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The amplitude of x-ray diffraction
• Bragg’s law 

 

- The condition for the constructive interference of scattered waves from the 

lattice points of a crystal


- High-intensity reflected waves occurs at only certain values of 


• The amplitude of scattered wave 

- Determined by the spatial distribution of electrons within each lattice point


- Electron density


,  where 


‣  is invariant under any translation of the form  


‣  is a periodic function of  with periods  in the directions of 

three crystal axes


‣ An ideal situation for Fourier analysis!

2d sin θ = nλ, (n = 1, 2, ⋯)

θ

n (r + T) = n (r) T = u1a1 + u2a2 + u3a3

n (r) T

n (r) r a1, a2, a3

T



1D Fourier analysis for XRD (1/2)
• Fourier analysis in 1D


- Fourier series of sines and cosines for  with period  :


, 


‣  (real-valued),  


‣  represents that  has the period of . That is,





- : points in the reciprocal lattice 


‣ The allowed terms in the Fourier series

‣ Other terms are not allowed

n (x) a

n (x) = n0 + ∑
p>0 [Cp cos ( 2πp

a
x) + Sp sin ( 2πp

a
x)]

Cp, Sp : Fourier coefficients of the expansion p : positive inegers

2π/a n (x) a

n (x + a) = n0 + ∑
p>0 [Cp cos ( 2πp

a
x + 2πp) + Sp sin ( 2πp

a
x + 2πp)] = n (x)

2πp/a (p = 1, 2,⋯)

Real  
lattice

Reciprocal 
lattice



1D Fourier analysis for XRD (2/2)
• Fourier analysis in 1D


- Transformation in an exponential form





‣  now being all integers (positive, negative and zero)


‣  being complex numbers


✴ Condition to ensure that  is still a real function :  


If we let , the sum of the terms in  and  is written by:





- Inversion of Fourier series


n (x) = n0 + ∑
p>0 [Cp cos ( 2πp

a
x) + Sp sin ( 2πp

a
x)] = ∑

p

np exp (i
2πp

a
x)

p

np

n (x) n*−p = np

φ = 2πpx/a p −p

np (cos φ + i sin φ) + n−p (cos φ − i sin φ) = (np + n−p) cos φ + i (np − n−p) sin φ = 2ℜ(np) cos φ − 2ℑ(np) sin φ

np =
1
a ∫

a

0
dxn (x) exp (−i

2πp
a

x)



3D Fourier analysis and reciprocal lattice vector
• Fourier analysis in 1D vs. 3D

1D 3D

Fourier series

Inversion of Fourier series 

n (x) = ∑
p

np exp (i
2πp

a
x)

np =
1
a ∫

a

0
n (x) exp (−i

2πp
a

x) dx

n (r) = ∑
G

nG exp (iG ⋅ r)

nG =
1
Vc ∫ n (r) exp (−iG ⋅ r)dV

• Reciprocal lattice vector, 


-    


- Construction rule for 





- Relationship between reciprocal vs. real lattice vectors


G

G = υ1b1 + υ2b2 + υ3b3 (υ1, υ2, υ3 : integers)
b1, b2, b3

b1 = 2π
a2 × a3

a1 ⋅ a2 × a3
; b2 = 2π

a3 × a1

a1 ⋅ a2 × a3
; b3 = 2π

a1 × a2

a1 ⋅ a2 × a3

bi ⋅ aj = 2πδij {
δij = 1, if i = j
δij = 0, if i ≠ j

(a1, a2, a3 : primitive lattice vectors)



Reciprocal lattice vector
• Reciprocal lattice vector,  (contd.)


   


-  Represent the allowed points in the reciprocal lattice


- The vectors  in Fourier series = The reciprocal lattice vectors  

Since  is invariant under any crystal translation ,








- Every crystal structure has two lattices associated with it 


‣ A diffraction pattern of a crystal = A map of the reciprocal lattice of the crystal


‣ A microscope image of a crystal = A map of the crystal structure in real space

G

G = υ1b1 + υ2b2 + υ3b3 (υ1, υ2, υ3 : integers)
G

G G

n (r) T = u1a1 + u2a2 + u3a3

[n (r + T) = ∑
G

nG exp (iG ⋅ r) exp (iG ⋅ T)] = [∑
G

nG exp (iG ⋅ r) = n (r)]
( ∵ exp (iG ⋅ T) = exp [i (υ1b1 + υ2b2 + υ3b3) ⋅ (u1a1 + u2a2 + u3a3)] = exp [i2π (υ1u1 + υ2u2 + υ3u3)] = 1)

