermopower (Q) and etc.
- What is wrong about Drude's model?
- Assumption that electronic velocity distribution follows the Maxwell-Boltzmann distribution (X)
(\because Electrons are Fermion that must obey Fermi-Dirac Distribution (O)!)

	Drude model	Sommerfeld model	
Electronic velocity distribution	Maxwell-Boltzmann Distribution	Fermi-Dirac Distribution	
Formula	$f_{M B}(\boldsymbol{v})=n\left(\frac{m}{2 k_{B} T}\right)^{\frac{3}{2}} e^{-\frac{m v^{2}}{2 k_{B} T}}$	$f_{F D}(\boldsymbol{v})=\frac{1}{4}\left(\frac{m}{\pi \hbar}\right)^{3} \frac{1}{\exp \left(\frac{\frac{1}{2} m v^{2}-E_{0}}{k_{k} T}\right)+1}$	The number of electrons per unit volume with velocities in the range of $d \boldsymbol{v}$ about \boldsymbol{v} : $f(\boldsymbol{v}) d \boldsymbol{v}$

- Sommerfeld model = Drude's free electron model + Fermi-Dirac distribution!

Quantum theory of the electron gas

- Ground-state characteristics of an electron gas (at $T=0(K)$)
[Step 1] Find the energy levels available for N electrons in a volume V
[Step 2] Fill these levels up in a manner consistent with the Pauli Exclusion Principle
- Characteristics of a single electron
- A wavefunction for a single electron : $\psi(\boldsymbol{r})$
- $\psi(\boldsymbol{r})$ satisfies time-independent Schrödinger's equation:

$$
-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi(\boldsymbol{r})=\mathscr{E} \psi(\boldsymbol{r}), \text { where } \mathscr{E}: \text { an associated energy level with } \psi(\boldsymbol{r})
$$

(Q: Why is there no potential energy term?)

- $\psi(\boldsymbol{r})$, i.e., the behavior of the electron in V, determined by Boundary Condition!

Boundary condition

$$
\begin{aligned}
& -\frac{\hbar^{2}}{2 m} \nabla^{2} \psi(\boldsymbol{r})=\mathscr{E} \psi(\boldsymbol{r})
\end{aligned}
$$

- Boundary condition for a single electron
- In a sufficiently large metal, bulk properties NOT affected by its interface \rightarrow Freedom in choosing B.C.!
- Widely used "periodic B.C.":

$$
\left\{\begin{array}{l}
\psi(x, y, z+L)=\psi(x, y, z) \\
\psi(x, y+L, z)=\psi(x, y, z) \\
\psi(x+L, y, z)=\psi(x, y, z)
\end{array}\right.
$$

- Solution to T.I.S.E. with the given B.C.:

$\psi_{\boldsymbol{k}}(\boldsymbol{r})=\frac{1}{\sqrt{V}} e^{i \boldsymbol{k} \cdot \boldsymbol{r}}, \quad$ where \boldsymbol{k} is a wavevector associated with $\mathscr{E}(\boldsymbol{k})=\frac{\hbar^{2}|\boldsymbol{k}|^{2}}{2 m}$
Here, $1 / \sqrt{V}$ obtained by using $\int_{V}\left|\psi_{k}(\boldsymbol{r})\right|^{2} d \boldsymbol{r}=\int_{V} P(\boldsymbol{r}) d \boldsymbol{r}=1$

Wavevector k

- Meaning of \boldsymbol{k}
- As a wave
- \boldsymbol{k} : a wave-vector for the plane wave $e^{i \boldsymbol{k} \cdot \boldsymbol{r}}$ that propagates in a direction parallel to \boldsymbol{k}
- $e^{i \boldsymbol{k} \cdot \boldsymbol{r}}=$ constant in any plane perpendicular to \boldsymbol{k}
- $e^{i \boldsymbol{k} \cdot \boldsymbol{r}}=$ periodic along the line parallel to \boldsymbol{k}

$$
\text { with a wavelength } \lambda=\frac{2 \pi}{|\boldsymbol{k}|}-\text { de Broglie wavelength }
$$

