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Fermi-Dirac statistics (1/3)

,   where  : chemical potential


• What is it?


Quantum statistics that Fermions must obey


c.f.) Others include Maxwell-Boltzmann, Bose-Einstein statistics


• Meaning


- The probability  that a single-Fermion level  is occupied


- The mean number  of Fermions occupying the level  


(Always  due to Pauli exclusion principle)

fi =
1

exp εi − μ
kBT + 1

μ

(fi) (εi)
(n̄i = fi) εi

n̄i ≤ 1

Chemical potential 
: The change of free energy due to

  a change of the particle number


  μ ≜
∂U
∂N

Increasing 

temperature

εi − μ

fi

Source: Modello di Sommerfeld (Wikipedia)

Increasing 

temperature



Fermi-Dirac statistics (2/3)




- In the low temperature limit 





- Previously in the ground state  of the electron gas


,  where   : The Fermi energy


fi =
1

exp εi − μ
kBT + 1

(T → 0)

fi = {
1 (εi < μ) → All levels below μ are occupied.

0 (εi > μ) → All levels above μ are NOT occupied.

(T = 0)

fi = {
1 (εi < εF)
0 (εi > εF)

εF =
ℏ2k2

F

2m

∴ lim
T→0

μ (T) = εF

εi − μ

fi

Source: Modello di Sommerfeld (Wikipedia)

Fermi energy 
: The kinetic energy of electrons

  in the highest occupied level 


  in space at k− T = 0 (K)



• The Fermi energy and Fermi temperature


  and  


- For silver,   


• Temperature-dependence of Fermi-Dirac distribution





- At  : Nearly a step function


‣ At  regardless of 


- At  : the F-D distribution approaches the M-B distribution (HW!)

εF ≜
ℏ2k2

F

2m
=

50.1

(rs/a0)2 (eV) εF ≜ kBTF

εF = 5.49 (eV) ⟶ TF = 63,800 (K)

f =
1

exp ε − μ
kBT + 1

T ≪ TF

ε = μ → f =
1
2

T

T ≫ TF

Fermi-Dirac statistics (3/3)

638 (K)

6,380 (K)

63,800 (K)

Source: Prof. Williams at Univ. of Liverpool [Thermal Physics]



Chemical potential

• Temperature-dependence of chemical potential 


- Derivation of  (considering the degeneracy)


 ,  where  # of levels with an energy 


Let’s assume  for simplicity. Then,








- At low temperatures  :  

μ

μ

n̄i = fi ⋅ gi gi : εi

gi = g

N = ∑
i

n̄i ≃ ∫
∞

0
gf (ε) dε = ∫

∞

0

gdε

exp [ ε − μ
kBT ] + 1

μ (T) = kBT ln (exp ( N
gkBT ) − 1)

(T ≪ TF) μ (T) ≃ εF

: Number of 

single-electron levels 

in the energy range 


from  to 

gdε

ε ε + dε

T = 0.3TF ≃ 19,000 (K) T = TF

Source: Prof. Williams at Univ. of Liverpool [Thermal Physics]

Chemical potential 
: The change of free energy due to

  a change of the particle number


  μ ≜
∂U
∂N



Total energy of an electron gas (1/3)

• Electron gas: A collection of weakly interacting electrons that are free to move within a 

bounded volume , but are unable to move beyond the boundary


- Energy of the single electron in the gas


,  for whose wavevector being 


- Total number of electrons in the gas and Total energy of the gas


And their conversion in an integral form 





V

ε (k) =
ℏ2k2

2m
k

N = 2∑
k

f (ε (k)) ⟶
N
V

≜ n = ∫
dk
4π3

f (ε (k))

U = 2∑
k

ε (k) f (ε (k)) ⟶
U
V

≜ u = ∫
dk
4π3

ε (k) f (ε (k))

Conversion of sum to integral: 


,  where 
∑
k

= ∫
dk
Δk

Δk =
8π3

V

→
1
V ∑

k

= ∫
dk
8π3

Number of electrons in the gas of unit volume

Total energy of the gas of unit volume

f (ε) =
1

exp ε − μ
kBT + 1



Total energy of an electron gas (2/3)
• Total energy of an Fermi gas (contd.)