Fourier series 




Inversion of Fourier series 

n (r) = ∑
G

nG exp (iG ⋅ r)

nG =
1
Vc ∫ n (r) exp (−iG ⋅ r)dV

Proof



Diffraction condition in reciprocal lattice (1/3)

• Diffraction condition in reciprocal lattice


- The possible XRD can occur if the following relation satisfies:





(  incident wave,  diffracted wave)

k − k′￼ = G

k : k′￼:

• Proof


- The difference in phase factors between beams scattered from the volume elements that are  apart :


,   where   : Scattering vector


- Amplitude of the wave scattered from a volume element 


- Total amplitude of the scattered wave in the direction 


r

exp [i (k − k′￼) ⋅ r] ≜ exp [−iΔk ⋅ r] −Δk = k − k′￼

∝ n (r) dV

k′￼:

F = ∫ exp [−iΔk ⋅ r]n (r) dV



Diffraction condition in reciprocal lattice (2/3)
• Proof (contd.)


- Total amplitude of the scattered wave in the direction 


   and  since ,


  .             


• Diffraction condition in reciprocal lattice


- Energy conservation of an X-ray in elastic scattering :








- If  is a reciprocal lattice vector, so is 


k′￼:

F = ∫ exp [−iΔk ⋅ r]n (r) dV n (r) = ∑
G

nG exp (iG ⋅ r)

F = ∑
G

∫ nG exp [i (G − Δk) ⋅ r]dV { = VnG , if  Δk = G
≈ 0 , if  Δk ≠ G

∴ Δk = G

[E = ℏω = ℏck] = [E′￼ = ℏω′￼ = ℏck′￼] ⟶ k = k′￼

Δk = G ⟶ k + G = k′￼ ⟶ (k + G)2 = k2 ⟶ 2k ⋅ G + G2 = 0

G −G

∴ 2k ⋅ G = G2



Diffraction condition in reciprocal lattice (3/3)

• Implication of the diffraction condition





- Consider an arbitrary plane  in a crystal lattice. 


- Then, the reciprocal lattice vector  should be perpendicular to this plane. (HW)


- The distance between two adjacent parallel planes is given by . (HW) 

- Thus, 


- Note that integers  are not necessarily identical with Miller indices, since  may contain a common factor . 


- Hence, ,   where  the spacing between adjacent parallel planes with indices 

2k ⋅ G = G2

hkl

G = hb1 + kb2 + lb3

d (hkl) =
2π
G

2k ⋅ G = G2 ⟶ 2
2π
λ

G sin θ = G2 ⟶ 2d (hkl) sin θ = λ

hkl hkl n

∴ 2d sin θ = nλ d ( h
n

k
n

l
n )



The Ewald construction

A graphical way of finding the diffraction condition


• The white points represent reciprocal lattice points


• The incident x-ray beam has the wave-vector 


• The origin is chosen such that  terminates at any reciprocal 

point.


• We draw a sphere of a radius  about the origin of .


• The diffracted beam will be formed if the sphere 

intersects any other reciprocal lattice points. 

• The diffracted beam is formed in the direction  

with particular reciprocal vectors .


(  The Bragg angle of diffraction)

k

k

k = 2π/λ k

k′￼ = k + G

G

θ :

<Diffraction depicted in reciprocal lattice>

<Diffraction depicted in real lattice>



Jaesang Lee

Dept. of Electrical and Computer Engineering


Seoul National University

(email: jsanglee@snu.ac.kr)

Intro. to Electro-physics 
The theory of X-ray diffraction (III)

mailto:jsanglee@snu.ac.kr
mailto:jsanglee@snu.ac.kr


Review of the lattice and primitive cell
• Definition of the lattice and primitive cell 

 


- If arbitrary lattice point  can be described by  with any integers ,


‣  : Primitive translation vectors 

‣ The unit cell defined by  : Primitive cell 

• The important properties of primitive cell


- The primitive cell is a minimum-volume cell with a volume 


- There is only “one” lattice point per primitive cell


- The definition of the primitive cell is not unique!

r′￼ = r + T (r : lattice point, T = u1a1 + u2a2 + u3a3 : translation vector)
r′￼ T (u1, u2, u3)

(a1, a2, a3)
(a1, a2, a3)

a1 ⋅ a2 × a3

r

r′￼

T



Wigner-Seitz primitive cell
• Wigner-Seitz primitive cell 

- Another way of choosing the primitive cell


- Procedure of defining it: 


(1) Draw lines to connect a given lattice point to all nearby lattice points. 


