Jin Young Choi

Seoul National University

Outline

- Bayes Formula
 - Priori probability
 - Likelihood
 - Posterior Probability
 - Bayes Decision
- Risk Formulation
 - Conditional Risk
 - Likelihood Ratio Test
 - Zero-one Loss Function (Bayes Decision)
- Maximum Likelihood Estimation (MLE)
- Error Probability

2

- Question:
 - There live two kinds of fishes in a lake: tuna or salmon.
 - If you catch a fish by fishing, is the fish likely to be tuna or salmon?

- We have experienced that salmon has been caught in 70% and tuna in 30%.
- What is the next fish likely to be?

• If other types of fish are irrelevant:

$$p(\omega = \omega_1) + p(\omega = \omega_2) = 1,$$

 ω is random variable, ω_1 and ω_2 denote salmon and tuna.

- Probabilities reflect our prior knowledge obtained from past experience.
- Simple Decision Rule:
 - Make a decision without seeing the fish.
 - Decide ω_1 if $p(\omega = \omega_1) > p(\omega = \omega_2)$ ω_2 otherwise.

- In general, we will have some features and more information.
- Feature: lightness measurement = x
 - Different fish yields different lightness readings (x is a random variable)

- Define
 - $p(x|\omega_i)$ = Class Conditional Probability Density
 - The difference between $p(x|\omega_1)$ and $p(x|\omega_2)$ describes the difference in lightness between tuna and salmon.

- Hypothetical class-conditional probability
- Density functions are normalized (area under each curve is 1.0)

- Suppose that we know
 - The prior probabilities $p(\omega_1)$ and $p(\omega_2)$
 - The conditional densities $p(x|\omega_1)$ and $p(x|\omega_2)$
 - Measure lightness of a fish = x
- What is the category of the fish with lightness of x?
- The probability that the fish has category of ω_i is $p(\omega_i|x)$.

Bayes formula

- $p(\omega_i|x) = \frac{p(x|\omega_i)p(\omega_i)}{p(x)}$, where $p(x) = \sum_j p(x|\omega_j)p(\omega_j) = \sum_j p(x,\omega_j)$.
- $Posterior = \frac{Likelihood*Prior}{Evidence}$
- $p(x|\omega_i)$ is called the *likelihood* of ω_i with respect to x.
- The ω_i category for which $p(x|\omega_i)$ is large is more "likely" to be the true category
- p(x) is the **evidence**
 - How frequently is a pattern with feature value x observed.
 - Scale factor that the posterior probabilities sum to 1.

Bayes formula

• Posterior probabilities for the particular priors $p(\omega_1) = 2/3$ and $p(\omega_2) = 1/3$. At every x the posteriors sum to 1.

Bayes Decision Rule (Minimal probability error)

Likelihood Decision:

- ω_1 : if $p(x|\omega_1) > p(x|\omega_2)$
- ω_2 : otherwise
- Posteriori Decision:
 - ω_1 : if $p(x|\omega_1)p(\omega_1) > p(x|\omega_2)p(\omega_2)$
 - ω_2 : otherwise
- Decision Error Probability
 - $p(error|x) = \min(p(\omega_1|x), p(\omega_2|x))$

where the decision error is given by

$$p(error|x) = \begin{cases} p(\omega_2|x) & \text{if we decide } \omega_1 \text{ for } \omega_2 \\ p(\omega_1|x) & \text{if we decide } \omega_2 \text{ for } \omega_1 \end{cases}$$

• 한 해안가에서 연어가 잡힐 확률은 0.6 이고 농어가 잡힐 확률은 0.4 이다. 잡힌 연어 중 40 cm 이하의 크기일 확률은 20%이고, 농어 중 40cm 이하일 확률은 3%이다. 잡은 고기가 40cm 이하일 때 연어라고 판단할 것인지? 아니면 농어로 판단할 것인지 결정하시오.

■ 한 해안가에서 연어가 잡힐 확률은 0.6 이고 농어가 잡힐 확률은 0.4 이다. 잡힌 연어 중 40 cm 이하의 크기일 확률은 20%이고, 농어 중 40cm 이하일 확률은 3%이다. 잡은 고기가 40cm 이하일 때 연어라고 판단할 것인지? 아니면 농어로 판단할 것인지 결정하시오.

- Sol.
 - ✔ (힌트) 문장의 수치에 해당하는 내용과 질문을 수식으로 표현해 보세요.

한 해안가에서 연어가 잡힐 확률은 0.6 이고 농어가 잡힐 확률은 0.4 이다. 잡힌 연어 중40 cm 이하의 크기일 확률은 20%이고, 농어 중 40cm 이하일 확률은 3%이다. 잡은 고기가 40cm 이하일 때 연어라고 판단할 것인지? 아니면 농어로 판단할 것인지 결정하시오.

Sol.

- ✓ (힌트) 문장의 수치에 해당하는 내용과 질문을 수식으로 표현해 보세요.
- ✓ 연어: X = 0, 농어: X = 1, 크기: Y.
- \checkmark $P(X = 0) = 0.6, P(X = 1) = 0.4, P(Y \le 40cm | X = 0) = 0.2, P(Y \le 40cm | X = 1) = 0.03$

● 한 해안가에서 연어가 잡힐 확률은 0.6 이고 농어가 잡힐 확률은 0.4 이다. 잡힌 연어 중 40 cm 이하의 크기일 확률은 20%이고, 농어 중 40cm 이하일 확률은 3%이다. 잡은 고기 가 40cm 이하일 때 연어라고 판단할 것인지? 아니면 농어로 판단할 것인지 결정하시오.

Sol.

- ✔ (힌트) 문장의 수치에 해당하는 내용과 질문을 수식으로 표현해 보세요.
- ✓ 연어: X = 0, 농어: X = 1, 크기: Y.
- \checkmark $P(X = 0) = 0.6, P(X = 1) = 0.4, P(Y \le 40cm | X = 0) = 0.2, P(Y \le 40cm | X = 1) = 0.03$
- ✓ 질문: posteriori: $P(X = 0 | Y \le 40cm) = ?, P(X = 1 | Y \le 40cm) = ?$

● 한 해안가에서 연어가 잡힐 확률은 0.6 이고 농어가 잡힐 확률은 0.4 이다. 잡힌 연어 중 40 cm 이하의 크기일 확률은 20%이고, 농어 중 40cm 이하일 확률은 3%이다. 잡은 고기 가 40cm 이하일 때 연어라고 판단할 것인지? 아니면 농어로 판단할 것인지 결정하시오.

Sol.

- ✔ (힌트) 문장의 수치에 해당하는 내용과 질문을 수식으로 표현해 보세요.
- ✓ 연어: X = 0, 농어: X = 1, 크기: Y.
- \checkmark $P(X = 0) = 0.6, P(X = 1) = 0.4, P(Y \le 40cm | X = 0) = 0.2, P(Y \le 40cm | X = 1) = 0.03$
- ✓ 질문: posteriori: $P(X = 0 | Y \le 40cm) = ?, P(X = 1 | Y \le 40cm) = ?$
- $\checkmark P(X = 0 \mid Y \le 40cm) = \frac{P(Y \le 40cm \mid X = 0)P(X = 0)}{P(Y \le 40cm)} = \frac{0.2 \times 0.6}{0.2 \times 0.6 + 0.4 \times 0.03} = 90.9\%$

● 한 해안가에서 연어가 잡힐 확률은 0.6 이고 농어가 잡힐 확률은 0.4 이다. 잡힌 연어 중 40 cm 이하의 크기일 확률은 20%이고, 농어 중 40cm 이하일 확률은 3%이다. 잡은 고기 가 40cm 이하일 때 연어라고 판단할 것인지? 아니면 농어로 판단할 것인지 결정하시오.

