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Drude vs. Sommerfeld models

 Drude model shows...

- Good agreement with a Wiedemann-Franz law (xk/o = CT)

- discrepancy in specific heat (CV), mean-square electronic velocity (02), thermopower (Q) and etc.

- What is wrong about Drude’s model?
- Assumption that electronic velocity distribution follows the Maxwell-Boltzmann distribution (X)

(- Electrons are Fermion that must obey Fermi-Dirac Distribution (O)!)

Drude model Sommerfeld model
Electronic velocity =~ Maxwell-Boltzmann Fermi-Dirac
distribution Distribution Distribution
5 3 3 The number of electrons per unit volume
z m \2 _m? 1 [ m 1 . e
Formula - fiyp(®) =n e 2T frp (D) = < with velocities in the range of dv about v:

2kBT 4 \ nh +mo? — E,
| exp = + 1 f(w)dv

« Sommerfeld model = Drude’s free electron model + Fermi-Dirac distribution!



Quantum theory of the electron gas

- Ground-state characteristics of an electron gas (at 7= 0 (X))

[Step 1] Find the energy levels available for N electrons in a volume V

[Step 2] Fill these levels up in a manner consistent with the Pauli Exclusion Principle

» Characteristics of a single electron

- A wavefunction for a single electron : y (r)

-y (r) satisfies time-independent Schrodinger’s equation:
h2

- V2 (r) = &y (r), where & : an associated energy level with y (r)
m

(Q: Why is there no potential energy term?)

- y (r), i.e., the behavior of the electron in V, determined by Boundary Condition!



Boundary condition s

- Boundary condition for a single electron e e e -

- In a sufficiently large metal, bulk properties NOT affected by its interface = Freedom in choosing B.C.!

- Widely used “periodic B.C.”:

w(x,y,z+L) =w(xy,z) '
w(x,y+Lz)=w(xyz)

Z
pas
l//(x+L,y,z):1//(x,y,z) \<€ /
L

- Solution to T.1.S.E. with the given B.C.: 3=V > o
| | | n*|k|*
where k is a wavevector associated with & (k) = 5
m

2
Here, 1/\/\_/ obtained by using J |Wk (r) | dr = J P(r)dr =1
1% Vv



Periodic B.C.

Wavevector k w6y 4 L) =y (x2)

L z7)=
+ Meaning of k w(xy+Lz) =w(xyz)

- As a particle - As a wave e e e e e oo
> Momentum of the electron : p = fik . k : a wave-vector for the plane wave e that
hlk . L.
' avelocity of the electron : v = p _nk propagates in a direction parallel to k
- ¢'®T — constant in any plane perpendicular to k
- L ke _ .
. Kinetic energy : & = —m|v|” = - e™" = periodic along the line parallel to k
2 2m
| 21
with a wavelength A= de Broglie wavelength
- How to obtain k ? |k |
-y (r) ~ e satisfies the given B.C., only if
ekl — oL — , Where n,, n,n;: integers




The k-space

+ The k-space = momentum space = reciprocal space*

- Allowed k-vectors are given by integer multiples of 2z/L along

2T 2w 2w
three axes, i.e., k = (k ] ky, kz> =|—n,—n,—n
X I A P

- Number of allowed k-points in the unit volume in k-space:

kor&

| . hek|?
_ At each k with the associated & = ,

2m

(- Pauli Exclusion Principle)

1
only two electrons are allowed with two spin projection directions _H_ _H_ %
A A
1



The Fermi sphere k1

+ The Fermi wavevector k K
>k
Y
- Within a sphere of a radius |kF| = kp, //)
kx
: Fermi sph
the energy levels (or k values) are occupied by /N electrons; k STl SPRETe
k ______
Outside the sphere, the energy levels are NOT occupied! ’
- Number of allowed k points within the Fermi sphere: H \
A (4 5 V | -
np = | —nkp | X ; (volume x density) % N electrons
3 STT
- In order for these points to accommodate /V electrons, O]-=----- N /
4 V The ground state of N electrons within a
N =2 X N = 7 X —7Z'k3 X volume V is formed by occupying all electron
37 F 7 843 levels with k < k- and leaving all those with

k > ki unoccupied



The Fermi parameters (1/2)

- Electronic property vs. k., ~— mmoo-o-o-oo-
- Recall the volume per conduction electron in real space, I.e.,

Vv 1 47rrs3 (3 >%
_— = — = —_— ]/‘S=
N n 3

drn

- From the Fermi sphere,

N ki 3
Nn = — = —

Vo 322 4x

h2

Metallic electron’s wavelength
by de Broglie wavelength



The Fermi parameters (2/2)

- Electronic property vs. ki (contd.)