(2) At the midpoint and normal to these lines, draw new lines or planes.


(3) The smallest volume enclosed in this way is the Wigner-Seitz primitive cell.


- One lattice point at the center of the cell


- All space can be filled by Wigner-Seitz cells as other primitive cells

2D Wigner-Seitz primitive cell

Wigner-Seitz cell 
of  lattice 

(truncated octahedron)
bcc

Wigner-Seitz cell 
of  lattice 

(rhombic dodecahedron)
fcc



Brillouin zone (1/2)
• Brillouin zone 

- Definition : a Wigner-Seitz primitive cell in reciprocal lattice


- Provides a geometrical interpretation of diffraction condition


• Procedure of finding the Brillouin zone





- Select a vector  from the origin to a reciprocal lattice point 


- Construct a plane normal to this vector  at its midpoint 


- This plane forms a part of a Brillouin zone boundary


- X-ray with  will be diffracted by a crystal if this  satisfies (eq. 1)


- The diffracted beam will emerge in the direction 

2k ⋅ G = G2
÷4

k ⋅ ( 1
2

G) = ( 1
2

G)
2

⋯(eq.1)

G

G (1 or 2)

k k

k′￼ = k + G

Diffraction condition

Real lattice Reciprocal lattice

Bragg’s law Laue equation

2d sin θ = nλ
k′￼− k = Δk = G

2k ⋅ G = G2



Brillouin zone (2/2)
• Brillouin zone (contd.) 

- Formed by the set of planes that are the perpendicular bisects of the 

reciprocal lattice vectors


- A wave whose  terminates on any of Brillouin zone boundaries will undergo 

diffraction by the crystal


• the first Brillouin zone 

- The smallest volume entirely enclosed by planes that are the perpendicular 

bisectors of the reciprocal lattice vectors drawn from the origin


- a Wigner-Seitz cell of the reciprocal lattice

k



Brillouin zone of simple-cubic lattice
• Primitive reciprocal lattice vectors


(for given primitive lattice vectors ) 




• Simple-cubic  lattice 

- The primitive lattice vectors w.r.t. the conventional cube with a side  

    


- The primitive reciprocal lattice vector


    

∴ The primitive reciprocal lattice of a -lattice is also a -lattice! 

- Brillouin zone is formed by 6 planes that are normal to 

a1, a2, a3

b1 = 2π
a2 × a3

a1 ⋅ a2 × a3
; b2 = 2π

a3 × a1

a1 ⋅ a2 × a3
; b3 = 2π

a1 × a2

a1 ⋅ a2 × a3

(sc)

a

a1 = ax̂; a2 = aŷ; a3 = a ̂z (V = a1 ⋅ a2 × a3 = a3)

b1 =
2π
a

x̂; b2 =
2π
a

ŷ; b3 =
2π
a

̂z (V = b1 ⋅ b2 × b3 = (2π/a)3)
sc sc

± 1
2

b1 = ± π
a

x̂; ± 1
2

b2 = ± π
a

ŷ; ± 1
2

b3 = ± π
a

̂z



Brillouin zone of body-centered cubic lattice
• Body-centered cubic  lattice 

- The primitive lattice vector w.r.t. the conventional cube with a side  

   


- The primitive reciprocal lattice vector


   

∴ The primitive reciprocal lattice of a -lattice is a -lattice! 

- The shortest  are the following 12 vectors: 

 

- A Brillouin zone is formed by planes that are perpendicular bisectors of above 

vectors  12-faced rhombic dodecahedron (사방 십이면체)

(bcc)
a

a1 =
1
2

a (x̂ + ŷ − ̂z); a2 =
1
2

a (−x̂ + ŷ + ̂z); a3 =
1
2

a (x̂ − ŷ + ̂z)

b1 =
2π
a (ŷ + ̂z); b2 =

2π
a (x̂ + ̂z); b3 =

2π
a (x̂ + ŷ) (fcc!)

bcc fcc

G

( 2π
a ) (±ŷ ± ̂z); ( 2π

a ) (±x̂ ± ̂z); ( 2π
a ) (±x̂ ± ŷ);

→



Brillouin zone of face-centered cubic lattice
• Face-centered lattice  

- The primitive lattice vector w.r.t. the conventional cube with a side  

   


- The primitive reciprocal lattice vector


  

∴ The primitive reciprocal lattice of a -lattice is a -lattice! 