Sol.

- ✓ (힌트) 문장의 수치에 해당하는 내용과 질문을 수식으로 표현해 보세요.
- ✓ 연어: X = 0, 농어: X = 1, 크기: Y.
- \checkmark $P(X = 0) = 0.6, P(X = 1) = 0.4, P(Y \le 40cm | X = 0) = 0.2, P(Y \le 40cm | X = 1) = 0.03$
- ✓ 질문: posteriori: $P(X = 0 | Y \le 40cm) = ?, P(X = 1 | Y \le 40cm) = ?$
- $P(X = 0 \mid Y \le 40cm) = \frac{P(Y \le 40cm \mid X = 0)P(X = 0)}{P(Y \le 40cm)} = \frac{0.2 \times 0.6}{0.2 \times 0.6 + 0.4 \times 0.03} = 90.9\%$
- $\checkmark P(X = 1 \mid Y \le 40cm) = \frac{P(Y \le 40cm \mid X = 1)P(X = 1)}{P(Y \le 40cm)} = \frac{0.4 \times 0.03}{0.2 \times 0.6 + 0.4 \times 0.03} = 9.09\%$
- ✓ Bayes decision 에 의해 연어라고 판단한다.

General Formulation

- Let $\{\omega_1, ..., \omega_c\}$ be the finite set of *c* categories.
- Let $\{\alpha_1, ..., \alpha_a\}$ be the finite set of a possible actions. Ex. Action α_i = deciding that the true state is ω_i or others.
- The risk function $\lambda(\alpha_i|\omega_j)$ = risk incurred for taking action when the state of nature is ω_j .
- x = d -dimensional feature vector (random variable)
- $p(x|\omega_i) = \text{likelihood}$ probability density function for x for given ω_i
- $p(\omega_i) = \text{prior}$ probability that nature is in state ω_i .

Conditional Risk

After the observation, the expected risk (conditional risk) is given by

$$R(\alpha_i|x) = \sum_{j=1}^{c} \lambda(\alpha_i|\omega_j) p(\omega_j|x)$$

• The decision action $\alpha(x)$ for given x is given

$$\alpha(x) = \arg\min_{\alpha_i} R(\alpha_i | x) = \sum_{j=1}^{c} \lambda(\alpha_i | \omega_j) p(\omega_j | x)$$

Two-Category Classification

- Action α_1 = deciding that the true state is ω_1
- Action α_2 = deciding that the true state is ω_2
- Let $\lambda_{ij} = \lambda(\alpha_i | \omega_j)$ be the risk incurred for deciding ω_i when true state is ω_i .
- The conditional risks:

$$R(\alpha_1|x) = \lambda_{11}p(\omega_1|x) + \lambda_{12}p(\omega_2|x)$$

$$R(\alpha_2|x) = \lambda_{21}p(\omega_1|x) + \lambda_{22}p(\omega_2|x)$$

• Decide ω_1 if $R(\alpha_1|x) < R(\alpha_2|x)$

or if
$$(\lambda_{21} - \lambda_{11})p(\omega_1|x) > (\lambda_{12} - \lambda_{22})p(\omega_2|x)$$

or if $(\lambda_{21} - \lambda_{11})p(x|\omega_1)p(\omega_1) > (\lambda_{12} - \lambda_{22})p(x|\omega_2)p(\omega_2)$

and ω_2 , otherwise

Two-Category Likelihood Ratio Test

- Under reasonable assumption that $\lambda_{12}>\lambda_{22}$ and $\lambda_{21}>\lambda_{11}$, (why?) decide ω_1 if $\frac{p(x|\omega_1)}{p(x|\omega_2)}>\frac{(\lambda_{12}-\lambda_{22})p(\omega_2)}{(\lambda_{21}-\lambda_{11})p(\omega_1)}=T$ and ω_2 , otherwise.
- The ratio $\frac{p(x|\omega_1)}{p(x|\omega_2)}$ is called the *likelihood ratio*.
- We can decide ω_1 if the likelihood ratio exceeds a threshold T value that is independent of the observation x.

Minimum-Error-Rate Classification

 To give an equal cost to all errors, we define zero-one risk function as

$$\lambda(\alpha_i|\omega_j) = \begin{cases} 0, & i = j \\ 1, & i \neq j \end{cases}, \quad \text{for } i, j = 1, \dots, C$$

The conditional risk representing error rate is

$$R(\alpha_i|x) = \sum_{j=1}^c \lambda(\alpha_i|\omega_j)p(\omega_j|x)$$
$$= \sum_{j\neq i}^c p(\omega_j|x) = 1 - p(\omega_i|x)$$

• To minimize $R(\alpha_i|x)$, we maximizes $p(\omega_i|x)$

Decide
$$\omega_i$$
 if $p(\omega_i|x) > p(\omega_j|x)$, for all $j \neq i$

(same as Bayes' decision rule)

Maximum Likelihood Estimation (MLE)

The samples are i.i.d.

$$j^{th}$$
 class set $D_j = \{x_l | (x_l, \overline{\omega}_l) \in S_j\}, S_j \subseteq S = \{(x_l, \overline{\omega}_l) | l = 1, ..., N\}$

- Maximum likelihood estimation: find $\hat{\theta}(D)$ to maximize p(x|D) $p(x|\omega_j) \approx p(x|D_j) \approx p(x|\hat{\theta}(D_j))$, $\hat{\theta}(D_j) = \underset{\theta}{arg \max} p(D_j|\theta)$
- The i.i.d. assumption implies that

$$p(D_j|\theta_j) = \prod_{x \in D_j} p(x|\theta_j)$$

- Let *D* be a generic sample set of size n = |D|
- Log-likelihood function:

$$l(\theta; D) \equiv \ln p(D|\theta) = \sum_{k=1}^{n} \ln p(x_k|\theta)$$

$$\nabla_{\theta}l(\theta;D)=0$$

• 서울대학교병원에 암진단을 받으러 온 사람은 10만명이다. 그중 1000명이 암환자로 판명이 난다. 암진단은 피검사를 하여 암표지자 값을 보고 판단을 한다. 이 암표지자를 확률 변수 x 로 했을 때, 정상인과 암환자 모두 다음의 매개변수 θ 로 표현되는 확률 분포는 $p(x|\theta) = \theta x e^{-\theta x}$, for x > 0 and $\theta > 0$ 의 형태를 가지고 있다. 샘플은 i.i.d. 특성을 만족한다. 정상인의 암표지자 값을 평균하면 0.01이 되고 암환자의 암표지자를 평균하면 0.1이 된다. 정상인과 암환자의 분포를 가장 잘 나타내는 $\hat{\theta}_1, \hat{\theta}_2$ 를 MLE 방법으로 추정하시오.

- 서울대학교병원에 암진단을 받으러 온 사람은 10만명이다. 그중 1000명이 암환자로 판명이 난다. 암진단은 피검사를 하여 암표지자 값을 보고 판단을 한다. 이 암표지자를 확률 변수 x 로 했을 때, 정상인과 암환자 모두 다음의 매개변수 θ 로 표현되는 확률 분포는 $p(x|\theta) = \theta x e^{-\theta x}$, for x > 0 and $\theta > 0$ 의 형태를 가지고 각 샘플은 i.i.d. 라고 가정한다. 정상인의 암표지자 값을 평균하면 0.01이 되고 암환자의 암표지자를 평균하면 0.1이 된다. 정상인과 암환자의 분포를 가장 잘 나타내는 $\hat{\theta}_1$, $\hat{\theta}_2$ 를 MLE 방법으로 추정하시오.
- Sol. (힌트) 문장의 수치에 해당하는 내용과 질문을 수식으로 표현해 보세요.

