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Bayesian Decision

* Question:
* There live two kinds of fishes in a lake: tuna or salmon.

« |f you catch a fish by fishing, is the fish likely to be tuna or salmon?
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Bayesian Decision

*  We have experienced that salmon has been caught in 70% and tuna in 30%.

*  What is the next fish likely to be?
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Bayesian Decision

If other types of fish are irrelevant:
p(w=w)+plw=wy) =1,
w IS random variable, w;and w, denote salmon and tuna.
Probabilities reflect our prior knowledge obtained from past experience.

Simple Decision Rule:
Make a decision without seeing the fish.
Decide w, if p(w = wy) > p(w = w,)
w, otherwise.
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Bayesian Decision

* In general, we will have some features and more information.

Feature: lightness measurement = x

Different fish yields different lightness readings (x is a random variable)

J. Y. Choi. SNU



Bayesian Decision

* Define
* p(x|w;)= Class Conditional Probability Density

* The difference between p(x|w,) and p(x|w,) describes the difference in

lightness between tuna and salmon.

J. Y. Choi. SNU



Bayesian Decision

« Hypothetical class-conditional probability
» Density functions are normalized (area under each curve is 1.0)
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Bayesian Decision

* Suppose that we know
« The prior probabilities p(w,) and p(w,)
« The conditional densities p(x|w;) and p(x|w-)
« Measure lightness of a fish = x

- What is the category of the fish with lightness of x ?

* The probability that the fish has category of w; is p(w;|x).
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Bayes formula

p(X|w;)p(w;y)

p(w;i|x) = YR

where p(x) = X, p(x|w;)p(w)) = X p(x, w)).
) Likelihood*Prior

Posterior = Ery—

p(x|w;) Is called the likelihood of w; with respect to x.

The w; category for which p(x|w;) Is large is more "likely" to be the true
category
p(x) is the evidence

How frequently is a pattern with feature value x observed.

Scale factor that the posterior probabilities sum to 1.

J. Y. Choi. SNU
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Bayes formula

 Posterior probabilities for the particular priors p(w,) = 2/3 and
p(w,) = 1/3. At every x the posteriors sum to 1.
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Bayes Decision Rule (Minimal probabillity error)

* Likelihood Decision:

* wq ¢ if p(x|wg) > px|ws)
* w, : otherwise

* Posteriori Decision:

* wy b if p(x|wi)p(wr) > plx|wy)p(w,)
* w, : otherwise

 Decision Error Probability
* p(error|x) = min(p(w¢|x), p(w,|x))
where the decision error is given by

p(w,|x) if we decide w, for w,

p(error|x) = {p(w1|x) if we decide w, for w;

J. Y. Choi. SNU
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Exercise
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Jb40cm Olot &€ [ A0t #etsr A0IX? OtLIBH =02 &tEhe JdelAl Z2EOHAIL
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v (8E) 2&2o =Xl0l oiEole LiEJ 22 =42 = Halol BN
v A: X=0, sH:X=1, AJI|:Y.
v P(X=0)=06PX=1) = 04, P(Y <40cm|X =0)= 0.2, P(Y < 40cm| X = 1) = 0.03
v & &: posteriori: P(X =0|Y <40cm) =?, P(X = 1|Y < 40cm) =?
v P(X=0]Y < 40cm) = P(v<40cm|x=0)P(x=0) _ 0.2X0.6 — 90.9%

P(Y<40cm)

" 0.2%0.6+0.4X0.03
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Exercise

» SFOHOHIINAM HODIEE SE#E206 012 =sHIIEE E#E2040|CH &8l H =
40 cm O|ote AJ|Y &2 20%0]/ 1), =0 = 40cm O|ote & =2 3%0|CH & 1|
J40cm OloF & [ A2t &tee 240l X|? OLIB s EHEHE 201X Z2H0IAIL

= Sol.
v

5

E)Z2&2 =X oot LHIEWH EE2S =422 HAE BHR.
v AW X=0, s¥: X=1, AJ|:Y.