- How to obtain \boldsymbol{k} ?

$$
\mathscr{E}=\frac{1}{2} m|\boldsymbol{v}|^{2}=\frac{\hbar^{2}|\boldsymbol{k}|^{2}}{2 m}
$$

- $\psi_{k}(\boldsymbol{r}) \sim e^{i \boldsymbol{k} \cdot \boldsymbol{r}}$ satisfies the given B.C., only if

$$
e^{i k_{x} L}=e^{i k_{y} L}=e^{i k_{z} L}=1 \longrightarrow k_{x}=\frac{2 \pi n_{x}}{L}, k_{y}=\frac{2 \pi n_{y}}{L}, k_{z}=\frac{2 \pi n_{z}}{L}, \text { where } n_{x}, n_{y}, n_{z}: \text { integers }
$$

The k-space

- The \boldsymbol{k}-space $=$ momentum space $=$ reciprocal space*
- Allowed \boldsymbol{k}-vectors are given by integer multiples of $2 \pi / L$ along three axes, i.e., $\boldsymbol{k}=\left(k_{x}, k_{y}, k_{z}\right)=\left(\frac{2 \pi}{L} n_{x}, \frac{2 \pi}{L} n_{y}, \frac{2 \pi}{L} n_{z}\right)$
- Number of allowed \boldsymbol{k}-points in the unit volume in \boldsymbol{k}-space:

$$
\frac{1}{(2 \pi / L)^{3}}=\frac{L^{3}}{8 \pi^{3}}=\frac{V}{8 \pi^{3}}
$$

_ At each \boldsymbol{k} with the associated $\mathscr{E}=\frac{\hbar^{2}|\boldsymbol{k}|^{2}}{2 m}$, only two electrons are allowed with two spin projection directions (\because Pauli Exclusion Principle)

The Fermi sphere

- The Fermi wavevector \boldsymbol{k}_{F}
- Within a sphere of a radius $\left|\boldsymbol{k}_{F}\right|=k_{F}$,
the energy levels (or \boldsymbol{k} values) are occupied by N electrons; Outside the sphere, the energy levels are NOT occupied!
- Number of allowed \boldsymbol{k} points within the Fermi sphere:

$$
\left.n_{F} \triangleq\left(\frac{4}{3} \pi k_{F}^{3}\right) \times\left(\frac{V}{8 \pi^{3}}\right) \text { (volume } \times \text { density }\right)
$$

- In order for these points to accommodate N electrons,

$$
N=2 \times n_{F}=2 \times\left(\frac{4}{3} \pi k_{F}^{3} \times \frac{V}{8 \pi^{3}}\right) \rightarrow \frac{N}{V}=\frac{k_{F}^{3}}{3 \pi^{2}} \rightarrow
$$

The ground state of N electrons within a volume V is formed by occupying all electron levels with $k<k_{F}$ and leaving all those with $k>k_{F}$ unoccupied

The Fermi parameters (1/2)

- Electronic property vs. k_{F}
- Recall the volume per conduction electron in real space, i.e.,

$$
\frac{V}{N}=\frac{1}{n}=\frac{4 \pi r_{s}^{3}}{3} \longrightarrow r_{s}=\left(\frac{3}{4 \pi n}\right)^{\frac{1}{3}}
$$

- From the Fermi sphere,

$$
n=\frac{N}{V}=\frac{k_{F}^{3}}{3 \pi^{2}}=\frac{3}{4 \pi r_{s}^{3}} \longrightarrow k_{F}=\frac{3.63}{r_{s} / a_{0}}\left(\AA^{-1}\right), \text { where } a_{0}=\frac{\hbar^{2}}{m e}=0.529(\AA)
$$

_ For most metallic elements, $r_{s} / a_{0}=2 \sim 6 \longrightarrow k_{F} \sim \AA^{-1} \longrightarrow \lambda_{F}=\frac{2 \pi}{k_{F}} \sim \AA$
Metallic electron's wavelength by de Broglie wavelength