- 서울대학교병원에 암진단을 받으러 온 사람은 10만명이다. 그중 1000명이 암환자로 판명이 난다. 암진단은 피검사를 하여 암표지자 값을 보고 판단을 한다. 이 암표지자를 확률 변수 x 로 했을 때, 정상인과 암환자 모두 다음의 매개변수 θ 로 표현되는 확률 분포는 $p(x|\theta) = \theta x e^{-\theta x}$, for x > 0 and $\theta > 0$ 의 형태를 가지고 각 샘플은 i.i.d. 라고 가정한다. 정상인의 암표지자 값을 평균하면 0.01이 되고 암환자의 암표지자를 평균하면 0.1이 된다. 정상인과 암환자의 분포를 가장 잘 나타내는 $\hat{\theta}_1$, $\hat{\theta}_2$ 를 MLE 방법으로 추정하시오.
- Sol. (힌트) 문장의 수치에 해당하는 내용과 질문을 수식으로 표현해 보세요.
 - ✓ 정상인의 샘플 n=99000 개, 즉 $D_i=\{x_i|i=1,...,n\}$ 를 가지고 MLE를 수행하자. Likelihood function 은 아래와 같이 정의한다.

27

$$p(D_i|\theta) = \prod_{i=1}^n \theta x_i e^{-\theta x_i}$$

- 서울대학교병원에 암진단을 받으러 온 사람은 10만명이다. 그중 1000명이 암환자로 판명이 난다. 암진단은 피검사를 하여 암표지자 값을 보고 판단을 한다. 이 암표지자를 확률 변수 x 로 했을 때, 정상인과 암환자 모두 다음의 매개변수 θ 로 표현되는 확률 분포는 $p(x|\theta) = \theta x e^{-\theta x}$, for x > 0 and $\theta > 0$ 의 형태를 가지고 각 샘플은 i.i.d. 라고 가정한다. 정상인의 암표지자 값을 평균하면 0.01이 되고 암환자의 암표지자를 평균하면 0.1이 된다. 정상인과 암환자의 분포를 가장 잘 나타내는 $\hat{\theta}_1$, $\hat{\theta}_2$ 를 MLE 방법으로 추정하시오.
- Sol. (힌트) 문장의 수치에 해당하는 내용과 질문을 수식으로 표현해 보세요.
 - ✔ 정상인의 샘플 n=99000 개, 즉 $D_i=\{x_i|i=1,...,n\}$ 를 가지고 MLE를 수행하자. Likelihood function 은 아래와 같이 정의한다.

$$p(D_i|\theta) = \prod_{i=1}^n \theta x_i e^{-\theta x_i}$$

✓ 양변에 log를 위하여 log-likelihood 를 구하면 다음과 같다.

$$l(\theta) = n \log \theta + \sum_{i=1}^{n} \log x_i - \theta \sum_{i=1}^{n} x_i$$

- 서울대학교병원에 암진단을 받으러 온 사람은 10만명이다. 그중 1000명이 암환자로 판명이 난다. 암진단은 피검사를 하여 암표지자 값을 보고 판단을 한다. 이 암표지자를 확률 변수 x 로 했을 때, 정상인과 암환자 모두 다음의 매개변수 θ 로 표현되는 확률 분포는 $p(x|\theta) = \theta x e^{-\theta x}$, for x > 0 and $\theta > 0$ 의 형태를 가지고 각 샘플은 i.i.d. 라고 가정한다. 정상인의 암표지자 값을 평균하면 0.01이 되고 암환자의 암표지자를 평균하면 0.1이 된다. 정상인과 암환자의 분포를 가장 잘 나타내는 $\hat{\theta}_1$, $\hat{\theta}_2$ 를 MLE 방법으로 추정하시오.
- Sol. (힌트) 문장의 수치에 해당하는 내용과 질문을 수식으로 표현해 보세요.
 - ✔ 정상인의 샘플 n=99000 개, 즉 $D_i=\{x_i|i=1,...,n\}$ 를 가지고 MLE를 수행하자. Likelihood function 은 아래와 같이 정의한다.

$$p(D_i|\theta) = \prod_{i=1}^n \theta x_i e^{-\theta x_i}$$

✓ 양변에 log를 위하여 log-likelihood 를 구하면 다음과 같다.

$$l(\theta) = n \log \theta + -\theta \sum_{i=1}^{n} x_i + \sum_{i=1}^{n} \log x_i$$

✓ 양변에 θ 에 대해 미분하여 그 값이 0이 되도록 θ 를 구하면

$$\frac{d}{d\theta}l(\theta) = \frac{n}{\theta} - \sum_{i=1}^{n} x_i = 0, \quad \rightarrow \quad \hat{\theta}_{MLE} = \frac{n}{\sum_{i=1}^{n} x_i}$$

- 서울대학교병원에 암진단을 받으러 온 사람은 10만명이다. 그중 1000명이 암환자로 판명이 난다. 암진단은 피검사를 하여 암표지자 값을 보고 판단을 한다. 이 암표지자를 확률 변수 x 로 했을 때, 정상인과 암환자 모두 다음의 매개변수 θ 로 표현되는 확률 분포는 $p(x|\theta) = \theta x e^{-\theta x}$, $for~x>0~and~\theta>0$ 의 형태를 가지고 각 샘플은 i.i.d. 라고 가정한다. 정상인의 암표지자 값을 평균하면 0.01이 되고 암환자의 암표지자를 평균하면 0.1이 된다. 정상인과 암환자의 분포를 가장 잘 나타내는 $\hat{\theta}_1$, $\hat{\theta}_2$ 를 MLE 방법으로 추정하시오.
- Sol. (힌트) 문장의 수치에 해당하는 내용과 질문을 수식으로 표현해 보세요.
 - ✔ 정상인의 샘플 n=99000 개, 즉 $D_i=\{x_i|i=1,...,n\}$ 를 가지고 MLE를 수행하자. Likelihood function 은 아래와 같이 정의한다.

$$p(D_i|\theta) = \prod_{i=1}^n \theta x_i e^{-\theta x_i}$$

✓ 양변에 log를 위하여 log-likelihood 를 구하면 다음과 같다.

$$l(\theta) = n\log\theta + -\theta\sum_{i=1}^{n} x_i + \sum_{i=1}^{n} \log x_i$$

✓ 양변에 θ 에 대해 미분하여 그 값이 0이 되도록 θ 를 구하면

$$\frac{d}{d\theta}l(\theta) = \frac{n}{\theta} - \sum_{i=1}^{n} x_i = 0, \quad \rightarrow \quad \hat{\theta}_{MLE} = \frac{n}{\sum_{i=1}^{n} x_i}$$

✔ 여기서 정상인의 경우 암표지자 평균이 0.01 이므로 정상인 분포의 $\hat{\theta}_1$ 은 $\hat{\theta}_1$ = 100 이 되고 암환자의 경우는 암표지자 평균이 0.1이므로 암환자 분포의 $\hat{\theta}_2$ 는 $\hat{\theta}_2$ = 10이 된다.

