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• Phonon heat capacity

- Definition: the contribution of phonons to the heat capacity of a solid





- The total energy of phonons





- : The average number of phonons with wavevector  at 





‣ A special case of Bose-Einstein distribution for the boson particles which…


(1) have an energy quantized in units of  


(2) do not have a fixed number in a system (→ lack of chemical potential )
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Planck distribution
• Derivation


- At a given  and , the ratio of the number of oscillators in their  vs. -th quantum levels :





- The fraction of the total number of oscillators in the -th level : 





- The average quantum number of oscillators :
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Phonon heat capacity and density of states
• Phonon heat capacity (contd.)


- Total energy = The sum for the energy of oscillators with frequency  over all 





- It is convenient to replace   such that   


-  Number of modes in the frequency range ;  Density of states 

- The phonon heat capacity


,   where  


Finding the D.O.S  is a central problem!
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Density of states in 3D
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• General expression for DOS in 3D


- Allowed -vectors : integer multiples of  along three axes





- Number of allowed -values in the unit volume of -space :


 (i.e., a density per unit volume)


- Number of allowed -values within the -sphere : 





- Density of states 
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Einstein model of D.O.S.
• Density of states by Einstein


- There are oscillators of the same frequency   :





- Thermal energy of the system : 





- The heat capacity of the system : 





‣ In 3D :   (i.e., three modes per oscillator)


‣ At high temperatures, 

N− ω0

D (ω) = Nδ (ω − ω0)

U = ∫ dωD (ω)
ℏω

exp (ℏω/τ) − 1
→ U =

Nℏω0

exp (ℏω0/τ) − 1

CV = ( ∂U
∂T )

V
= NkB ( ℏω0

τ )
2 exp (ℏω0/τ)

(exp (ℏω0/τ) − 1)
2

N ⟶ 3N

lim
T→∞

CV = 3NkB

T/T0

C p
(c

al
/m

ol
-K

)

T0 =
ℏω0

kB
= 1,320 (K)

The heat capacity of diamond 
A. Einstein, Ann. Phys., 22, 180 (1907)

Albert Einstein

(Germany)

1879-1955



Debye’s model of D.O.S.
• Debye’s approximation


- The velocity of crystal wave is assumed constant :





- The upper limit of the frequency = Debye’s frequency 


‣ If there are  unit cells in the solid, 


the total number of acoustic phonon modes is 


‣ Such  modes confined within the sphere of radius 


For  : 


For  : No modes are allowed!
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Total phonon energy in Debye’s model
• The total energy of the system: 





-  : For simplicity, assume that the phonon velocity is independent of direction





,  where 


- Now, let , where  Debye temperature. Then,  in terms of  is given by :
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The Debye’s  lawT3

• Heat capacity








- For  


- For  





‣ At low  when only the acoustic modes are thermally 

excited, the  approximation is quite good!
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Qualitative understanding of  lawT3

• Only those modes with  will be excited at low 


• Assume that  of such modes are  at low 





- The fraction of oscillators excited at 


- The number of excited modes (in 3D) : 


- Total energy of the excited modes : 


- Heat capacity : .                  c.f.) 
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Shortcomings of the Debye theory

• The introduction of the cutoff frequency  is “ad hoc”


(Although it physically makes sense)


• The failure of linear dispersion at high values 


• At intermediate temperatures, the Debye’s prediction fails


• At extremely low  for metals, the Debye’s prediction fails


The specific heat = Phonon contribution + electronic contribution 




Without , the curve  would have intercepted the 

origin!
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Limitation of our discussion
• The theory of crystal vibrations so far…


- Limited in the potential energy to terms quadratic in the interatomic spacing (i.e., harmonic potential)





- Consequences

‣ Two lattice waves do not interact; A single wave do not decay or change its form with time

‣ No thermal expansion considered


‣ Adiabatic & isothermal elastic constants  are equal

‣ The elastic constants are independent of pressure and temperature


‣ The heat capacity becomes constant at high 


- In real crystals none of these consequences is accurately satisfied!

(Further reading : Kittel, Chap. 5, pp. 120-128)
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