- Fermi velocity (i.e., the velocity of the electron in the highest occupied state at the Fermi surface)

3kpgT { 10%~3 (m/s) at T = 298 K
m

O(m/s) at T=0kK

Evenat T = 0K,|vr =~ 0.0lc > v,, = 0, | where ¢ : the speed of light

- Fermi Energy (i.e., the kinetic energy of the electron in the highest occupied state)

c.f.) Thermal velocity of a classical particle, v,, X \/

hk; 2 50.1
&= F_ 2 (kFaO)2 = (eV). &rp= 1.5~ 15 (eV) for metals
2
2m 2610 (},.S/ao)




Ground state energy of an electron gas (1/2)

- Ground state energy of N electrons in a volume V

nlkl> .
E=2 Z (within the Fermi sphere)

2m
k| <|kg|

- Conversion of summation to integral

Y F(k)=— Y F (k) Ak =

v 87 v 873
k k
3
A = O lim
o 1% Voo (Ak — O)
: The volume in a k-space In a macroscopically large volume (V — 0),
per allowed k value 27

F (k) does not significantly vary over distances of order — in k-space.



Ground state energy of an electron gas (2/2) L Y F (k) = LJdkF (k).
| Voo V - 873 !

- Ground state energy of N electrons in a volume V (contd.) oo !

h2k? E 2 nk: 1 h2k?
E=2) — —= J dk—— = J (47k>dk)
k<kp

2m 473

2m V 873

- Energy per unit volume and per electron:

E 1 h’k; N
— = .And sincen = — =
V 7?2 10m V

Energy per electron

n2k2

2m

Electron gas: & = =15~ 15 (eV)

Overall energy at 7T = 0 (K),
- Classical gas: &, = % 2T =0 (eV)
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Excited state of an electron gas

- Excited state of N-electronic system at 7" > 0 (K)

- The property of the system calculated by averaging such a property over all possible states

- The probability of the system being in a state 1

Ej 1 Ei
—_—— —_—— A — —
PN (El) x e kI =—e k' where ) = Z e ‘s

- Partition function

_ b _In
Q — E e ~BT 2 e kBT where FN = U-=TS ~ I';: The Helmholtz free energy, the thermodynamic
=1 potential that measures the useful work obtainable
from a closed thermodynamic system at a given

temperature T

» U : Internal energy

- S : Entropy



Derivation of Fermi-Dirac distribution (1/4)

(D

i+2 ©
» Electronic state for the /NV-electronic system i+1—O

. . . . o o i e e e

- In each electronic state, /V single-electron levels are filled in a way 1 o
: : : : C [ —9 ) )
consistent with the Pauli Exclusion principle ~ ~
- ' ' . E E E
A useful quantity to define : . : ; :

- The probability that an electron occupies the i-th level of N-electronic system:

E,  : The energy of a-th N-electronic state whose i-th level is occupied

2: Sum of probabilities for the system being in any of such states (¢ = 1,2,--+)
a
Ej y : The energy of j-th N-electronic state whose i-th level is NOT occupied
1’2’" ) Z: Sum of probabilities for a system being in any of such states (ﬁ = 1,2,"')

p



Derivation of Fermi-Dirac distribution (2/4)

- Electronic state for the (/V + 1)-electronic system

© ©

- (N + 1)-electronic states having an electron in their i-th level ---(case 1) © ©
= N-electronic states without an electron in their i-th level, while leaving i —O ;

all the other levels unaltered ---(case 2) S S

- Energy of the states for case (1) = Ea,N +1 o) O

(N + 1) — system (N) — system
(Case 1) (Case 2)