• 서울대학교병원에 암진단을 받으러 온 사람은 10만명이다. 그중 1000명이 암환자로 판명이 난다. 암표지자 확률 분포는 $p(x|\theta) = \theta x e^{-\theta x}$, $for \, x > 0$ and $\theta > 0$ 에서 환자의 검사결과로 부터 θ 를 추정하였더니 정상인인 경우 $\hat{\theta}_1 = 100$, 암환자의 경우 $\hat{\theta}_2 = 10$ 으로 추정이 되었다. 암진단을 받으러 온 사람의 검사결과 x = 0.06 으로 나왔다. 정상인을 암환자로 잘못 진단하였을 때 리스크를 1로 하고, 암환자를 정상인으로 잘 못 진단 하였을 때 리스크를 10으로 설정 하였다. 정확히 진단하였을 때 리스크는 0으로 한다. 이 리스크를 감안하여 암환자 여부를 진단하시오.

- 서울대학교병원에 암진단을 받으러 온 사람은 10만명이다. 그중 1000명이 암환자로 판명이 난다. 암표지자 확률 분포는 $p(x|\theta) = \theta x e^{-\theta x}$, $for \, x > 0$ and $\theta > 0$ 에서 환자의 검사결과로 부터 θ 를 추정하였더니 정상인인 경우 $\hat{\theta}_1 = 100$, 암환자의 경우 $\hat{\theta}_2 = 10$ 으로 추정이 되었다. 암진단을 받으러 온 사람의 검사결과 x = 0.06 으로 나왔다. 정상인을 암환자로 잘못 진단하였을 때 리스크를 1로 하고, 암환자를 정상인으로 잘 못 진단 하였을 때 리스크를 10으로 설정 하였다. 정확히 진단하였을 때 리스크는 0으로 한다. 이 리스크를 감안하여 암환자 여부를 진단하시오.
- Sol. (힌트) 문장의 수치에 해당하는 내용과 질문을 수식으로 표현해 보세요.

- 서울대학교병원에 암진단을 받으러 온 사람은 10만명이다. 그중 1000명이 암환자로 판명이 난다. 암표지자 확률 분포는 $p(x|\theta) = \theta x e^{-\theta x}$, $for \, x > 0$ and $\theta > 0$ 에서 환자의 검사결과로 부터 θ 를 추정하였더니 정상인인 경우 $\hat{\theta}_1 = 100$, 암환자의 경우 $\hat{\theta}_2 = 10$ 으로 추정이 되었다. 암진단을 받으러 온 사람의 검사결과 x = 0.06 으로 나왔다. 정상인을 암환자로 잘못 진단하였을 때 리스크를 1로 하고, 암환자를 정상인으로 잘 못 진단 하였을 때 리스크를 10으로 설정 하였다. 정확히 진단하였을 때 리스크는 0으로 한다. 이 리스크를 감안하여 암환자 여부를 진단하시오.
- Sol. (힌트) 문장의 수치에 해당하는 내용과 질문을 수식으로 표현해 보세요.
 - \checkmark 정상인 확률은 $p(\hat{\theta}_1)=0.99$ 이고 암환자의 확률은 $p(\hat{\theta}_2)=0.01$ 이다. 질문: $R(\alpha_1|x=0.06)=\lambda_{11}p(\hat{\theta}_1|x=0.06)+\lambda_{12}p(\hat{\theta}_2|x=0.06)=?$ $R(\alpha_2|x=0.06)=\lambda_{21}p(\hat{\theta}_1|x=0.06)+\lambda_{22}p(\hat{\theta}_2|x=0.06)=?$

- 서울대학교병원에 암진단을 받으러 온 사람은 10만명이다. 그중 1000명이 암환자로 판명이 난다. 암표지자 확률 분포는 $p(x|\theta) = \theta x e^{-\theta x}$, $for \, x > 0$ and $\theta > 0$ 에서 환자의 검사결과로 부터 θ 를 추정하였더니 정상인인 경우 $\hat{\theta}_1 = 100$, 암환자의 경우 $\hat{\theta}_2 = 10$ 으로 추정이 되었다. 암진단을 받으러 온 사람의 검사결과 x = 0.06 으로 나왔다. 정상인을 암환자로 잘못 진단하였을 때 리스크를 1로 하고, 암환자를 정상인으로 잘 못 진단 하였을 때 리스크를 10으로 설정 하였다. 정확히 진단하였을 때 리스크는 0으로 한다. 이 리스크를 감안하여 암환자 여부를 진단하시오.
- Sol. (힌트) 문장의 수치에 해당하는 내용과 질문을 수식으로 표현해 보세요.
 - \checkmark 정상인 확률은 $p(\hat{\theta}_1)=0.99$ 이고 암환자의 확률은 $p(\hat{\theta}_2)=0.01$ 이다. 질문: $R(\alpha_1|x=0.06)=\lambda_{11}p(\hat{\theta}_1|x=0.06)+\lambda_{12}p(\hat{\theta}_2|x=0.06)=?$ $R(\alpha_2|x=0.06)=\lambda_{21}p(\hat{\theta}_1|x=0.06)+\lambda_{22}p(\hat{\theta}_2|x=0.06)=?$
 - ✓ 정상인 확률은 $p(\hat{\theta}_1) = 0.99$ 이고 암환자의 확률은 $p(\hat{\theta}_2) = 0.01$ 이다.

- 서울대학교병원에 암진단을 받으러 온 사람은 10만명이다. 그중 1000명이 암환자로 판명이 난다. 암표지자 확률 분포는 $p(x|\theta) = \theta x e^{-\theta x}$, $for \, x > 0$ and $\theta > 0$ 에서 환자의 검사결과로 부터 θ 를 추정하였더니 정상인인 경우 $\hat{\theta}_1 = 100$, 암환자의 경우 $\hat{\theta}_2 = 10$ 으로 추정이 되었다. 암진단을 받으러 온 사람의 검사결과 x = 0.06 으로 나왔다. 정상인을 암환자로 잘못 진단하였을 때 리스크를 1로 하고, 암환자를 정상인으로 잘 못 진단 하였을 때 리스크를 10으로 설정 하였다. 정확히 진단하였을 때 리스크는 0으로 한다. 이 리스크를 감안하여 암환자 여부를 진단하시오.
- Sol. (힌트) 문장의 수치에 해당하는 내용과 질문을 수식으로 표현해 보세요.
 - \checkmark 정상인 확률은 $p(\hat{\theta}_1)=0.99$ 이고 암환자의 확률은 $p(\hat{\theta}_2)=0.01$ 이다. 질문: $R(\alpha_1|x=0.06)=\lambda_{11}p(\hat{\theta}_1|x=0.06)+\lambda_{12}p(\hat{\theta}_2|x=0.06)=?$ $R(\alpha_2|x=0.06)=\lambda_{21}p(\hat{\theta}_1|x=0.06)+\lambda_{22}p(\hat{\theta}_2|x=0.06)=?$
 - \checkmark $p(\hat{\theta}_1|x=0.06) \propto p(x=0.06|\hat{\theta}_1)p(\hat{\theta}_1) = 100 * 0.06e^{-100*0.06} * 0.99 = 0.0147$
 - \checkmark $p(\hat{\theta}_2|x=0.06) \propto p(x=0.06|\hat{\theta}_2)p(\hat{\theta}_2) = 10 * 0.06e^{-10*0.06} * 0.01 = 0.00329$