v P(X=0)=06PX=1) = 04, P(Y <40cm|X =0)= 0.2, P(Y < 40cm| X = 1) = 0.03
v & &: posteriori: P(X =0|Y <40cm) =?, P(X = 1|Y < 40cm) =?
v

_ _ P(v=40cm|x=0)P(x=0) _ 0.2X0.6 . 0
P(X=0]Y = 40cm) = P(y<40cm) = t2x06r0axo0s - 20-9%

_ _ P(vs40cm|x=1)P(x=1) _ 0.4x0.03 _ 0
v PX=1]Y =40cm) = P(y<40cm) = Daxostoaxoos . 09%

v Bayes decision 0l 2o & {2t EFESHLE
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General Formulation

Let {w4, ..., w.} be the finite set of ¢ categories.

Let {aq,...,a,} Dbe the finite set of a possible actions.
Ex. Action «; = deciding that the true state Is w; or others.
The risk function  A(a;|w;) = risk incurred for taking action

when the state of nature Is w;.
« x = d —dimensional feature vector (random variable)
* p(x|w;) = likelihood probability density function for x for given w;
* p(w;) = prior probability that nature is in state w;.

J. Y. Choi. SNU
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Conditional Risk

 After the observation, the expected risk (conditional risk) is given by

R(a;]x) = ¥%; A a;|w;)p(w)|x)

* The decision action a(x) for given x is given

a(x) = arg rrclxi.n R(a;|x) = ;zl/l(ai|a)j)p(wj|x)

l

J. Y. Choi. SNU
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Two-Category Classification

Action a, = deciding that the true state is w,
Action a, = deciding that the true state is w,

Let 4;; = A(a;|w;) be the risk incurred for deciding w; when true
state Is w;.

The conditional risks:
R(ayl|x) = A11p(w1lx) + A0 (w4 ]x)
R(az|x) = A31p(w1]x) + Az2p (w2 |x)

Decide w, if R(aq|x) < R(a,|x)
or if (A1 — A10)p(w1[x) > (A12—222)p(w2|x)
or if (121 — A11)p(x|w)p(w1) > (A12—222)p(x|w2)p(w2)
and w,, otherwise

J. Y. Choi. SNU
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Two-Category Likelihood Ratio Test

- Under reasonable assumption that 1,, > 1,, and 1,; > 4,4, (why?)
if p(x|wy) > (A12=422)P(w2) _
p(x|wz) (A21—A11)p(w1)

and w, , otherwise.

decide w,

p(x|wq)
p(x|wy)

* The ratio IS called the likelihood ratio.

* We can decide w, If the likelihood ratio exceeds a threshold 7' value
that is independent of the observation x.

J. Y. Choi. SNU
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Minimum-Error-Rate Classification

- To give an equal cost to all errors, we define zero-one risk
function as L,
{O, [ =]

A(ai|wj) 11, i
- The conditional risk representing error rate Is
R(a;|x) = X5-1 A(ai|w;)p(w;]x)
]ilp(wﬂx) =1 —p(w;lx)
* To minimize R(a;|x), we maximizes p(w;|x)
Decide w; if p(w;|x) > p(wjlx), forall j # i

fori,j=1,..,C

(same as Bayes' decision rule)

J. Y. Choi. SNU
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Maximum Likelihood Estimation (MLE)

* The samples are i.i.d.
jt class set D; = (x| (x, @) € Sj}, 5 €S ={(x,w)|l=1,.., N}

- Maximum likelihood estimation: find (D) to maximize p(x|D)
p(x|w;) ~ p(x|D;) ~ p(x[0(D;)),  0(D)) = argmaxp(D;0)

* The i.i.d. assumption implies that
p(D;j6;) = Ixep, P(x16))
- Let D be a generic sample set of size n = |D|

 Log-likelihood function:

