Intro. to Electro-physics
 The basics of a band theory

Previous

Crystal waves (i.e. phonons) in periodic 1D crystal

This lecture
Electrons (i.e. electron waves) in periodic 1D crystal

Jaesang Lee
Dept. of Electrical and Computer Engineering
Seoul National University
(email: jsanglee@snu.ac.kr)

Electrons in 1D crystal

- Orbitals in a 1D crystal = A linear chain of atomic orbitals
- A single orbital on the $n^{\text {th }}$ atom $:|n\rangle$
- Periodic boundary conditions: $(N+1)^{\text {th }}$ atom $=1$ st atom
- All of the orbitals are orthonormal to each other : $\langle m \mid n\rangle=\delta_{m n}$

Orbitals in a 1D crystal constructed by a Linear Combination of Atomic Orbitals (LCAO) $\triangleq|\psi\rangle=\sum_{n} \phi_{n}|n\rangle$
<Tight-binding chain>
One orbital per atom;
electrons can hop from one atom
to the neighboring atom

<Periodic boundary condition>

Schrödinger's equation (1/3)

- Schrödinger's equation for a 1D crystal

$$
H|\psi\rangle=E|\psi\rangle
$$

- Wave function: $|\psi\rangle=\sum \phi_{n}|n\rangle \quad$ (Linear Combination of Atomic Orbitals)
$-H|\psi\rangle=E|\psi\rangle \longrightarrow \sum_{m}\langle n| H|m\rangle \phi_{m}=E \phi_{n} \quad(n=1,2,3, \cdots, N) \quad$ (A set of N eigenvalue equations)
- The matrix element of the Hamiltonian : $\langle n| H|m\rangle \triangleq H_{n m} \quad(N \times N$ matrix $)$
- The Hamiltonian (i.e., the energy operator)

$$
H=K+\sum_{j} V_{j}, \text { where }\left\{\begin{array}{l}
K=\frac{p^{2}}{2 m}: \text { Kinetic energy } \\
V_{j}=V\left(\boldsymbol{r}-\boldsymbol{R}_{j}\right): \text { Coulombic potential of the electron due to } j^{\text {th }} \text { nucleus }
\end{array}\right.
$$

where \boldsymbol{r} : The position of the electron, \boldsymbol{R}_{j} : The position of the j-th nucleus

Schrödinger's equation (2/3)

- The matrix element of the Hamiltonian

The matrix element $H_{n m}=\langle n| H|m\rangle$ The Hamiltonian

- $H|m\rangle=\left(K+V_{m}\right)|m\rangle+\sum_{j \neq m} V_{j}|m\rangle$,
- $K+V_{m}$: The Hamiltonian if there were only an isolated $m^{\text {th }}$ atom
where $\left(K+V_{m}\right)|m\rangle=\varepsilon_{\text {atomic }}|m\rangle$
- $\varepsilon_{\text {atomic }}$: Eigen-energy of an electron on the isolated $m^{\text {th }}$ atom

$$
H_{n m}=\langle n| H|m\rangle=\varepsilon_{\text {atomic }} \delta_{n m}+\sum_{j \neq m}\langle n| V_{j}|m\rangle
$$

- Meaning of $\langle n| V_{j}|m\rangle$
- An electron on $m^{\text {th }}$ atom can hop onto $n^{\text {th }}$ atom via the interaction with the $j^{\text {th }}$ atom
- Simplifying assumption: Such a hopping occurs only if n and m are the nearest neighbor

$$
\sum_{j \neq m}\langle n| V_{j}|m\rangle=\left\{\begin{array}{ll}
V_{0}, & n=m \longrightarrow \text { Coulomb potential due to all the nuclei except the } m^{\text {th }} \text { one } \\
-t, & n=m \pm 1 \\
0, & \text { otherwise }
\end{array} \longrightarrow\right. \text { Hopping term }
$$

Schrödinger's equation (3/3)

$$
\sum_{j \neq m}\langle n| V_{j}|m\rangle= \begin{cases}V_{0}, & n=m \\ -t, & n=m \pm 1 \\ 0, & \text { otherwise }\end{cases}
$$

- The Hamiltonian matrix element (contd.)

$$
H_{n m}=\langle n| H|m\rangle=\varepsilon_{\text {atomic }} \delta_{n m}+\sum_{j \neq m}\langle n| V_{j}|m\rangle=\left(\varepsilon_{\text {atomic }}+V_{0}\right)-t\left(\delta_{n+1, m}+\delta_{n-1, m}\right)
$$

$$
H_{n m}=\left(\begin{array}{ccccc}
\varepsilon_{0} & -t & 0 & \cdots & 0 \\
-t & \varepsilon_{0} & -t & \cdots & 0 \\
0 & -t & \varepsilon_{0} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & -t & \varepsilon_{0}
\end{array}\right)
$$