J. Y. Choi. SNU

35

- 서울대학교병원에 암진단을 받으러 온 사람은 10만명이다. 그중 1000명이 암환자로 판명이 난다. 암표지자 확률 분포는 $p(x|\theta) = \theta x e^{-\theta x}$, $for \, x > 0$ and $\theta > 0$ 에서 환자의 검사결과로 부터 θ 를 추정하였더니 정상인인 경우 $\hat{\theta}_1 = 100$, 암환자의 경우 $\hat{\theta}_2 = 10$ 으로 추정이 되었다. 암진단을 받으러 온 사람의 검사결과 x = 0.06 으로 나왔다. 정상인을 암환자로 잘못 진단하였을 때 리스크를 1로 하고, 암환자를 정상인으로 잘 못 진단 하였을 때 리스크를 10으로 설정 하였다. 정확히 진단하였을 때 리스크는 0으로 한다. 이 리스크를 감안하여 암환자 여부를 진단하시오.
- Sol. (힌트) 문장의 수치에 해당하는 내용과 질문을 수식으로 표현해 보세요.
 - \checkmark 정상인 확률은 $p(\hat{\theta}_1)=0.99$ 이고 암환자의 확률은 $p(\hat{\theta}_2)=0.01$ 이다. 질문: $R(\alpha_1|x=0.06)=\lambda_{11}p(\hat{\theta}_1|x=0.06)+\lambda_{12}p(\hat{\theta}_2|x=0.06)=?$ $R(\alpha_2|x=0.06)=\lambda_{21}p(\hat{\theta}_1|x=0.06)+\lambda_{22}p(\hat{\theta}_2|x=0.06)=?$
 - ✓ 정상인 확률은 $p(\hat{\theta}_1) = 0.99$ 이고 암환자의 확률은 $p(\hat{\theta}_2) = 0.01$ 이다.
 - $f(\hat{\theta}_1|x=0.06) \propto p(x=0.06|\hat{\theta}_1)p(\hat{\theta}_1) = 100 * 0.06e^{-100*0.06} * 0.99 = 0.0147$
 - $\sqrt{p(\hat{\theta}_2|x=0.06)} \propto p(x=0.06|\hat{\theta}_2)p(\hat{\theta}_2) = 10 * 0.06e^{-10*0.06} * 0.01 = 0.00329$
 - \checkmark $R(\alpha_1|x = 0.06) = 0 * 0.0147 + 10*0.00329 = 0.0329$ $R(\alpha_2|x = 0.06) = 1 * 0.0147 + 0*0.00329 = 0.0147$

Error Probabilities and Integrals

- Consider the 2-class problem and suppose that the feature space is divided into 2 regions R_1 and R_2 . There are 2 ways in which a classification error can occur.
 - An observation x falls in R_2 , and the true state is ω_1 .
 - An observation x falls in R_1 , and the true state is ω_2 .
- The error probability

$$P(error) = P(x \in R_2 | \omega_1) p(\omega_1) + P(x \in R_1 | \omega_2) p(\omega_2)$$
$$= \int_{R_2} p(x | \omega_1) p(\omega_1) dx + \int_{R_1} p(x | \omega_2) p(\omega_2) dx$$

J. Y. Choi. SNU

Error Probabilities and Integrals

- Because x^* is chosen arbitrarily, the probability of error is not as small as it might be.
- x_B = Bayes optimal decision boundary, and gives the lowest probability of error.
- Bayes classifier maximizes the correct probability.

$$P(correct) = \sum_{i=1}^{C} P(\mathbf{x} \in \mathcal{R}_i \mid \omega_i) p(\omega_i) = \sum_{i=1}^{C} \int_{\mathcal{R}_i} p(\mathbf{x} \mid \omega_i) p(\omega_i) d\mathbf{x}$$

J. Y. Choi. SNU

Summary

- Bayes Formula
 - Priori probability
 - Likelihood
 - Posterior Probability
 - Bayes Decision
- Risk Formulation
 - Conditional Risk
 - Likelihood Ratio Test
 - Zero-one Loss Function (Bayes Decision)
- Maximum Likelihood Estimation (MLE)
- Error Probability

J. Y. Choi. SNU

Bayesian Networks

Jin Young Choi Seoul National University

Outline

- Application Examples of Bayesian Networks
 - Traffic Pattern Analysis
 - Topic Model (Document Analysis)
- Directed Acyclic Graph
- Conditional Independence
- D-separation
- Bayesian Parameters
- Parameterized Conditional Distributions
- Multinomial, Dirichlet Distribution, Conjugate Prior
- Markov Blanket

Application: Traffic Pattern Analysis

Surveillance in crowded scenes

LDA Model (Topic Modelling)

Topics

dia

life 0.02 evolve 0.01 organism 0.01

brain 0.04 neuron 0.02 nerve 0.01

data 0.02 number 0.02 computer 0.01

Documents

Topic proportions and assignments

Bayesian Networks

Directed Acyclic Graph (DAG)

$$p(a,b,c) = p(c|a,b)p(a,b) = p(c|a,b)p(b|a)p(a)$$

$$p(x_1, \dots, x_K) = p(x_K | x_1, \dots, x_{K-1}) \dots p(x_2 | x_1) p(x_1)$$

Bayesian Networks

$$p(x_1, \dots, x_7) = p(x_1)p(x_2)p(x_3)p(x_4|x_1, x_2, x_3)$$
$$p(x_5|x_1, x_3)p(x_6|x_4)p(x_7|x_4, x_5)$$

General Factorization

$$p(\mathbf{x}) = \prod_{k=1}^{K} p(x_k | \mathbf{pa}_k)$$

Conditional Independence

• a is independent of b given c

$$p(a|b,c) = p(a|c)$$

Equivalently

$$p(a, b|c) = p(a|b, c)p(b|c)$$
$$= p(a|c)p(b|c)$$

Notation

$$a \perp \!\!\!\perp b \mid c$$

$$p(a, b, c) = p(a|c)p(b|c)p(c)$$

$$p(a,b) = \sum_{c} p(a|c)p(b|c)p(c)$$
$$a \not\perp \!\!\!\perp b \mid \emptyset$$

U, V, and c are independent. a = U + c, b = V + c; a, b independent?

$$p(a, b, c) = p(a|c)p(b|c)p(c)$$

$$p(a,b|c) = \frac{p(a,b,c)}{p(c)}$$
$$= p(a|c)p(b|c)$$

$$a \perp \!\!\! \perp b \mid c$$

U, V, and c are independent. a = U + c, b = V + c, c = 1; a, b independent?

$$p(a, b, c) = p(a)p(c|a)p(b|c)$$

$$p(a,b) = p(a) \sum_{c} p(c|a)p(b|c) = p(a)p(b|a)$$

$$a \not\perp \!\!\!\perp b \mid \emptyset$$

p(b,c|a) = p(c|a)p(b|a,c) = p(c|a)p(b|c)

$$p(a,b|c) = \frac{p(a,b,c)}{p(c)}$$

$$= \frac{p(a)p(c|a)p(b|c)}{p(c)}$$

$$= p(a|c)p(b|c)$$

$$p(a|c) = \frac{p(c|a)p(a)}{p(c)}$$

 $a \perp \!\!\!\perp b \mid c$

$$p(a, b, c) = p(a)p(b)p(c|a, b)$$
$$p(a, b) = p(a)p(b)$$
$$a \perp \!\!\!\perp b \mid \emptyset$$

Note: this is the opposite of Example 1, with c unobserved.

a and b are independent Bernoulli rvs. c = a + b

$$p(a,b|c) = \frac{p(a,b,c)}{p(c)}$$

$$= \frac{p(a)p(b)p(c|a,b)}{p(c)}$$

$$a \not\perp \!\!\!\perp b \mid c$$

Note: this is the opposite of Example 1, with C observed.

a and b are independent Bernoulli rvs. c = a + b

$$p(G = 1|B = 1, F = 1) = 0.8$$

 $p(G = 1|B = 1, F = 0) = 0.2$
 $p(G = 1|B = 0, F = 1) = 0.2$
 $p(G = 1|B = 0, F = 0) = 0.1$

> G is dependent to B and F

$$p(B=1) = 0.9$$
 $p(F=1) = 0.9$ and hence $p(F=0) = 0.1$

> F is independent to B

B = Battery (0=flat, 1=fully charged)

F = Fuel Tank (0=empty, 1=full)

G = Fuel Gauge Reading (0=empty, 1=full)

$$p(G = 1|B = 1, F = 1) = 0.8$$

 $p(G = 1|B = 1, F = 0) = 0.2$
 $p(G = 1|B = 0, F = 1) = 0.2$
 $p(G = 1|B = 0, F = 0) = 0.1$

$$p(B=1) = 0.9$$
 $p(F=1) = 0.9$ and hence $p(F=0) = 0.1$

Probability of an empty tank increased by observing G = 0.