1(6;D) = Inp(D|6) = ) Inp(x,|6)
k=1

Vgl(@,’ D) =0

J. Y. Choi. SNU
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« MEUHSWHEAN LS 2OH 2 AFE2 108tHO0IC 1= 10008 0| &tk BHO| T
ATXN A EE 2= p(x|0) =0xe %, forx>0and 6 >0 0l A X2 ZAIRRUZ EH S
ZHOIUCL HACI0l AR, =100, L2 HRE,=1022 FHO| HACH LA HS 8O
=2 A ZAFE D x =0.06 22 LRCH HA0sS 2t E2 2 AHOIRE i 2l ATE 12 ot 10,
USAE FMQICcZ R AU GIUS M 2IATE 1022 A& oIQUCH &0 MNHEIHRS [
clA3= 022 &t O] 2l|ADE 200t Ltk HEE &IHGHAIL

= Sol. (BlE) &2 =XI0ll diYot= LIl 22 422 Hedl 2AK.

o

E2p(6,) =099 0|12 L&tX}o
Z2: R(aglx = 0.06) = 21,p(6,|x = 0.06) + A,,p(8;|x = 0.06) =?
R(az|x = 0.06) = A,,p(0;|x = 0.06) + A5,p(8,|x = 0.06) =?

AN

p(01]x = 0.06) < p(x = 0.06|6;)p(H;) = 100 = 0.06e~100%0-06 x 0.99 = 0.0147
v p(0,]x = 0.06) < p(x = 0.06|8,)p(d,) = 10 * 0.06e~10*0-06 x 0.01 = 0.00329
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E2: R(ay|x = 0.06) = 21,p(01]|x = 0.06) + A1,p(8;|x = 0.06) =?
R(az|x = 0.06) = A,,p(0;|x = 0.06) + A5,p(8,|x = 0.06) =?
v HAMOIEHE2p(h,) =099 011 Lo EHEE p(d,) =0.01 0IC.
v p(6,]x = 0.06) < p(x = 0.06]8;)p(8,) = 100 = 0.06¢~100%006 x 0.99 = 0.0147
v p(6,]x = 0.06) x p(x = 0.06]8,)p(8,) = 10 * 0.06e~19*%-06 x 0.01 = 0.00329
v R(ay|x =0.06) = 0% 0.0147+10*0.00329=0.0329

R(ay|x = 0.06) =1 %0.0147+0*0.00329=0.0147
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Error Probabilities and Integrals

Consider the 2-class problem and suppose that the feature space is divided into
2 regions R; and R,. There are 2 ways in which a classification error can occulr.

« An observation x falls in R,, and the true state is w;.
« An observation x falls in R, and the true state Is w,.

* The error probability

P(error) = P(x € Ry|w1)p(w1) + P(x € Ry|wy)p(w,)
= fRz p(x|wy)p(wy)dx + le p(x|w)p(w,)dx

J. Y. Choi. SNU o



Error Probabilities and Integrals

Because x™ Is chosen arbitrarily, the probability of error is not as
small as it might be.

xg = Bayes optimal decision boundary , and gives the lowest
probability of error.

Bayes classifier maximizes the correct probability.

C

P(correct) = Y P(x e %, |0)p(@) = Y. | p(x| @) p(e,)dx

=1 R,

Pl WP )

-, reducible
errar

J. Y. Choi. SNU
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Summary

« Bayes Formula
* Priori probability
* Likelihood
» Posterior Probability
« Bayes Decision

* Risk Formulation
« Conditional Risk
 Likelihood Ratio Test
« Zero-one Loss Function (Bayes Decision)

« Maximum Likelihood Estimation (MLE)
 Error Probability

J. Y. Choi. SNU
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Bayesian Networks
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Outline

= Application Examples of Bayesian Networks
= Traffic Pattern Analysis
= Topic Model (Document Analysis)

= Directed Acyclic Graph

= Conditional Independence

= D-separation

= Bayesian Parameters

= Parameterized Conditional Distributions

= Multinomial, Dirichlet Distribution, Conjugate Prior
= Markov Blanket
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Application: Traffic Pattern Analysis

= Surveillance in crowded scenes
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LDA Model (Topic Modelling)

Topic proportions and

Topics Documents :
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Bayesian Networks

= Directed Acyclic Graph (DAG)

a

p(a, b, c) = p(cla, b)p(a, b) = p(cla, b)p(bla)p(a)

p(xla ¢ 0 7:UK) :p(.’L'K|£U1,. . '7$K—1) . p($2|331)p(331)