- Let $\varepsilon_{0} \triangleq \varepsilon_{\text {atomic }}+V_{0}$: Kinetic energy + Coulomb potential due to all the nuclei
- t : the hopping energy that allows for an electron to move from one site to another site
- Magnitude of t depends on how close together the adjacent orbitals are

Solution to Schrödinger's equation

- Results of tight-binding model in 1D
- Proposed coefficient : $\phi_{n}=\frac{e^{-j k n a}}{\sqrt{N}}$ (for time-independent S.E \rightarrow no ω term!)
- The substitution into the Schrödinger's equation :

$$
\sum_{m} H_{n m} \phi_{m}=E \phi_{n} \longrightarrow\left\{\begin{array}{l}
\text { (l.h.s.) } \frac{1}{\sqrt{N}}\left[\varepsilon_{0} e^{-j k n a}-t\left(e^{-j k(n+1) a}+e^{-j k(n-1) a}\right)\right] \\
\text { (r.h.s) } \frac{1}{\sqrt{N}} E e^{-j k n a}
\end{array}\right.
$$

- Dispersion relation : $E=\varepsilon_{0}-2 t \cos (k a)$
- Periodic in $k \rightarrow k+2 \pi / a$
- Periodic boundary conditions with N unit cells $\rightarrow \Delta k=2 \pi / L$
(* N unit cells $\rightarrow N$ allowed k-values)

Dispersion relation for a 1D crystal

- Important characteristics

- Allowed k value : quantized in units of $\Delta k=2 \pi / L$ (c.f., continuous for free electrons)
- Energy band : The "finite" energy range where the electrons can be populated
- Bandwidth (4t) determined by the magnitude of hopping (or the interatomic distance)

Characteristics of band structure $(1 / 2)$

- Energy band
- Hopping (t) splits the N electronic states into some higher energy states and some lower energy states with respect to ε_{0}
- Splitting becomes intense as interatomic spacing decreases

- Total energy of all of the electrons
- Average energy of all N states : ε_{0}
- If the band is completely filled : $E=N \varepsilon_{0}$
- If the band is not filled : $E<N \varepsilon_{0}$
(\because Some of the higher energy states not filled)
- $E-N \varepsilon_{0} \triangleq \Delta E$: Binding energy of the crystal

Characteristics of band structure (2/2)

- Dispersion relation near the bottom of the band

$$
E(k)=\varepsilon_{0}-2 t \cos (k a) \rightarrow E(k) \approx t a^{2} k^{2}+C
$$

(\because Expanded for small $k \sim 0$)

- Effective mass

$$
E(k)=t a^{2} k^{2}+C=\frac{\hbar^{2} k^{2}}{2 m^{*}}+C
$$

- The dispersion near the bottom of the band =

The dispersion of free particles with effective mass m^{*}

Taylor series

Electrons filling a band

- Monovalent atomic crystal
- Each atom donates "one" electron into the band
- The crystal consists of N atoms (or unit cells)
$\rightarrow N$ possible k-values
- Half-filled band : Due to "two" possible spin states for electrons, only $N / 2 k$-values can be occupied
- Only a small amount of energy (e.g. \boldsymbol{E}-field) needed to shift the

Fermi surface and move electrons \rightarrow An electric current induced!

- Such a monovalent atomic crystals are mostly metallic!

- Divalent atomic crystal

- Completely filled band: no response of the electrons upon the application of an \boldsymbol{E}-field \rightarrow No electric current!
- Such a divalent atomic crystals are mostly insulators!

Metal-to-insulator transition

Previous tight-binding model

One atom per unit cell
One orbital per atom

Realistically
One atom per unit cell
Several orbitals per atom (e.g., s, p, d, f, \cdots)

Monatomic, Divalent

One atom per unit cell
\approx
Two orbitals per atom

Diatomic, monovalent
Two different atoms per unit cell
One orbital per atom

Energy gap (From diatomic crystal vibrations)

Reduced zone scheme

"Extended" zone scheme

- Above is when $\kappa_{1} \neq \kappa_{2}$ and $\kappa_{1}<\kappa_{2}$
- The case of $\kappa_{1}=\kappa_{2}$
- A simple monatomic chain with a lattice constant $a / 2$
- The 1st Brillouin zone : $\left[-\frac{2 \pi}{a}, \frac{2 \pi}{a}\right]$
- When the two atoms are only slightly different
- A small perturbation applied to a situation where all atoms are identical
- Due to the perturbation, a small energy gap opens up at the zone boundary, but the rest of the dispersion mostly looks alike that of the monatomic chain!

Energy gap (From electronic band)

- Two different atoms per unit cell
- Two bands exist (two possible energy eigenstates per each k)
- Energy gap
- A gap between two bands where no eigenstates exist
- A gap opens up at the Brillouin zone boundary (i.e., where the Fermi surface is)

Divalent atom
Insulator

Monovalent atom Insulator

Monovalent atom
Semiconductor