~ Energy of the i-th level £ &,

l

- Energy of the states for case 2) = E, v, — &,

- The probability that an electron occupies the i-th level of N-electronic system:

E, ny1 - The energy of a-th (V + 1)-electronic state whose i-th level is occupied

) fin=1-

E, nyi1 — &;: The energy of a-th N-electronic state whose i-th level is NOT occupied




et e |

Derivation of Fermi-Dirac distribution (3/4) ipN 5o ( £ FN)

- The probability that an electron occupies the i-th electron level of the system: ------------------

E, ny1 - The energy of a-th (V + 1)-electronic state whose i-th level is occupied

fin=1- ZPN (Ea,N+1 — Cgi) )

E, yi1 — &, : The energy of a-th N-electronic state whose i-th level is NOT occupied

E — &) —F
Here, PN (Ea,N+1 — %l) = exp ( ( a,N+1 l) N)
kT

Ea,N+1 o FN+1 %i _ (FN+1 o FN)
— CXP T * CXP T
B B

& — u Chemical potential
= Pni1 (Ea,N+1> - EXP ( ;{ 7 ), where : The change of free energy due to
B a change of the particle number

%i —H %i —H
fy=1—¢ex E E =1 —ex -




Derivation of Fermi-Dirac distribution (4/4)

- The probability that an electron occupies the i-th electron level of the system:

Iif N > 1072 cm—3, the change in a probability by the adding an extra electron is negligible!

%i — U gi — U
fin=1—exp - JiN+1 > fin~® 1 —exp fin
B

kT

lim N—= o0

*The term NV is dropped since N-dependence is considered in u

Fermi-Dirac distribution
- The probability of the electron occupying the i-th level of an N-electronic system

- The mean number of electrons that are in i-th level:

20X (1-f)+1Xfi=f — ) A=) 1%__” =N

"o (57




Basics of quantum statistics

« Quantum statistics

Ludwig Boltzmann James C. Maxwell _ Enrico ermi

- determines how particles occupy a system that consists of several energy levels (Austria) (United Kingdom) (taly)
1844-1906 1831-1879 1901-1954
- Three major types:
> Maxwell-Boltzmann stats for distinguishable particles

» Fermi-Dirac stats for indistinguishable particles that obey exclusion principle

> Bose-Einstein stats for indistinguishable particles that DON’T obey exclusion principle PaulDirac Satyendra N. Bose  Albert Enstin
nglan naia ermany

1902-1984 1894-1974 1879-1955

- Wavefunction for two particles
Classical particles

particle 1 in state a & & + & &

- Distinguishable

w(r.r) =, (r) ¢, (ra) # ¢, (r2) &y (1))

partic e 2 IN state b state a state b state a state b
- Indistinguishable Quantum mechanical particles
— (45 (’”1)4519 (”2) + ¢, (”1)% (”2)) 2 wp (”1»"2) -+ Boson Q & _ & &
I RZ
1/ (rl, rz) = | statea state b statea state b
7 (¢ (r1) b (r2) = by (1) &, (”2)) = g (ri,ry) -+ Fermion



Implications of Pauli Exclusion principle? [ lren) £ 5 (B 8 le) 4 ) () 5
: wr (r.7s) é%(% (r1) #y (r2) = &5 (1) @ (1) :

- Pauli exclusion principle e !

- Fermions cannot occupy the same quantum state!

- |If states a and b are the same,

wg (1. 72) % <¢a (1)) @ (r2) + &, (1)) @, (”2)) =1/2¢, (1) ¢ (r2) #0

1 <¢a (”1) o, (”2) — @, (”1) ¢, (r2)> = (0 —— No wavefunction exists for such a case!

Yr (”1»”2) 2

- General expression for the wavefunctions of Boson and Fermion

17 (rl,rz) =y (rz, ’”1) -+« Symmetric under particle exchange (Bosons)
1/ (rl,rz) = -y (rz, "1) -+« Anti-symmetric under particle exchange (Fermions)

* Number of allowed particles per state vs. type of particles

Type of particles Particles per state Statistics
Distinguishable Unlimited Maxwell-Boltzmann
~ Boson | Unlimited Bose-Einstein
Indistinguishable ;- o

Fermion Only one Fermi-Dirac