J. Y. Choi



Bayesian Networks

p(xy,...,x7) = pla)p(r2)p(ws)p(rs|T1, 2, 23)
P(IBE) |371, 33'3)29(1‘6 |$4)P(377!£E‘4, 5175)

General Factorization

K
p(x) = | | p(expay,)
k=1

J. Y. Choi



Conditional Independence

= aisindependent of b given ¢

p(ald, c) = p(alc)

= Equivalently
p(a,blc) = p(alb,c)p(blc)
= plalc)p(blc)
= Notation

allb|c

J. Y. Choi



Conditional Independence: Example 1

c p(a,b,c) = p(alc)p(blc)p(c)

Zpa| p(ble)p(
all b|0

U,V ,and c areindependent. a = U + ¢,b =V + c¢; a,bindependent?

J. Y. Choi



Conditional Independence: Example 1

p(a, b, c) = p(alc)p(blc)p(c)

p(a,b,c)
p(a,blc) 2(0)
= plalc)p(blc)
a b
allblc

U,V ,and c areindependent. a = U + ¢,b =V + ¢,c =1; a,bindependent?

J. Y. Choi



Conditional Independence: Example 2

a c b
O—0O—=0
pla, b, c) = p(a)p(cla)p(blc)

p(a,b) = p(a) > p(cla)p(blc) = p(a)p(bla)

all b|0

p(b,cla) = p(cla)p(bla, c) = p(cla)p(blc)

J. Y. Choi
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Conditional Independence: Example 2

b c b

p(a,blc)

p(alc) =

p(cla)p(a)

p(c)

J. Y. Choi
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Conditional Independence: Example 3

; 3 p(a,b,¢) = p(a)p(b)p(cla, b)
p(a,b) = p(a)p(b)
a Il bl

Note: this is the opposite of Example 1, with ¢ unobserved.

a and b are independent Bernoullirvs. ¢ =a +b

J. Y. Choi
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Conditional Independence: Example 3

a C — p(a, b, C)
bl p(c)
_ pla)p(b)p(cla, b)
p(c)
y all b|c

Note: this is the opposite of Example 1, with C observed.

a and b are independent Bernoullirvs. ¢ = a + b

J. Y. Choi
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“Am | out of fuel?”

1|1B=1,F=1) = 0.8 B F
1|1 B=1,F=0) = 0.2
1|1B=0,F=1) = 0.2
1|1 B=0,F=0) = 0.1
G
» Gis dependent to B andF
p(B=1) = 0.9
p(F=1) = 0.9 B = Battery (0=flat, 1=fully charged)
F = Fuel Tank (O=empty, 1=full)
and hence G = Fuel Gauge Reading

p(F=0) = 0.1 (0O=empty, 1=full)
» Fisindependent to B

J. Y. Choi
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“Am | out of fuel?”

p(G=1B=1,F=1) = 0.8
p(G=1B=1,F=0) = 0.2
p(G=1B=0,F=1) = 0.2
p(G=1B=0,F=0) = 0.1
p(B=1) = 0.9
p(F=1) = 09
and hence
p(F=0) = 0.1

Probability of an empty tank increased by observing G

A 2P

J. Y. Choi



“Am | out of fuel?”

p(G=1B=1,F=1) = 0.8
p( : ) . i
p(Gle:O,F: ) = 0.2
p(G=1B=0,F=0) = 0.1
p(B=1) = 0.9
p(FF=1) = 09 G
and hence - | |
p(F _ O) — 01 Probability of an empty tank increased by observing ¢ =

p(F=0|G=0) =

J. Y. Choi
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“Am | out of fuel?”

p(G=1B=1,F=1) = 0.8
p(G=1B=0,F=1) = 0.2
p(G=1B=0,F=0) = 0.1
p(B=1) = 0.9
p(F=1) = 0.9 G
and hence
p(F = 0) — 0.1 Probability of an empty tank increased by observing ¢ = 0.
G=0F=0)p(FF=0
p(F = 0|G = 0) p( | )p( )

p(G =0)

J. Y. Choi
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“Am | out of fuel?”

p(G=1B=1,F=1) = 0.8
p(G=1B=0,F=1) = 0.2
p(G=1B=0,F=0) = 0.1
p(B=1) = 0.9
p(F=1) = 0.9 G
and hence
p(F = 0) — 0.1 Probability of an empty tank increased by observing ¢ = 0.
p(G =0|F = 0)p(F =0)
p(FF=0|G=0
( | ) p(G =0)

P(G=0|F=0)=1-P(G =1|F =0) =?