The Fermi parameters (2/2)

- Electronic property vs. k_{F} (contd.)
- Fermi velocity (i.e., the velocity of the electron in the highest occupied state at the Fermi surface)

$$
v_{F}=\frac{\hbar k_{F}}{m}=\frac{4.20}{r_{s} / a_{0}} \times 10^{6}(\mathrm{~m} / \mathrm{s})
$$

c.f.) Thermal velocity of a classical particle, $v_{t h} \approx \sqrt{\frac{3 k_{B} T}{m}} \sim\left\{\begin{array}{l}10^{2 \sim 3}(\mathrm{~m} / \mathrm{s}) \text { at } T=298 K \\ 0(\mathrm{~m} / \mathrm{s}) \text { at } T=0 K\end{array}\right.$ Even at $T=0 K, v_{F} \approx 0.01 c \gg v_{t h}=0$, where $c:$ the speed of light

- Fermi Energy (i.e., the kinetic energy of the electron in the highest occupied state)

$$
\mathscr{E}_{F}=\frac{\hbar^{2} k_{F}^{2}}{2 m}=\left(\frac{e^{2}}{2 a_{0}}\right)\left(k_{F} a_{0}\right)^{2}=\frac{50.1}{\left(r_{s} / a_{0}\right)^{2}}(\mathrm{eV}) . \quad \mathscr{E}_{F}=1.5 \sim 15(\mathrm{eV}) \text { for metals }
$$

Ground state energy of an electron gas (1/2)

- Ground state energy of N electrons in a volume V
$E=2 \sum_{|\boldsymbol{k}|<\left|\boldsymbol{k}_{F}\right|} \frac{\hbar^{2}|\boldsymbol{k}|^{2}}{2 m}$ (within the Fermi sphere)
- Conversion of summation to integral

$$
\begin{aligned}
& \sum_{\boldsymbol{k}} F(\boldsymbol{k})=\frac{V}{8 \pi^{3}} \sum_{\boldsymbol{k}} F(\boldsymbol{k}) \Delta \boldsymbol{k} \underset{\uparrow}{=} \frac{V}{8 \pi^{3}} \int d \boldsymbol{k} F(\boldsymbol{k}) \longrightarrow \lim _{V \rightarrow \infty} \frac{1}{V} \sum_{\boldsymbol{k}} F(\boldsymbol{k})=\frac{1}{8 \pi^{3}} \int d \boldsymbol{k} F(\boldsymbol{k}) \\
& \Delta k=\frac{8 \pi^{3}}{V} \\
& \text { :The volume in a } \boldsymbol{k} \text {-space } \\
& \text { per allowed } \boldsymbol{k} \text { value } \\
& \lim _{V \rightarrow \infty}(\Delta k \rightarrow 0) \\
& \text { In a macroscopically large volume }(V \rightarrow \infty) \text {, } \\
& F(\boldsymbol{k}) \text { does not significantly vary over distances of order } \frac{2 \pi}{k} \text { in } \boldsymbol{k} \text {-space. }
\end{aligned}
$$

Ground state energy of an electron gas (2/2)

- Ground state energy of N electrons in a volume V (contd.)

$$
E=2 \sum_{k<k_{F}} \frac{\hbar^{2} k^{2}}{2 m} \longrightarrow \frac{E}{V}=\frac{2}{8 \pi^{3}} \int_{k<k_{F}} d \boldsymbol{k} \frac{\hbar^{2} k^{2}}{2 m}=\frac{1}{4 \pi^{3}} \int_{k<k_{F}}\left(4 \pi k^{2} d k\right) \frac{\hbar^{2} k^{2}}{2 m}
$$

