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Thermal property of solids

* Phonon heat capacity Frequency

- Definition: the contribution of phonons to the heat capacity of a solid
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- The total energy of phonons
k

_ < nk): The average number of phonons with wavevector k at kBT( = T)

Planck distribution

A special case of Bose-Einstein distribution for the boson particles which...

(1) have an energy quantized in units of A

(2) do not have a fixed number in a system (— lack of chemical potential u)



Planck distribution

 Derivation

- At a given 7 and w, the ratio of the number of oscillators in their (s + 1) vs. (s)-th quantum levels :
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- The fraction of the total number of oscillators in the (s)-th level :
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Z:;Na - Z:O:lexp (—aha)/f) S\ //

- The average quantum number of oscillators :
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Phonon heat capacity and density of states

- Phonon heat capacity (contd.)

- Total energy = The sum for the energy of oscillators with frequency w, over all k

U = ; <nk> hw, = Z (sz

k exp | — )—1

It is convenient to replace Z — de such that | U = JdcoD (w)
k

ha

exp (ha)/f) — 1

- D (w) dw : Number of modes in the frequency range [a), w + da)]; D (w) = Density of states

- The phonon heat capacity

Finding the D.O.S (D (a))) is a central problem!



Density of states in 3D

« General expression for DOS in 3D

- Allowed k-vectors : integer multiples of 27/ L along three axes
2 2n  2xm
k = (kx, ky, kz) =\ —n,—n,—n,

- Number of allowed k-values in the unit volume of k-space :

: L” 4 (i densit it vol )
= —— = —— (i.e., a density per unit volume
r/L)> 87  8a3

- Number of allowed k-values within the k-sphere :

vV 4 v
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Sm3 3 6772

- Density of states
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Einstein model of D.O.S.

» Density of states by Einstein

- There are N—oscillators of the same frequency @, :

D (w) = No (a) — a)o)

Albert Einstein

- Thermal energy of the system : (Germany)
1879-1955
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. At high temperatures, lim Cy, = 3Nkj

T o0 The heat capacity of diamond

A. Einstein, Ann. Phys., 22, 180 (1907)



Debye’'s model of D.O.S.

» Debye’s approximation

- The velocity of crystal wave is assumed constant :
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- The upper limit of the frequency = Debye’s frequency (a)D

~ |If there are /N unit cells in the solid,
the total number of acoustic phonon modes is NV

> Such N modes confined within the sphere of radius &,

()

Vo4 sV

Fork < kp: N = —TKpy = ——=
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For k > kj, : No modes are allowed!
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» The total energy of the system:

Total phonon energy in Debye’s model
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U = deD (w)

Debye’s DOS
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Debye frequency
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- 1D — 3D : For simplicity, assume that the phonon velocity is independent of direction
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- Now, let hw;, = kg1, where T, : Debye temperature. Then, U in terms of T}, is given by :
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Qualitative understanding of 7> law

Oc‘o/VO % 5]
- Only those modes with & = fiw < kT will be excited at low T's %% ..........
o T

- Assume that & of such modes are & = hw ~ kgT atlow T's

hor=nh (z)kT) = kzT, k;:thermal wavevector

hop = (z)kD) = kzTp, kp : Debye's cutoff wavevector
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The fraction of oscillators excited at 1 ~ (—)
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The number of excited modes (in 3D): ~ 3N - )
D

T
Total energy of the excited modes : ~ 3NkBT (—)

Heat capacity : C (aU) o (-
eat capacity : Cy, = | —
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Shortcomings of the Debye theory

- The introduction of the cutoff frequency (a)D

(Although it physically makes sense)

th) is “ad hoc”

. The failure of linear dispersion at high k—values (a) + z)k)

» At intermediate temperatures, the Debye’s prediction fails

- At extremely low 1 for metals, the Debye’s prediction fails

The specific heat = Phonon contribution + electronic contribution |

Without y7, the curve (CV/ I'vs. T2) would have intercepted the

origin!
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Figure 12.7—Low temperature molar heat capacity of metals; Cy /T
is plotted against 72. The results are consistent with equation (12.29),
according to which Cy, . is equal to yT + AT>. The intercepts give the
values of y. The values of A can be determined from the slopes.
(Reproduced with permission from Statistical Mechanics and Properties
of Matter by E. S. R. Gopal, Ellis Horwood Ltd., Chichester.)




Limitation of our discussion

» The theory of crystal vibrations so far...

- Limited in the potential energy to terms quadratic in the interatomic spacing (i.e., harmonic potential)

1
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- Consequences

~ Two lattice waves do not interact; A single wave do not decay or change its form with time

~ No thermal expansion considered

» Adiabatic & isothermal elastic constants (x) are equal
> The elastic constants are independent of pressure and temperature
- The heat capacity becomes constant at high 1" > T,

- In real crystals none of these consequences is accurately satisfied!
(Further reading : Kittel, Chap. 5, pp. 120-128)