- Expression for  and  in terms of  (i.e., conversion of )


(The integrand depends on  only through )





where       density of energy levels per unit volume


 


 

n u ε k → ε

k ε (k)

n = ∫
dk
4π3

f (ε (k)) = ∫
∞

0

4πk2dk
4π3

f (ε (k)) ⟶ ∫
∞

0
g (ε) f (ε) dℰ

g (ε) ≜
2

π2 ( m
ℏ2 )

3
2

ε

u = ∫
dk
4π3

ε (k) f (ε (k)) ⟶ u = ∫
∞

0
εg (ε) f (ε) dε

n = ∫
dk
4π3

f (ε (k)) ⟶ n = ∫
∞

0
g (ε) f (ε) dε

k2 =
2mℰ

ℏ2
, 2kdk =

2m
ℏ2

dℰ → kdk =
m
ℏ2

dℰ


n = ∫
dk
4π3

f (ε (k))
u = ∫

dk
4π3

ε (k) f (ε (k))



Total energy of an electron gas (3/3)

• Method of evaluating the form 


-  differs from its zero-temp value only in a small region about  


- Integration of  near  matters → Use Taylor’s expansion! (HW) 

• Total energy of the electron gas  

 

• Specific heat capacity at constant volume  

∫
∞

0
H (ε) f (ε) dε

f (ϵ) μ (Δε ≈ kBT)
H (ε) f (ε) (ε = μ)

(T ≪ TF)

u = ∫
∞

0
εg (ε) f (ε) dε ≃

3
5

nεF [1 +
5π2

12 ( T
TF )

2

] ≜ U0 + ΔU

(T ≪ TF)

cV =
1
V ( ∂U

∂T )
V

= ( ∂u
∂T )

V
=

π2

2
nkB

T
TF

=
3
2

nkB ⋅ ( π2

3
kBT
εF )

Ground-state energy at T = 0 (K)

Excited-state energy at T > 0 (K)



Specific heat capacity (1/2)
• Specific heat capacity at constant volume 





• Example:  for Silver at 


,   where  





.    


c.f.) measured  for silver at constant pressure 

(T ≪ TF)

cV =
3
2

nkB ⋅ ( π2

3
kBT
εF )

cV T = 298 (K)

εF =
ℏ2k2

F

2m
n =

N
V

=
k3

F

3π2
=

ρNA

A

εF = 5.49 (eV), TF =
εF

kB
≃ 63,900 (K)

∴ cV =
3
2

nkB ( π2

3
kBT
εF ) ≃ 1.74 (J/kg ⋅ K)

cV ≃ 235 (J/kg ⋅ K)

Parameters for silver

Mass density ρ 10,500 (kg/m3)

Relative atomic mass A 0.108 (kg/mol)

Planck’s constant ħ 1.055 x 10-34 (J·s)

Electron mass m 9.11 x 10-31 (kg)

Boltzmann’s constant kB 1.38 x 10-23 (J/K)

Avogadro’s number NA 6.023 x 1023 (/mol)



Specific heat capacity (2/2)
• In reality


- The specific heat = Ionic contribution + Electronic contribution


CV,m = γT + AT3

• Associated with atomic vibrations


• Dominant at high T

• Associated with conduction electrons


• Dominant at low T




 for silver


-  obtained as an intercept of the curve of !