- Energy per unit volume and per electron:

$$
\frac{E}{V}=\frac{1}{\pi^{2}} \frac{\hbar^{2} k_{F}^{5}}{10 m} . \text { And since } n=\frac{N}{V}=\frac{k_{F}^{3}}{3 \pi^{2}}, \frac{E / V}{N / V}=\frac{E}{N}=\frac{3}{10} \frac{\hbar^{2} k_{F}^{2}}{m}=\frac{3}{5} \mathscr{E}_{F}
$$

Overall energy at $T=0(K),\left\{\begin{array}{l}\text { Electron gas: } \mathscr{E}_{F}=\frac{\hbar^{2} k_{F}^{2}}{2 m}=1.5 \sim 15(\mathrm{eV}) \\ \text { Classical gas: } \mathscr{E}_{t h}=\frac{3}{2} k_{B} T=0(\mathrm{eV})\end{array}\right.$

Intro. to Electro-physics

 Sommerfeld's model (2 ${ }^{\text {nd }}$)Jaesang Lee
Dept. of Electrical and Computer Engineering
Seoul National University
(email: jsanglee@snu.ac.kr)

Excited state of an electron gas

- Excited state of N-electronic system at $T>0(K)$
- The property of the system calculated by averaging such a property over all possible states
- The probability of the system being in a state i

$$
p_{N}\left(E_{i}\right) \propto e^{-\frac{E_{i}}{k_{B} T}}=\frac{1}{Q} e^{-\frac{E_{i}}{k_{B} T}}, \text { where } Q \triangleq \sum_{i} e^{-\frac{E_{i}}{k_{B} T}}
$$

- Partition function

$$
\begin{array}{ll}
Q=\sum_{i=1} e^{-\frac{E_{i}}{k_{B} T}} \triangleq e^{-\frac{F_{N}}{k_{B} T}}, \text { where } F_{N}=U-T S & \quad F_{N}: \text { The Helmholtz free energy, the thermodynamic } \\
& \text { potential that measures the useful work obtainable } \\
& \text { from a closed thermodynamic system at a given } \\
\therefore p_{N}\left(E_{i}\right)=e^{-\frac{E_{i}-F_{N}}{k_{B} T}} & \text { temperature } T \\
& \quad U: \text { Internal energy } \\
& \quad S: \text { Entropy }
\end{array}
$$

Derivation of Fermi-Dirac distribution (1/4)

- Electronic state for the N-electronic system
- In each electronic state, N single-electron levels are filled in a way consistent with the Pauli Exclusion principle
- A useful quantity to define : f_{i}

- The probability that an electron occupies the i-th level of N-electronic system:
(1) $f_{i, N} \triangleq \sum_{\alpha} p_{N}\left(E_{\alpha, N}\right), \quad(\alpha=1,2, \cdots) \quad \begin{aligned} & E_{\alpha, N}: \text { The energy of } \alpha \text {-th } N \text {-electronic state whose } i \text {-th level is occupied } \\ & \sum_{\alpha}: \text { Sum of probabilities for the system being in any of such states }(\alpha=1,2, \cdots)\end{aligned}$
(2) $f_{i, N} \triangleq 1-\sum_{\beta} p_{N}\left(E_{\beta, N}\right),(\gamma=1,2, \cdots) \quad \begin{aligned} & E_{\beta, N} \text { : The energy of } \beta \text {-th } N \text {-electronic state whose } i \text {-th level is NOT occupied } \\ & \sum_{\beta} \text { Sum of probabilities for a system being in any of such states }(\beta=1,2, \cdots)\end{aligned}$

Derivation of Fermi-Dirac distribution (2/4)

- Electronic state for the $(N+1)$-electronic system
- $(N+1)$-electronic states having an electron in their i-th level \cdots (case 1)
$=N$-electronic states without an electron in their i-th level, while leaving all the other levels unaltered \cdots (case 2)
- Energy of the states for case (1) $\triangleq E_{\alpha, N+1}$
- Energy of the i-th level $\triangleq \mathscr{E}_{i}$

