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Previous 
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Electrons (i.e. electron waves) in periodic 1D crystal
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Electrons in 1D crystal
• Orbitals in a 1D crystal = A linear chain of atomic orbitals


- A single orbital on the th atom : 


- Periodic boundary conditions : th atom = st atom


- All of the orbitals are orthonormal to each other : 


Orbitals in a 1D crystal constructed by a Linear Combination of Atomic Orbitals (LCAO) 
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<Tight-binding chain>

One orbital per atom; 


electrons can hop from one atom

to the neighboring atom <Periodic boundary condition>
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Schrödinger’s equation (1/3)
• Schrödinger’s equation for a 1D crystal





-  Wave function : 


-        


-  The matrix element of the Hamiltonian :      


-  The Hamiltonian (i.e., the energy operator)


 , where 


where  The position of the electron,   The position of the -th nucleus

H|ψ⟩ = E|ψ⟩

|ψ⟩ = ∑
n

ϕn|n⟩

H|ψ⟩ = E|ψ⟩ ⟶ ∑
m

⟨n |H |m⟩ϕm = Eϕn (n = 1, 2, 3,⋯, N)

⟨n |H |m⟩ ≜ Hnm

H = K + ∑
j

Vj

K = p2

2m : Kinetic energy

Vj = V (r − Rj) : Coulombic potential of the electron due to jth nucleus

r : Rj : j

(Linear Combination of Atomic Orbitals)

(A set of  eigenvalue equations)N

(  matrix)N × N



Schrödinger’s equation (2/3)
• The matrix element of the Hamiltonian


■  ,


    where  


■  


■ Meaning of 


- An electron on th atom can hop onto th atom via the interaction with the th atom


- Simplifying assumption: Such a hopping occurs only if  and  are the nearest neighbor


H |m⟩ = (K + Vm) |m⟩ + ∑
j≠m

Vj |m⟩

(K + Vm) |m⟩ = εatomic |m⟩

Hnm = ⟨n |H |m⟩ = εatomicδnm + ∑
j≠m

⟨n |Vj |m⟩

⟨n |Vj |m⟩
m n j

n m

∑
j≠m

⟨n |Vj |m⟩ =
V0, n = m
−t, n = m ± 1
0, otherwise

•  : Eigen-energy of an electron on the isolated th atomεatomic m

The matrix element 
 

The Hamiltonian 
Hnm = ⟨n |H |m⟩

H = K + ∑
j

Vj

Hopping term

Coulomb potential due to all the nuclei except the th onem

•  The Hamiltonian if there were only an isolated th atomK + Vm : m



Schrödinger’s equation (3/3)
• The Hamiltonian matrix element (contd.)





 

‣ Let    :  Kinetic energy + Coulomb potential due to all the nuclei


‣  the hopping energy that allows for an electron to move from one site to another site


‣ Magnitude of  depends on how close together the adjacent orbitals are

Hnm = ⟨n |H |m⟩ = εatomicδnm + ∑
j≠m

⟨n |Vj |m⟩ = (εatomic + V0) − t (δn+1,m + δn−1,m)

Hnm =

ε0 −t 0 ⋯ 0
−t ε0 −t ⋯ 0
0 −t ε0 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 −t ε0

ε0 ≜ εatomic + V0

t :

t

∑
j≠m

⟨n |Vj |m⟩ =
V0, n = m
−t, n = m ± 1
0, otherwise



Solution to Schrödinger’s equation
• Results of tight-binding model in 1D


■  Proposed coefficient :  (for time-independent S.E  no  term!)


■  The substitution into the Schrödinger’s equation : 





■  Dispersion relation :   

- Periodic in 


- Periodic boundary conditions with  unit cells  


(*  unit cells   allowed -values)

ϕn =
e−jkna

N
→ ω

∑
m

Hnmϕm = Eϕn ⟶
(l.h.s.)  1

N [ε0e−jkna − t (e−jk(n + 1)a + e−jk(n − 1)a)]
(r.h.s)  1

N
Ee−jkna

E = ε0 − 2t cos (ka)
k → k + 2π/a

N → Δk = 2π/L

N → N k

The matrix element 
Hnm = ε0 − t (δn+1,m + δn−1,m)



Dispersion relation for a 1D crystal

ε0 + 2t

ε0 − 2t

ε0
−

π
a

π
a

E

“Energy band”