CV,m =
π2

2
NAkB

T
TF

⟶ γ = lim
T→0

∂CV,m

∂T
=

π2

2
NAkB

TF
≃ 0.643 (mJ/mol-K2)

γ CV,m/T vs. T2 (or T)



classic vs. quantum mechanics
• The specific heat of the electron gas

Classcial Quantum mechanical

Electronic

velocity


distribution

The specific heat of 
the electron gas

fMB (υ) = n ( m
2kBT )

3
2

e− mυ2
2kBT fFD (υ) =

1
4 ( m

πℏ )
3 1

exp (
1
2 mυ2 − E0

kBT ) + 1

cV =
3
2

nkB cV =
3
2

nkB ⋅ ( π2

3
kBT
ℰF ) ~0.01 at T = 298 (K)

What Drude predicted What Sommerfeld revised
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Velocity distribution for electrons in metals (1/2)

• Conversion of F-D dist. from  to 


- The number of single-electron levels in a small volume element :


ε (k) υ

dk

ndk = 2 ×
1

(2π/L)3 × dk =
V

4π3
dk

The volume of interest

# of available -values per unit volumek

Twofold spin degeneracy

- The probability of each energy level (associated with ) is being occupied:  


- Total number of electrons in the volume element :


k f (ε (k))
dk

Ndk = ndk ⋅ f (ε (k)) =
V

4π3
f (ε (k)) dk



Velocity distribution for electrons in metals (2/2)

• Derivation (contd.)


- The velocity of a free electron with a wave vector  :  


- Due to 1 : 1 correspondence between  and ,

k υ =
ℏk
m

k υ
k

dkυ dυ

# of electrons 

in a volume element  


about 
dυ

υ

# of electrons 

in a volume element  


about 
dk

k

=

- [The number of electrons per unit volume of real space] in a velocity space element :
dυ

f (υ) dυ =
Ndk

V
=

1
V ( V

4π3
f (ε (k)) dk) = (m/ℏ)3

4π3

dυ

exp [( 1
2 mυ2 − μ)/kBT] + 1

dk = ( m
ℏ )

3

dυ



Drude’s model vs. Sommerfeld model

Drude model Sommerfeld model

Electronic

velocity


distribution

Assumptions
Free-electron approx.

Independent approx.


Relaxation-time approx.

The specific heat 

of the electron gas

Mean square 
electronic velocity

fMB (υ) = n ( m
2kBT )

3
2

e− mυ2
2kBT fFD (υ) =

1
4 ( m

πℏ )
3 1

exp (
1
2 mυ2 − μ

kBT ) + 1

cV =
3
2

nkB cV =
3
2

nkB ⋅ ( π2

3
kBT
ℰF )

υ2 =
3kBT

m
υ2 =

3kBT
m

⋅ ( 2
3

εF

kBT )

Maxwell-Boltzmann dist. Fermi-Dirac dist.

What Drude model derived What Sommerfeld model derived



Predictions by Sommerfeld model (1/3)
• The replacement of Maxwell-Boltzmann with Fermi-Dirac distribution affects the predictions of physical 

quantities that require the electronic velocity distribution 


- (1) Mean-free path, (2) Thermal conductivity (and Widemann-Franz law), (3) Thermopower


(1) Mean-free path


- The average distance an electron travels between collisions,  


- Estimated  at 

l = υτ

τ : 10−15 ∼ 10−14 (s) T = 300 (K)
{υ : Average electronic speed

τ : relaxation time (an average survival time)

Drude model Sommerfeld model

Average

Electronic


speed

Mean-free path

υ =
3kBT

m
≃ 102−3 (m/s) υ = υF =

ℏkF

m
=

4.2
rs/a0

× 106 (m/s)

l = 1 ∼ 10 (Å) l > 100 (Å)



Predictions by Sommerfeld model (2/3)
(2) Thermal conductivity (and Wiedemann-Franz law)


- Thermal conductivity  and electrical conductivity 


  and  


- Wiedemann-Franz law


(κ) (σ)