$-\Theta$	$\begin{aligned} & -\Theta- \\ & -\Theta \end{aligned}$
$\begin{gathered} i-\Theta- \\ -\Theta- \end{gathered}$	$-\Theta$
$\begin{gathered} \bigodot- \\ (N+1)-\text { system } \\ (\text { Case 1) } \end{gathered}$	$-\odot-$ (N) - system (Case 2)

- Energy of the states for case (2) $=E_{\alpha, N+1}-\mathscr{E}_{i}$
- The probability that an electron occupies the i-th level of N-electronic system:
(3) $f_{i, N}=1-\sum_{\alpha} p_{N}\left(E_{\alpha, N+1}-\mathscr{E}_{i}\right)$
$E_{\alpha, N+1}$: The energy of α-th $(N+1)$-electronic state whose i-th level is occupied
$E_{\alpha, N+1}-\mathscr{E}_{i}$: The energy of α-th N-electronic state whose i-th level is NOT occupied

Derivation of Fermi-Dirac distribution (3/4)

- The probability that an electron occupies the i-th electron level of the system:

$$
\begin{aligned}
& f_{i, N}=1-\sum_{\alpha} p_{N}\left(E_{\alpha, N+1}-\mathscr{E}_{i}\right) \\
& E_{\alpha, N+1} \text { : The energy of } \alpha \text {-th }(N+1) \text {-electronic state whose } i \text {-th level is occupied } \\
& E_{\alpha, N+1}-\mathscr{E}_{i} \text { : The energy of } \alpha \text {-th } N \text {-electronic state whose } i \text {-th level is NOT occupied } \\
& \text { Here, } P_{N}\left(E_{\alpha, N+1}-\mathscr{E}_{i}\right)=\exp \left(-\frac{\left(E_{\alpha, N+1}-\mathscr{E}_{i}\right)-F_{N}}{k_{B} T}\right) \\
& =\exp \left(-\frac{E_{\alpha, N+1}-F_{N+1}}{k_{B} T}\right) \cdot \exp \left(\frac{\mathscr{E}_{i}-\left(F_{N+1}-F_{N}\right)}{k_{B} T}\right) \\
& =p_{N+1}\left(E_{\alpha, N+1}\right) \cdot \exp \left(\frac{\mathscr{E}_{i}-\mu}{k_{B} T}\right), \text { where } F_{N+1}-F_{N} \triangleq \mu \\
& \text { Chemical potential } \\
& \text { : The change of free energy due to } \\
& \text { a change of the particle number } \\
& \therefore f_{i, N}=1-\exp \left(\frac{\mathscr{C}_{i}-\mu}{k_{B} T}\right) \sum_{\alpha} p_{N+1}\left(E_{\alpha, N+1}\right)=1-\exp \left(\frac{\mathscr{C}_{i}-\mu}{k_{B} T}\right) f_{i, N+1}
\end{aligned}
$$

Derivation of Fermi-Dirac distribution (4/4)

- The probability that an electron occupies the i-th electron level of the system:

If $N \gg 10^{22} \mathrm{~cm}^{-3}$, the change in a probability by the adding an extra electron is negligible!

$$
f_{i, N}=1-\exp \left(\frac{\mathscr{E}_{i}-\mu}{k_{B} T}\right) f_{i, N+1} \underset{\lim N \rightarrow \infty}{ } \quad f_{i, N} \approx 1-\exp \left(\frac{\mathscr{E}_{i}-\mu}{k_{B} T}\right) f_{i, N}
$$

$$
\therefore f_{i}=\frac{1}{\exp \left(\frac{\mathscr{C}_{i}-\mu}{k_{B} T}\right)+1}
$$

* The term N is dropped since N-dependence is considered in μ

Fermi-Dirac distribution

- The probability of the electron occupying the i-th level of an N-electronic system
- The mean number of electrons that are in i-th level:

$$
\bar{n}_{i} \triangleq 0 \times\left(1-f_{i}\right)+1 \times f_{i}=f_{i} \longrightarrow \sum_{i} \bar{n}_{i}=\sum_{i} \frac{1}{\exp \left(\frac{\mathscr{E}_{i}-\mu}{k_{B} T}\right)}=N
$$