J. Y. Choi



“Am | out of fuel?”

p(G=1B=1LF=1) = 08
G=1B=1F=0) = 0.2
p( , ) , i
p(G=1B=0,F=1) = 0.2
p(G=1B=0,F=0) = 0.1
p(B=1) = 09
p(F'=1) = 09 G

e Probability of ty tank i d by observing G = 0
p(F=0) = 0.1 robability of an empty tank increased by observing G = 0.

pF=0G =0 = LE- C‘p(;—:C())z)?(F -

P(G=O|F=O)=1—P(G=1|F=O)=1—Z P(G =1|B,F =0)P(B)=1-0.2%x09-0.1x0.1=0.81
B

J. Y. Choi i}



“Am | out of fuel?”

p(G=1B=1,F=1) = 0.8
p(G=1B=1,F=0) = 0.2
p(G=1B=0,F=1) = 0.2
p(G=1B=0,F=0) = 0.1
p(B=1) = 09
p(F=1) = 09 8.
and hence
p(F _ 0) — 01 Probability of an empty tank increased by observing G = 0.

p(G =0F = 0)p(F = 0)

p(F=0/G=0) =

(Y al

L

P(G=0|F=0)=1—P(G=1|F=0)=1—z P(G=1|B,F=0)P(B)=1-02x0.9—0.1x0.1=0.81
B

PG=0)=1-P(G=1)=1- P(G = 1|B,F)P(B,F) =1— 0.8 X 0.81 — 0.2 X 0.09 — 0.2 X 0.09 — 0.1 X 0.01 = 0.315

B,F

J. Y. Choi 20



“Am | out of fuel?”

p(G=1B=1,F=1) = 0.8
p(G=1B=1,F=0) = 0.2
p(G=1B=0,F=1) = 0.2
p(G=1B=0,F=0) = 0.1
p(B=1) = 09
p(F=1) = 09 8.

and hence
p(F _ 0) — 01 Probability of an empty tank increased by observing G = 0.

p(F = 0|G = 0) p(G=0[F =0)p(F =0) 081x01_

p(G =0) ~ 0315
P(G=O|F=0)=1—P(G=1|F=0)=1—z P(G=1|B,F=0P(B)=1-02%09—-0.1x0.1=0.81
B

PG=0)=1-P(G=1)=1- P(G =1|B,F)P(B,F)=1—0.8 x 0.81 — 0.2 X 0.09 — 0.2 X 0.09 — 0.1 x 0.01 = 0.315

B,F

J. Y. Choi 21



“Am | out of fuel?”

p(G=1B=1,F=1) = 0.8

G=1B=1,F = = 0.2
p( , ) B F
p(G=1B=0,F=1) = 0.2
p(G=1B=0,F=0) = 0.1
p(B=1) = 0.9
p(F=1) = 09 G

and hence

p(F=0) = 0.1 Probability of an empty tank reduced by observing B = 0& G =0

This referred to as “explaining away”.

Ot YB+S S NHQ? 1) Bt WX Y=Lt 2) Empty EHE0| & OLXICE. 3) Empty S0 SOFICY,

J. Y. Choi



“Am | out of fuel?”

p(Glezl,F: ) = 0.8

G=1B=1F = = 0.2
p( : ) B F
p(Gle:O,F: ) = 0.2
p(G=1B=0,F=0) = 0.1
p(B=1) = 0.9
p(F=1) = 09 G

and hence

p(F _ 0) — 01 Probability of an empty tank reduced by observing B = 0& G =0

This referred to as “explaining away”.

p(G =0|B=0,F =0)p(F =0)
>_refo1y P(G =0|B =0, F)p(F)
~ 0.111

p(F=0/G=0B=0) =

» F is dependent to B given G and the empty probability is reduced because the gage becomes less reliable.