수식화?

$$p(G = 1|B = 1, F = 1) = 0.8$$

 $p(G = 1|B = 1, F = 0) = 0.2$
 $p(G = 1|B = 0, F = 1) = 0.2$
 $p(G = 1|B = 0, F = 0) = 0.1$

$$p(B=1) = 0.9$$
$$p(F=1) = 0.9$$

and hence

$$p(F=0) = 0.1$$

Probability of an empty tank increased by observing G = 0.

$$p(F=0|G=0) =$$

$$p(G = 1|B = 1, F = 1) = 0.8$$

 $p(G = 1|B = 1, F = 0) = 0.2$
 $p(G = 1|B = 0, F = 1) = 0.2$
 $p(G = 1|B = 0, F = 0) = 0.1$

$$p(B=1) = 0.9$$

 $p(F=1) = 0.9$
and hence
 $p(F=0) = 0.1$

Probability of an empty tank increased by observing G = 0.

$$p(F=0|G=0) = \frac{p(G=0|F=0)p(F=0)}{p(G=0)}$$

$$p(G = 1|B = 1, F = 1) = 0.8$$

 $p(G = 1|B = 1, F = 0) = 0.2$
 $p(G = 1|B = 0, F = 1) = 0.2$
 $p(G = 1|B = 0, F = 0) = 0.1$

$$p(B=1) = 0.9$$

 $p(F=1) = 0.9$
and hence
 $p(F=0) = 0.1$

Probability of an empty tank increased by observing G = 0.

$$p(F=0|G=0) = \frac{p(G=0|F=0)p(F=0)}{p(G=0)}$$

$$P(G = 0|F = 0) = 1 - P(G = 1|F = 0) = ?$$

$$p(G = 1|B = 1, F = 1) = 0.8$$

 $p(G = 1|B = 1, F = 0) = 0.2$
 $p(G = 1|B = 0, F = 1) = 0.2$
 $p(G = 1|B = 0, F = 0) = 0.1$

$$p(B=1) = 0.9$$

 $p(F=1) = 0.9$
and hence
 $p(F=0) = 0.1$

Probability of an empty tank increased by observing G = 0.

$$p(F=0|G=0) = \frac{p(G=0|F=0)p(F=0)}{p(G=0)}$$

$$P(G = 0|F = 0) = 1 - P(G = 1|F = 0) = 1 - \sum_{B} P(G = 1|B, F = 0)P(B) = 1 - 0.2 \times 0.9 - 0.1 \times 0.1 = 0.81$$

$$p(G = 1|B = 1, F = 1) = 0.8$$

 $p(G = 1|B = 1, F = 0) = 0.2$
 $p(G = 1|B = 0, F = 1) = 0.2$
 $p(G = 1|B = 0, F = 0) = 0.1$

$$p(B=1) = 0.9$$
 $p(F=1) = 0.9$ and hence $p(F=0) = 0.1$

Probability of an empty tank increased by observing G = 0.

$$p(F=0|G=0) = \frac{p(G=0|F=0)p(F=0)}{p(G=0)}$$

$$P(G = 0|F = 0) = 1 - P(G = 1|F = 0) = 1 - \sum_{B} P(G = 1|B, F = 0)P(B) = 1 - 0.2 \times 0.9 - 0.1 \times 0.1 = 0.81$$

$$P(G = 0) = 1 - P(G = 1) = 1 - \sum_{B,F} P(G = 1|B,F)P(B,F) = 1 - 0.8 \times 0.81 - 0.2 \times 0.09 - 0.2 \times 0.09 - 0.1 \times 0.01 = 0.315$$

$$p(G = 1|B = 1, F = 1) = 0.8$$

 $p(G = 1|B = 1, F = 0) = 0.2$
 $p(G = 1|B = 0, F = 1) = 0.2$
 $p(G = 1|B = 0, F = 0) = 0.1$

$$p(B=1) = 0.9$$

 $p(F=1) = 0.9$
and hence
 $p(F=0) = 0.1$

Probability of an empty tank increased by observing G = 0.

$$p(F=0|G=0) = \frac{p(G=0|F=0)p(F=0)}{p(G=0)} = \frac{0.81 \times 0.1}{0.315} = 0.257$$

$$P(G = 0|F = 0) = 1 - P(G = 1|F = 0) = 1 - \sum_{B} P(G = 1|B, F = 0)P(B) = 1 - 0.2 \times 0.9 - 0.1 \times 0.1 = 0.81$$

$$P(G = 0) = 1 - P(G = 1) = 1 - \sum_{B,F} P(G = 1|B,F)P(B,F) = 1 - 0.8 \times 0.81 - 0.2 \times 0.09 - 0.2 \times 0.09 - 0.1 \times 0.01 = 0.315$$

$$p(G = 1|B = 1, F = 1) = 0.8$$

 $p(G = 1|B = 1, F = 0) = 0.2$
 $p(G = 1|B = 0, F = 1) = 0.2$
 $p(G = 1|B = 0, F = 0) = 0.1$

$$p(B=1) = 0.9$$
 $p(F=1) = 0.9$ and hence $p(F=0) = 0.1$

Probability of an empty tank reduced by observing B = 0 & G = 0This referred to as "explaining away".

어떤 영향을 받을 까요? 1) 영향 받지 않는다. 2) Empty 확률이 높아진다. 3) Empty 확률이 낮아진다.

$$p(G = 1|B = 1, F = 1) = 0.8$$

 $p(G = 1|B = 1, F = 0) = 0.2$
 $p(G = 1|B = 0, F = 1) = 0.2$
 $p(G = 1|B = 0, F = 0) = 0.1$

$$p(B=1) = 0.9$$

$$p(F=1) = 0.9$$

and hence

$$p(F=0) = 0.1$$

Probability of an empty tank reduced by observing B=0& G=0This referred to as "explaining away".

$$p(F = 0|G = 0, B = 0) = \frac{p(G = 0|B = 0, F = 0)p(F = 0)}{\sum_{F \in \{0,1\}} p(G = 0|B = 0, F)p(F)}$$

$$\simeq 0.111$$

 \triangleright F is dependent to B given G and the empty probability is reduced because the gage becomes less reliable.

Answer the following questions for the right-hand Bayesian network.

- 1) When any random variables are not observed, show that a and b are independent to each other.
- 2) When d is observed, show that a and b are dependent to each other.

Answer the following questions for the right-hand Bayesian network.

- 1) When any random variables are not observed, show that a and b are independent to each other.
- 2) When d is observed, show that a and b are dependent to each other.
 - 1) nothing observed

$$p(a,b) = p(a)p(b) ?$$

2) *d* is observed

$$p(a,b|d) \neq p(a|d)p(b|d)$$
?

Answer the following questions for the right-hand Bayesian network.