Basics of quantum statistics

- Quantum statistics
- determines how particles occupy a system that consists of several energy levels
- Three major types:
- Maxwell-Boltzmann stats for distinguishable particles
- Fermi-Dirac stats for indistinguishable particles that obey exclusion principle
- Bose-Einstein stats for indistinguishable particles that DON'T obey exclusion principle
(England) 1902-1984

1879-1955

- Wavefunction for two particles
- Distinguishable

$$
\psi\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)=\phi_{a}\left(\boldsymbol{r}_{1}\right) \phi_{b}\left(\boldsymbol{r}_{2}\right) \neq \phi_{a}\left(\boldsymbol{r}_{2}\right) \phi_{b}\left(\boldsymbol{r}_{1}\right)\left\{\begin{array}{l}
\text { particle } 1 \text { in state } a \\
\text { particle } 2 \text { in state } b
\end{array}\right.
$$

Classical particles

- Indistinguishable

$$
\psi\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)=\left\{\begin{array}{l}
\frac{1}{\sqrt{2}}\left(\phi_{a}\left(\boldsymbol{r}_{1}\right) \phi_{b}\left(\boldsymbol{r}_{2}\right)+\phi_{b}\left(\boldsymbol{r}_{1}\right) \phi_{a}\left(\boldsymbol{r}_{2}\right)\right) \triangleq \psi_{B}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right) \quad \cdots \text { Boson } \\
\frac{1}{\sqrt{2}}\left(\phi_{a}\left(\boldsymbol{r}_{1}\right) \phi_{b}\left(\boldsymbol{r}_{2}\right)-\phi_{b}\left(\boldsymbol{r}_{1}\right) \phi_{a}\left(\boldsymbol{r}_{2}\right)\right) \triangleq \psi_{F}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right) \quad \cdots \text { Fermion }
\end{array}\right.
$$

Quantum mechanical particles

Implications of Pauli Exclusion principle?

- Pauli exclusion principle
- Fermions cannot occupy the same quantum state!
- If states a and b are the same,

$$
\left\{\begin{array}{l}
\psi_{B}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)=\frac{1}{\sqrt{2}}\left(\phi_{a}\left(\boldsymbol{r}_{1}\right) \phi_{a}\left(\boldsymbol{r}_{2}\right)+\phi_{a}\left(\boldsymbol{r}_{1}\right) \phi_{a}\left(\boldsymbol{r}_{2}\right)\right)=\sqrt{2} \phi_{a}\left(\boldsymbol{r}_{1}\right) \phi_{a}\left(\boldsymbol{r}_{2}\right) \neq 0 \\
\psi_{F}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)=\frac{1}{\sqrt{2}}\left(\phi_{a}\left(\boldsymbol{r}_{1}\right) \phi_{a}\left(\boldsymbol{r}_{2}\right)-\phi_{a}\left(\boldsymbol{r}_{1}\right) \phi_{a}\left(\boldsymbol{r}_{2}\right)\right)=0 \longrightarrow \text { No wavefunction exists for such a case! }
\end{array}\right.
$$

- General expression for the wavefunctions of Boson and Fermion

$$
\left\{\begin{array}{l}
\psi\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)=\psi\left(\boldsymbol{r}_{2}, \boldsymbol{r}_{1}\right) \quad \cdots \text { Symmetric under particle exchange (Bosons) } \\
\psi\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)=-\psi\left(\boldsymbol{r}_{2}, \boldsymbol{r}_{1}\right) \quad \cdots \text { Anti-symmetric under particle exchange (Fermions) }
\end{array}\right.
$$

- Number of allowed particles per state vs. type of particles

Type of particles	Particles per state	Statistics
Distinguishable	Unlimited	Maxwell-Boltzmann
	Boson	Unlimited
Indistinguishable	Fermion	Only one
	Bose-Einstein	