J. Y. Choi
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Exercise

Answer the following questions for the right-hand Bayesian network.

1) When any random variables are not observed, show that a and b are
independent to each other.

2) When d is observed, show that a and b are dependent to each other.

J. Y. Choi
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Exercise

Answer the following questions for the right-hand Bayesian network.

1) When any random variables are not observed, show that a and b are
independent to each other.

2) When d is observed, show that a and b are dependent to each other.

1) nothing observed
p(a,b) = p(a)p(b) ?
2) d is observed

p(a,bld) # p(a|d)p(bld) ?

J. Y. Choi
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Exercise

Answer the following questions for the right-hand Bayesian network.

1) When any random variables are not observed, show that a and b are
independent to each other.

2) When d is observed, show that a and b are dependent to each other.

1) Nothing observed
p(a,b) = X.2;p(a,b,c,d) =

J. Y. Choi
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Exercise

Answer the following questions for the right-hand Bayesian network.

1) When any random variables are not observed, show that a and b are
independent to each other.

2) When d is observed, show that a and b are dependent to each other.

1) Nothing observed
p(a,b) =2 24p(a,b,c,d) =2.2q p(a)p(b)p(cla, b)p(d|c)

J. Y. Choi
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Exercise

Answer the following questions for the right-hand Bayesian network.

1) When any random variables are not observed, show that a and b are
independent to each other.

2) When d is observed, show that a and b are dependent to each other.

1) Nothing observed
p(a,b) =2 24p(a b, c,d) =2.2q p(a)p(b)p(cla, b)p(d|c)

= p(@)p(b)ZZq p(cla, b)p(d]c)

J. Y. Choi
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Exercise

Answer the following questions for the right-hand Bayesian network.

1) When any random variables are not observed, show that a and b are
independent to each other.

2) When d is observed, show that a and b are dependent to each other.

1) Nothing observed
p(a,b) =2 24p(a b, c,d) =2.2q p(a)p(b)p(cla, b)p(d|c)
=p(@)pb)2.Z4p(cla,b)p(d|c)

= p(a)p(b)Zcp(cla, b)2q p(d]c)

J. Y. Choi
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Exercise

Answer the following questions for the right-hand Bayesian network.
1) When any random variables are not observed, show that a and b are
independent to each other.

2) When d is observed, show that a and b are dependent to each other.

1) Nothing observed
p(a,b) =2 24p(a b, c,d) =2.2q p(a)p(b)p(cla, b)p(d|c)
=p(@)pb)2.Z4p(cla,b)p(d|c)

= p(a)p(b)Zcp(cla, b)2q p(d]c)
= p(a)p(b)

J. Y. Choi
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Exercise

Answer the following questions for the right-hand Bayesian network.

1) When any random variables are not observed, show that a and b are
independent to each other.

2) When d is observed, show that a and b are dependent to each other.

2) d is observed

__p(a,b,d)

J. Y. Choi
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Exercise

Answer the following questions for the right-hand Bayesian network.

1) When any random variables are not observed, show that a and b are
independent to each other.

2) When d is observed, show that a and b are dependent to each other.

2) d is observed

__p(a,b,d)

- 122

J. Y. Choi
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Exercise

Answer the following questions for the right-hand Bayesian network.

1) When any random variables are not observed, show that a and b are
independent to each other.

2) When d is observed, show that a and b are dependent to each other.

2) d is observed

__p(a,b,d)

. p(a,b,c,d)
_ZC{ p(d) }

{ p(@p®)p(c|a, b)p(d|c) }
Cc

2 p(d)

J. Y. Choi
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Exercise

Answer the following questions for the right-hand Bayesian network.

1) When any random variables are not observed, show that a and b are
independent to each other.

2) When d is observed, show that a and b are dependent to each other.

2) d is observed

__p(a,b,d)

- 122

_5 {p(a)p(b)p(cla, b)p(dlc)}
oe p(d)

_ p(@)p(b)
p(d)

LA p(cla,b)p(dlc) }

J. Y. Choi
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Exercise

Answer the following questions for the right-hand Bayesian network.