E

k

k

E = ε0 − 2t cos (ka) E =
ℏ2k2

2m• Important characteristics


- Allowed  value : quantized in units of   (c.f., continuous for free electrons)


- Energy band : The “finite” energy range where the electrons can be populated


- Bandwidth  determined by the magnitude of hopping (or the interatomic distance)

k Δk = 2π/L

(4t)

Electron in 1D crystal Electron in free space



Characteristics of band structure (1/2)
• Energy band


- Hopping  splits the  electronic states into 


some higher energy states and some lower energy states 

with respect to 


- Splitting becomes intense as interatomic spacing decreases


• Total energy of all of the electrons


- Average energy of all  states : 


- If the band is completely filled : 


- If the band is not filled : 


(∵ Some of the higher energy states not filled)


-  : Binding energy of the crystal

(t) N

ε0

N ε0

E = Nε0

E < Nε0

E − Nε0 ≜ ΔE

ε0

ε0 + 2t

ε0 − 2t

a

N states

ε0 + 2t

ε0 − 2t

ε0
−

π
a

π
a

E

k

E



ε0 − 2t

ε0 + 2t

Characteristics of band structure (2/2)

ε0
−

π
a

π
a

E

k

• Dispersion relation near the bottom of the band





(∵ Expanded for small )


- Effective mass





- The dispersion near the bottom of the band = 


The dispersion of free particles with effective mass 

E (k) = ε0 − 2t cos (ka) → E (k) ≈ ta2k2 + C

k ∼ 0

E (k) = ta2k2 + C =
ℏ2k2

2m*
+ C

m*

Taylor series 

f (x) = f (a) +
f′ (a)
1!

(x − a) +
f′ ′ (a)

2!
(x − a)2 +

f′ ′ ′ (a)
3!

(x − a)3 + ⋯



Electrons filling a band E

k

Fermi surface

E

k

-field appliedE

Depopulated

Populated

• Monovalent atomic crystal 

- Each atom donates “one” electron into the band


- The crystal consists of  atoms (or unit cells)


  possible -values


- Half-filled band : Due to “two” possible spin states for electrons, 

only  -values can be occupied 

- Only a small amount of energy (e.g. -field) needed to shift the 

Fermi surface and move electrons  An electric current induced!


- Such a monovalent atomic crystals are mostly metallic!


• Divalent atomic crystal 

- Completely filled band : no response of the electrons upon the 

application of an -field  No electric current!


- Such a divalent atomic crystals are mostly insulators!

N

→ N k

N/2 k

E

→

E →



Metal-to-insulator transition
Previous tight-binding model 

One atom per unit cell

One orbital per atom

Realistically 
One atom per unit cell


Several orbitals per atom (e.g., s, p, d, f, ···)

Monatomic, Divalent 
One atom per unit cell

Two orbitals per atom

≈
Diatomic, monovalent 

Two different atoms per unit cell

One orbital per atom

ε01

ε02

E

Metal-insulator transition

Interatomic 

distance (a)



Energy gap (From diatomic crystal vibrations)

k
−

π
a

π
a0

ω

−
2π
a

2π
a

−
π
a

π
a0

ω

Reduced zone scheme 

Two modes per  valuek
“Extended” zone scheme 

One mode per k value

1st Brillouin zone2nd B.Z. 2nd B.Z.

• Above is when  and 


• The case of 


- A simple monatomic chain with a lattice constant 


- The 1st Brillouin zone : 

κ1 ≠ κ2 κ1 < κ2

κ1 = κ2

a/2

[−
2π
a

,
2π
a ]

2κ1

m

2κ2

m

κ1 ≠ κ2

κ1 = κ2

• When the two atoms are only slightly different

- A small perturbation applied to a situation where all atoms 

are identical

- Due to the perturbation, a small energy gap opens up at 

the zone boundary, but the rest of the dispersion mostly 
looks alike that of the monatomic chain!



Energy gap (From electronic band) 
• Two different atoms per unit cell


- Two bands exist (two possible energy eigenstates per each )


- Energy gap


‣ A gap between two bands where no eigenstates exist


‣ A gap opens up at the Brillouin zone boundary 


(i.e., where the Fermi surface is)
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Bandgap

k k k
Divalent atom 
Insulator

Monovalent atom 
Insulator

Monovalent atom 
Semiconductor

Large 
Bandgap Small 

Bandgap