- 1) When any random variables are not observed, show that $\,a\,$ and $\,b\,$ are independent to each other.
- 2) When d is observed, show that a and b are dependent to each other.
- 1) Nothing observed

$$p(a,b) = \Sigma_c \Sigma_d p(a,b,c,d) =$$

Answer the following questions for the right-hand Bayesian network.

- 1) When any random variables are not observed, show that $\,a\,$ and $\,b\,$ are independent to each other.
- 2) When d is observed, show that a and b are dependent to each other.
- 1) Nothing observed

$$p(a,b) = \Sigma_c \Sigma_d p(a,b,c,d) = \Sigma_c \Sigma_d p(a) p(b) p(c|a,b) p(d|c)$$

Answer the following questions for the right-hand Bayesian network.

- 1) When any random variables are not observed, show that a and b are independent to each other.
- 2) When d is observed, show that a and b are dependent to each other.
- 1) Nothing observed

$$p(a,b) = \Sigma_c \Sigma_d p(a,b,c,d) = \Sigma_c \Sigma_d p(a) p(b) p(c|a,b) p(d|c)$$
$$= p(a) p(b) \Sigma_c \Sigma_d p(c|a,b) p(d|c)$$

Answer the following questions for the right-hand Bayesian network.

- 1) When any random variables are not observed, show that a and b are independent to each other.
- 2) When d is observed, show that a and b are dependent to each other.
- 1) Nothing observed

$$p(a,b) = \Sigma_c \Sigma_d p(a,b,c,d) = \Sigma_c \Sigma_d p(a) p(b) p(c|a,b) p(d|c)$$

$$= p(a) p(b) \Sigma_c \Sigma_d p(c|a,b) p(d|c)$$

$$= p(a) p(b) \Sigma_c p(c|a,b) \Sigma_d p(d|c)$$

Answer the following questions for the right-hand Bayesian network.

- 1) When any random variables are not observed, show that $\,a\,$ and $\,b\,$ are independent to each other.
- 2) When d is observed, show that a and b are dependent to each other.
- 1) Nothing observed

$$p(a,b) = \Sigma_c \Sigma_d p(a,b,c,d) = \Sigma_c \Sigma_d p(a) p(b) p(c|a,b) p(d|c)$$

$$= p(a) p(b) \Sigma_c \Sigma_d p(c|a,b) p(d|c)$$

$$= p(a) p(b) \Sigma_c p(c|a,b) \Sigma_d p(d|c)$$

$$= p(a) p(b)$$

Answer the following questions for the right-hand Bayesian network.

- 1) When any random variables are not observed, show that $\,a\,$ and $\,b\,$ are independent to each other.
- 2) When d is observed, show that a and b are dependent to each other.
- 2) *d* is observed

$$p(a,b|d) = \frac{p(a,b,d)}{p(d)}$$

Answer the following questions for the right-hand Bayesian network.

- 1) When any random variables are not observed, show that $\,a\,$ and $\,b\,$ are independent to each other.
- 2) When d is observed, show that a and b are dependent to each other.
- 2) *d* is observed

$$p(a, b|d) = \frac{p(a, b, d)}{p(d)}$$
$$= \sum_{c} \left\{ \frac{p(a, b, c, d)}{p(d)} \right\}$$

Answer the following questions for the right-hand Bayesian network.

- 1) When any random variables are not observed, show that $\,a\,$ and $\,b\,$ are independent to each other.
- 2) When d is observed, show that a and b are dependent to each other.
- 2) *d* is observed

$$p(a,b|d) = \frac{p(a,b,d)}{p(d)}$$

$$= \Sigma_c \left\{ \frac{p(a,b,c,d)}{p(d)} \right\}$$

$$= \Sigma_c \left\{ \frac{p(a)p(b)p(c|a,b)p(d|c)}{p(d)} \right\}$$

Answer the following questions for the right-hand Bayesian network.

- 1) When any random variables are not observed, show that $\,a\,$ and $\,b\,$ are independent to each other.
- 2) When d is observed, show that a and b are dependent to each other.
- 2) *d* is observed

$$p(a,b|d) = \frac{p(a,b,d)}{p(d)}$$

$$= \Sigma_c \left\{ \frac{p(a,b,c,d)}{p(d)} \right\}$$

$$= \Sigma_c \left\{ \frac{p(a)p(b)p(c|a,b)p(d|c)}{p(d)} \right\}$$

$$= \frac{p(a)p(b)}{p(d)} \Sigma_c \left\{ p(c|a,b)p(d|c) \right\}$$

Answer the following questions for the right-hand Bayesian network.

- 1) When any random variables are not observed, show that $\,a\,$ and $\,b\,$ are independent to each other.
- 2) When d is observed, show that a and b are dependent to each other.
- 2) *d* is observed

$$p(a,b|d) = \frac{p(a,b,d)}{p(d)}$$

$$= \Sigma_c \left\{ \frac{p(a,b,c,d)}{p(d)} \right\}$$

$$= \Sigma_c \left\{ \frac{p(a)p(b)p(c|a,b)p(d|c)}{p(d)} \right\}$$

$$= \frac{p(a)p(b)}{p(d)} \Sigma_c \left\{ p(c|a,b)p(d|c) \right\}$$

$$= \frac{p(a)p(b)p(d|a,b)}{p(d)}$$

35

Answer the following questions for the right-hand Bayesian network.

- 1) When any random variables are not observed, show that $\,a\,$ and $\,b\,$ are independent to each other.
- 2) When d is observed, show that a and b are dependent to each other.
- 2) *d* is observed

$$p(a,b|d) = \frac{p(a,b,d)}{p(d)}$$

$$= \Sigma_c \left\{ \frac{p(a,b,c,d)}{p(d)} \right\}$$

$$= \Sigma_c \left\{ \frac{p(a)p(b)p(c|a,b)p(d|c)}{p(d)} \right\}$$

$$= \frac{p(a)p(b)}{p(d)} \Sigma_c \left\{ p(c|a,b)p(d|c) \right\}$$

$$= \frac{p(a)p(b)p(d|a,b)}{p(d)} \neq p(a|d)p(b|d)$$

D-separation

- A, B, and C are non-intersecting subsets of nodes in a directed graph.
- A path from A to B is blocked if it contains a node such that either
 - the arrows on the path meet either head-to-tail or tail-to-tail at the node, and the node is in the set C, or
 - the arrows meet head-to-head at the node, and neither the node, nor any of its descendants, are in the set *C*.
- If all paths from A to B are blocked, A is said to be dseparated from B by C.
- If A is d-separated from B by C, the joint distribution over all variables in the graph satisfies $A \perp\!\!\!\perp B \mid C$.

D-separation: Example

When B is observed in the following Bayesian network, decide whether every path from D to E is blocked (d-separated) or not and determine the dependency between D and E.

a. path 1: $(D \leftarrow A \rightarrow B \rightarrow E)$ or $(D \rightarrow B \rightarrow E)$ Is blocked (d-separated) or not?

a. path 1: path via B, i.e., $(D \leftarrow A \rightarrow B \rightarrow E)$ or $(D \rightarrow B \rightarrow E)$ Is blocked (d-separated) or not?

Answer: blocked (d-separated), since the connection in B is head to tail and B is observed.

b. path 2 (D → C ← E)Is blocked (d-separated) or not?

b. path 2 (D → C ← E)Is blocked (d-separated) or not?

Answer: blocked (d-separated), since the connection in C is head to head and C is not observed.

c. path 3 (D ← A→ E):Is blocked (d-separated) or not?

c. path 3 (D ← A→ E) :Is blocked (d-separated) or not?