κ =
1
3

υ2τcV σ =
ne2τ

m

κ
σT

=
mυ2cV

3ne2T
= C

Drude model Sommerfeld model

The specific heat 

of electron gas

Mean-square

electronic speed

Widemann-Franz 
law

cV =
3
2

nkB cV =
3
2

nkB ⋅ ( π2

3
kBT
ℰF )

υ2 =
3kBT

m
υ2 =

3kBT
m

⋅ ( 2
3

ℰF

kBT )
κ

σT
=

3
2 ( kB

e )
2

= 1.11 × 10−8 ( W ⋅ Ω
K2 ) κ

σT
=

π2

3 ( kB

e )
2

= 2.44 × 10−8 ( W ⋅ Ω
K2 )

Element 273 K 373 K
Li 2.22 2.43
Na 2.12
K 2.23

Cu 2.20 2.29
Ag 2.31 2.38
Au 2.32 2.36
Mg 2.14 2.25
Fe 2.61 2.88
Zn 2.28 2.30
Cd 2.49
Al 2.14 2.19
In 2.58 2.60
Sn 2.48 2.54
Pb 2.64 2.53

Kaye and Laby, Table of Physical and Chemical 
Constants, Longmans Green, Longdon, 1966.

<
1

100

> 100



Predictions by Sommerfeld model (3/3)
(3) Thermopower


,  where   thermoelectric field,  thermopower (V/K)
E = Q∇T E : Q :

Q = −
1
3e

d
dT ( mυ2

2 ) = −
1

3ne
n

dℰ
dT

= −
cV

3ne

Drude model Sommerfeld model

The specific heat 
of 


electron gas

Thermopower

cV =
3
2

nkB cV =
3
2

nkB ⋅ ( π2

3
kBT
ℰF )

Q = −
kB

2e
= − 0.43 × 10−4 (V/K) Q = −

kB

2e ( π2

3
kBT
ℰF ) = − 1.42 ( kBT

ℰF ) × 10−4 (V/K)

∼
1

100

Element Q [V/K]

Na -5 x 10-6

K -12.5 x 10-6

Cu 1.8 x 10-6

Be 1.5 x 10-6

Al -1.8 x 10-6



Common failures of both models
• Drude vs. Sommerfeld


- Commonality: Free-electron approx., Independent approx., Relaxation time approx.


- Difference: Electronic velocity distribution (Maxwell-Boltzmann vs. Fermi-Dirac)

What aspects cannot be explainable

Hall coefficient

Magnetoresistance

Thermoelectric field

Widemann-Franz law

DC electrical conductivity

AC electrical conductivity

Specific heat

Nonmetallic elements

pp. 58 ~ 60 
Ashcroft & Mermin



To move further…
• 3 Key assumptions in the Drude’s model 


① Free-electron approx.: No electron-ion interaction (*except collisions)


② Independent approx.: No electron-electron interaction


③ Relaxation-time approx.:  independent of electron’s position and velocity


• Revision of ②, ③ leads to only minor improvement in predictions 

• Most of the problems in Drude’s and Sommerfeld’s model stem from ①!


• The details of ① Free-electron approx.:


(i) The effect of the ions on an electron between collisions is ignored


(ii) How the ions result in collisions is left unexplained


(iii) The contribution of the ions to physical phenomena (e.g. specific heat, thermal conductivity) is ignored

τ



To move further…
• How free-electron approx. needs to be revised:


- (i) & (ii) Electrons move in the presence of a static potential due to a 

periodic array of stationary ions (“Nearly-free electron model”)


‣ Main topics: Bloch’s state and electronic band structure


- (iii) Consideration of the effects of ionic vibrations in that array


‣ Main topic: phonon (→ temp-dependent electric conductivity, cubic 

term in the specific heat, a source of collisions, etc)


• Crystalline structure


- The ions in metals are arranged in a regular periodic array (i.e., lattice)


= A basis for the entire analytic framework of solid-state physics


- A direct characterization of the periodicity = X-ray diffraction (XRD)

a
V x