1) When any random variables are not observed, show that a and b are
independent to each other.

2) When d is observed, show that a and b are dependent to each other.

2) d is observed

__p(a,b,d)

- 122

_5 {p(a)p(b)p(cla, b)p(dlc)}
oe p(d)

_ pr(@p)
- p(d) Zc{p(C|a,b)p(d|C)}

_ r@p®p(d|a, b)
p(d)

J. Y. Choi



Exercise

Answer the following questions for the right-hand Bayesian network.

1) When any random variables are not observed, show that a and b are
independent to each other.

2) When d is observed, show that a and b are dependent to each other.

2) d is observed

__p(a,b,d)

- 122

_5 {p(a)p(b)p(cla, b)p(dlc)}
oe p(d)

_ pr(@p)
- p(d) Zc{p(C|a,b)p(d|C)}

_ r@p®p(d|a, b)
p(d)

# p(a|d)p(b|d)

J. Y. Choi
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D-separation

= A,B,and C are non-intersecting subsets of nodes in a directed
graph.
= A path from A to B is blocked if it contains a node such that
either
= the arrows on the path meet either head-to-tail or tail-to-
tail at the node, and the node is in the set C, or
= the arrows meet head-to-head at the node, and neither
the node, nor any of its descendants, are in the set C.
= |f all paths from A to B are blocked, A is said to be d-
separated from B by C.
= |f Ais d-separated from B by C, the joint distribution over all
variables in the graph satisfies A 1L B | C.

J. Y. Choi
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D-separation: Example

.*

AT LA

L] .
ACTTTY LA

L] .
“sapuur*®

A to B is unblocked

AL LLL)

*

L]
.
‘e

",

all b c a 1l b

.

A to B is blocked
(d-separated)

J. Y. Choi
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Exercise

When B is observed in the following Bayesian network, decide
whether every path from D to E is blocked (d-separated) or not
and determine the dependency between D and E.

J. Y. Choi

39



Exercise

a. path1: (D<A—-B—E)or(D—> B —E)
Is blocked (d-separated) or not?

K

J. Y. Choi
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Exercise

a. path 1: pathviaB,i.e.,, (D«A—B—E)or (D =B = E)
Is blocked (d-separated) or not?

Answer: blocked (d-separated),
since the connection in B is head to tail and B is
observed.

J. Y. Choi
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Exercise

b. path2 (D - C <« E)
Is blocked (d-separated) or not?

J. Y. Choi
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Exercise

b. path2 (D - C <« E)
Is blocked (d-separated) or not?

Answer: blocked (d-separated),
since the connection in Cis head to head and C
is not observed.

J. Y. Choi
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Exercise

c. path3 (D« A—E):
Is blocked (d-separated) or not?

J. Y. Choi
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Exercise

c. path3 (D« A—E):
Is blocked (d-separated) or not?

Answer: not blocked,

since the connection in A is tail to tail and Ais
not observed.

J. Y. Choi
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Exercise

d. path4d(D—->B<A—>E):
Is blocked (d-separated) or not?

J. Y. Choi

46



Exercise

d. path4(D—->B«<A—>E):
Is blocked (d-separated) or not?

Answer: not blocked,

since the connection in B is head to head and B is observed, the path
D — B < A becomes non-blocking by B, and

since the connection in A is tail to tail and A is not observed, the path B
«— A — E becomes non-blocking .

J. Y. Choi
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Exercise

e. There are 4 blocked paths and 1 non-blocked path.

e ????i

J. Y. Choi
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Exercise

e. There are 4 blocked paths and 1 non-blocked path.
Is blocked (d-separated) or not? °

!

Answer: not blocked (d-separated),
since there exists at least one non-blocking path.
Thus D and E are dependent to each other.