Answer: not blocked, since the connection in A is tail to tail and A is not observed.

d. path 4 (D \rightarrow B \leftarrow A \rightarrow E): Is blocked (d-separated) or not?

d. path 4 (D \rightarrow B \leftarrow A \rightarrow E): Is blocked (d-separated) or not?

Answer: not blocked,

since the connection in B is head to head and B is observed, the path $D \to B \leftarrow A$ becomes non-blocking by B, and since the connection in A is tail to tail and A is not observed, the path B $\leftarrow A \to E$ becomes non-blocking.

e. There are 4 blocked paths and 1 non-blocked path.

Is blocked (d-separated) or not?

e. There are 4 blocked paths and 1 non-blocked path.

Is blocked (d-separated) or not?

Answer: not blocked (d-separated), since there exists at least one non-blocking path. Thus D and E are dependent to each other.

D-separation: I.I.D. Data

$$p(\mathcal{D}|\mu) = \prod_{n=1}^{N} p(x_n|\mu)$$

$$p(\mathcal{D}) = \int_{-\infty}^{\infty} p(\mathcal{D}|\mu) p(\mu) d\mu \neq \prod_{n=1}^{N} p(x_n)$$

Discrete Variables, Multinomial

$$p(x_1, ..., x_K | \mu_1, ..., \mu_K) = \frac{n!}{x_1!...x_K!} \mu_1^{x_1} ... \mu_K^{x_K}$$

$$p(x_{11}, \dots, x_{1K}, x_{21}, \dots, x_{2K} | \mu_{11}, \dots, \mu_{KK}) = \frac{n!}{x_{11}! \dots x_{1K}!} \frac{n!}{x_{21}! \dots x_{2K}!} \mu_{11}^{x_{11}x_{21}} \dots \mu_{KK}^{x_{1K}x_{2K}}$$

Discrete Variables (1), Multinomial

• General joint distribution: $K^2 - 1$ parameters

$$p(\mathbf{x}_1, \mathbf{x}_2 | \boldsymbol{\mu}) = \prod_{k=1}^K \prod_{l=1}^K \mu_{kl}^{x_{1k} x_{2l}}$$

■ Independent joint distribution: 2(K-1) parameters

$$\overset{\mathbf{x}_1}{\bigcirc}$$

$$\sum_{i=1}^{n}$$

$$\hat{p}(\mathbf{x}_1, \mathbf{x}_2 | \boldsymbol{\mu}) = \prod_{k=1}^K \mu_{1k}^{x_{1k}} \prod_{l=1}^K \mu_{2l}^{x_{2l}}$$

- $p(x_1, x_2) = p(x_1 | x_2) p(x_2)$ $K - 1 + K(K - 1) = K^2 - 1$ parameters
- $p(x_1, x_2) = p(x_1)p(x_2)$ K - 1 + K - 1 = 2(K - 1) parameters

Discrete Variables, Dirichlet

■ The <u>posterior distributions</u> are in the same family as the <u>prior probability distribution</u>.

$$p(\mu|x) \propto p(x|\mu)p(\mu)$$

- The prior and posterior are then called conjugate distributions, and the prior is called a conjugate prior for the <u>likelihood function</u>.
- Dirichlet distribution is a <u>conjugate (prior) distribution</u> to the multinomial distribution.
- Gaussian is a conjugate prior of Gaussian.

Discrete Variables, Dirichlet

- Posteriori: $p(\mu|x,\alpha) \propto p(x|\mu)p(\mu|\alpha)$
- Mul(K, μ): $p(x_1, ..., x_K | \mu_1, ..., \mu_K) = \frac{n!}{x_1!...x_K!} \mu_1^{x_1} ... \mu_K^{x_K}$
- Dir(K, α): $p(\mu_1, ..., \mu_K | \alpha_1, ..., \alpha_K) = \frac{\Gamma(\sum_{i=1}^K (\alpha_i 1))}{\prod_{i=1}^K \Gamma(\alpha_i 1)} \mu_1^{\alpha_1} ... \mu_K^{\alpha_K}$
- Parameters: $\alpha_1, ..., \alpha_K > 0$ (hyper-parameters)
- Support: $\mu_1, \dots, \mu_K \in (0,1)$ where $\sum_{i=1}^K \mu_i = 1$
- Dir(K, $c + \alpha$): $p(\mu|x,\alpha) \propto p(x|\mu)p(\mu|\alpha)$ where $c = (c_1, ..., c_K)$ is number of occurrences
- $\bullet \quad E[\mu_k] = \frac{c_k + \alpha_k}{\sum_{i=1}^K (c_i + \alpha_i)}$

Discrete Variables (2)

- General joint distribution over M variables: $K^M 1$ parameters
- M -node Markov chain: K 1 + (M 1)K(K 1) parameters

$$p(x_1, x_2) = p(x_1)p(x_2|x_1)p(x_3|x_2)...p(x_M|x_{M-1})$$

Discrete Variables: Bayesian Parameters (1)

$$p(\{\mathbf{x}_{m}, \boldsymbol{\mu}_{m}\}) = p(\mathbf{x}_{1} | \boldsymbol{\mu}_{1}) p(\boldsymbol{\mu}_{1}) \prod_{m=2}^{M} p(\mathbf{x}_{m} | \mathbf{x}_{m-1}, \boldsymbol{\mu}_{m}) p(\boldsymbol{\mu}_{m})$$

$$p(\boldsymbol{\mu}_m) = \operatorname{Dir}(\boldsymbol{\mu}_m | \boldsymbol{\alpha}_m)$$

Discrete Variables: Bayesian Parameters (2)

57

$$p(\{\mathbf{x}_m\}, \boldsymbol{\mu}_1, \boldsymbol{\mu}) = p(\mathbf{x}_1 | \boldsymbol{\mu}_1) p(\boldsymbol{\mu}_1) \prod_{m=2}^{M} p(\mathbf{x}_m | \mathbf{x}_{m-1}, \boldsymbol{\mu}) p(\boldsymbol{\mu})$$

Parameterized Conditional Distributions

If x_1, \ldots, x_M are discrete, K-state variables, $p(y=1|x_1,\ldots,x_M)$ in general has $O(K^M)$ parameters because $p(x_1,\ldots,x_M|y=1)$ requires K^M-1 parameters.

The parameterized form

$$p(y = 1 | x_1, \dots, x_M) = \sigma\left(w_0 + \sum_{i=1}^M w_i x_i\right) = \sigma(\mathbf{w}^T \mathbf{x})$$

requires only M+1 parameters (actually this can not model a probability distribution).

The Markov Blanket

$$p(\mathbf{x}_{i}|\mathbf{x}_{\{j\neq i\}}) = \frac{p(\mathbf{x}_{1}, \dots, \mathbf{x}_{M})}{\int p(\mathbf{x}_{1}, \dots, \mathbf{x}_{M}) d\mathbf{x}_{i}}$$

$$= \frac{\prod_{k} p(\mathbf{x}_{k}|\mathbf{pa}_{k})}{\int \prod_{k} p(\mathbf{x}_{k}|\mathbf{pa}_{k}) d\mathbf{x}_{i}}$$

$$= \prod_{k \in MB} p(x_{k}|pa_{k})$$

Any factor $p(x_k|pa_k)$ that does not have any functional dependence on x_i can be taken outside the integral over x_i , and will therefore cancel between numerator and denominator.

Summary

- Bayesian Networks
- Directed Acyclic Graph
- Conditional Independence
- D-separation
- Bayesian Parameters
- Parameterized Conditional Distributions
- Multinomial, Dirichlet Distribution, Conjugate Prior
- Markov Blanket