- The shortest  are the following 8 vectors: 

 

- But, the corners of the octahedron (정팔면체) thus formed are cut by the 

planes that are perpendicular bisectors of 6 other reciprocal lattice vectors: 


 

- 14-faced “truncated” octahedron (깎은 정팔면체)


(fcc)
a

a1 =
1
2

a (ŷ + ̂z); a2 =
1
2

a (x̂ + ̂z); a3 =
1
2

a (x̂ + ŷ);

b1 =
2π
a (−x̂ + ŷ + ̂z); b2 =

2π
a (x̂ − ŷ + ̂z); b3 =

2π
a (x̂ + ŷ − ̂z); (bcc!)

fcc bcc

G

( 2π
a ) (±x̂ ± ŷ ± ̂z);

± 2π
a

x̂; ± 2π
a

ŷ; ± 2π
a

̂z



The amplitude of diffraction (1/2)
• Recall the diffraction amplitude for a crystal of  primitive cells when the diffraction condition satisfies : 

 ,  where    

- Assumptions for further analysis on 


‣ Each primitive cell consists of  atoms


‣ -th atom located at  has an “electron density function ” that contributes to an electron density at  :


 : the contribution of -th atom at  to the electron density at 





• Structural factor 

.      Let  


    

N (Δk = G)
F = N∫ exp [−iG ⋅ r]n (r) dV ≜ NSG SG = ∫ exp [−iG ⋅ r]n (r) dV

SG

s
j rj nj r (n (r))
nj (r − rj) j rj r

n (r) =
s

∑
j=1

nj (r − rj)

SG =
s

∑
j=1

∫ nj (r − rj) exp (−iG ⋅ r)dV r − rj ≜ ρ

=
s

∑
j=1

exp (−iG ⋅ rj) ∫ nj (ρ) exp (−iG ⋅ ρ)dV Atomic form factor

Structural factor



The amplitude of diffraction (2/2)
• Structural factor (contd.) 

Let   (atomic form factor; out of scope). Then,  

.


Now, let  .


 

     

• Then, the intensity of diffraction is determined by 

     

∫ nj (ρ) exp (−iG ⋅ ρ)dV ≜ fj

SG =
s

∑
j=1

exp (−iG ⋅ rj)∫ nj (ρ) exp (−iG ⋅ ρ)dV =
s

∑
j=1

fj exp (−iG ⋅ rj)

{
rj = xja1 + yja2 + zja3 (the position of a j-th atom)
G = υ1b1 + υ2b2 + υ3b3 (reciprocal lattice vector)

SG =
s

∑
j=1

fj exp [−i (υ1b1 + υ2b2 + υ3b3) ⋅ (xja1 + yja2 + zja3)]
=

s

∑
j=1

fj exp [−i2π (υ1xj + υ2yj + υ3zj)]

I = SG ⋅ S*G = SG
2

( ∴ SG not necessarily be real)



Structural factor of the  latticebcc
• Structural factor of the -lattice


- The bcc basis referred to the cubic cell has identical atoms at


 and 


- The structural factor is given by


 

     

    

bcc

(x1, y1, z1) = (0,0,0) (x2, y2, z2) = ( 1
2

,
1
2

,
1
2 )

SG =
s

∑
j=1

fj exp [−i2π (υ1xj + υ2yj + υ3zj)]
=

s

∑
j=1

f exp [1 − i2π (υ1 + υ2 + υ3)]

= {0, when  υ1 + υ2 + υ3 : odd integers
2f, when  υ1 + υ2 + υ3 : even integers



Structural factor of the  latticefcc
• Structural factor of the -lattice


- The -basis referred to the cubic cell has identical atoms at





- The structural factor is given by


 

     

    

fcc

fcc

(xj, yj, zj) = (0,0,0), (0,
1
2

,
1
2 ), ( 1

2
,0,

1
2 ), ( 1

2
,

1
2

,0)

SG =
s

∑
j=1

f exp [1 − i2π (υ1 + υ2 + υ3)]

= f [1 + exp [−iπ (υ2 + υ3)] + exp [−iπ (υ1 + υ3)] + exp [−iπ (υ1 + υ2)]]
= {4f, when all  υ1, υ2, υ3 are even/odd integers

0, when one of  υ1, υ2, υ3 is even/odd integer

(0,0,0)

( 1
2

,
1
2

,0)

(0,
1
2

,
1
2 )

( 1
2

,0,
1
2 )