J. Y. Choi
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D-separation: |.I.D. Data

J. Y. Choi
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Discrete Variables, Multinomial

X1

e T

p(xl' "'ixKll'll’ . i.uK)—x L.k

|
n: n! X11X21 X1KX2K

X ey X X ey, X =
p( 11’ ’ 1K’ 21, ‘ 2K|M11’ ,HKK) xll!...le!x21!---x2K

0.1
0.08
0.06
0.04

0.02

J. Y. Choi



Discrete Variables (1), Multinomial

= General joint distribution: K% — 1 parameters

X1 X2 K K
()r——()  sexuxelw = [T [t

k=11=1

* |ndependent joint distribution: 2(K — 1) parameters

X1 X2 K K
O O plxr,xalw) = [T wdie T ws
k=1 =1

" p(x1, X2 )=p(x1]|x2)p(x2)

K—1+K(K—1)=K?—1parameters

" p(x1, %2 )=p(x1)p(x2)

K—1+K-—1=2(K—1) parameters

0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01

J. Y. Choi
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Discrete Variables, Dirichlet

" The posterior distributions are in the same family as
the prior probability distribution.

p(ulx) < p(x[wp )
= The prior and posterior are then called conjugate
distributions, and the prior is called a conjugate prior for
the likelihood function.

= Dirichlet distribution is a conjugate (prior) distribution to
the multinomial distribution.

= Gaussian is a conjugate prior of Gaussian.

0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01

J. Y. Choi
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https://en.wikipedia.org/wiki/Posterior_probability
https://en.wikipedia.org/wiki/Prior_probability_distribution
https://en.wikipedia.org/wiki/Likelihood_function
https://en.wikipedia.org/wiki/Conjugate_distribution

Discrete Variables, Dirichlet

= Posteriori: p(u|x, a) «< p(x|w)p(u|a)

o MUIK, 0 PCEs s Xkl o )=

m I . _F(Z{il(ai_l)) aq ag
Dir(K, o): p(Uq, ..., uglay, ..., ag)= K., M) [T /s

" Parameters: a4, ..., g > 0 (hyper-parameters)

= Support: ly, ..., g € (0,1) where Yo p; = 1

0.09

" Dir(K, c+ o): p(ulx, @) < p(x|wp(pla) e
where ¢ = (¢4, ..., Cx) is number of occurrences 005
. _ cgtag 00
Pl = S v

J. Y. Choi



Discrete Variables (2)

= General joint distribution over M variables: KM — 1 parameters

* M -node Markov chain: K — 1+ (M — 1)K(K — 1) parameters

p(x1, %2 )=p(x1)p(x2|x1)P(x3]2%2) ... P(Xpg | Xpg—1)

J. Y. Choi
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Discrete Variables: Bayesian Parameters (1)

H1 Ho

O

12371

O

M

P ({Xms e }) =0 (%1 |1y ) 2 (1) ] p e Xem—1, ) P (12,

m=2

J. Y. Choi
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Discrete Variables: Bayesian Parameters (2)

M1 K Shared prior

p({xm}, e, 1) = p (x1 () p (1) [ P K Xm—1, 12) p (1)

m=2

J. Y. Choi
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Parameterized Conditional Distributions

If x1,...,2zpare discrete,
K-state variables,

ply = 1]z1,...,xp7)in
general has O(KM)
parameters because

p(xq, ..., x|y = 1) requires
KM — 1 parameters.

The parameterized form
M

p(y — 1‘3;1’ .. 7CUM) e (wo -+ Zwm:?) = O'(WTX)
i=1
requires only M + 1 parameters (actually this can not model a probability
distribution).

J. Y. Choi
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The Markov Blanket

p(X1,...,X0r)

p(XilX(jy) =

fp(xl, X)) dx;
HP(Xk|Pak)
k

[ T ptoxelpas) ax

= 1_[ p(xk|pag)
kEMB

Any factor p(xy|pay) that does not have any functional dependence
on x; can be taken outside the integral over x;, and will therefore cancel between
numerator and denominator.

J. Y. Choi
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Summary

Bayesian Networks

Directed Acyclic Graph

Conditional Independence

D-separation

Bayesian Parameters

Parameterized Conditional Distributions
Multinomial, Dirichlet Distribution, Conjugate Prior
Markov Blanket

J. Y. Choi
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