
An Overview of C

Algorithmic Thinking

 Must be told in detail
what to do
− understandable to

computer
− for all possible cases

 Algorithmic Thinking
− Algorithms == Recipes

 Very diligent
 But, not so smart
 Can do a few of simple

operations (instructions)
 Complex operation: a series

of simple operations

2

3

Von Neumann Architecture

Memory Processor Input/Output

▷ Stored Program Concept

Programming Languages

 Algorithms: Developed by people

 Computers: Execute algorithms

Programming
Languages

High-level languages

Assembly languages

Machine languages

4

How to Learn Programming

 Learn by doing
− Do exercises/practices.
− Lectures will give you basic tools only.

 In the lectures, you will learn:
− Language syntax
− Algorithmic thinking

 Read “An Overview of C” & Try by yourself
− A Book on C

5

Warning!!
 Lectures
− seem easy
 Textbook: An Overview of C
− seems that you understand well
 Programming assignments
− more difficult than it seems

 Expect many bugs in your programs

 Programming maturity comes with
 p.r.a.c.t.i.c.e!!

6

C Programming Language (1/2)
 Born in the early 1970s with UNIX
 C is

− Small
■ Fewer keywords

− Portable
■ Code written on one machine easily moved to another

− Terse
■ A very powerful set of operators
■ Able to access the machine in the bit level

− Widely used
− The basis for C++ and Java

C Programming Language
 Criticism

− Complicated syntax
− No automatic array bounds checking
− Multiple use of such symbols as * and =

■ **, ==

 Nevertheless, C is an elegant language

Example: Hello world (1/3)

1. Create a C source file
− use a text editor

■ Vi, Microsoft Visual C++ Editor, …

9

Hello world (2/3)

2.Compile
− Convert source codes to object codes
− Compiler does the job

10

Hello world (3/3)
3. Linking
− Convert object codes to executable file
− Linker does the job

4. Debugging
− Fix the bugs in the source codes
− Debugger does the job

5. Run or Excute

11

From Source to Executable

Debugging

Editor

Source
File 1

Source
File n

Objective
File 1

Compiler

Objective
File n

Linker Executable

12

Program Output (1/6)

#include <stdio.h>

int main(void)
{

printf(“from sea to shining
C\n”);

return 0;
}

Source file: sea.c

from sea to shining C

13

Program Output (2/6)

#include <stdio.h>

 Preprocessor
− built into the C compiler
− Lines beginning with #: communicate with the preprocessor

 #include

− Preprocessor includes a copy of the header file stdio.h
− stdio.h

■ provided by the C system
■ Declaration of standard input/output functions, e.g. printf()

14

Program Output (3/6)

int main(void)
{ . . .
}

 Every program has a function named main()
 void, no argument / return an int value
 { … }, the body of a function definition

15

 The 1st line of the function definition
for main()

 int, void
− Keywords
− Special meaning to the compiler

Program Output (4/6)

printf()
 A function that prints on the screen
 information in the header file stdio.h

“from sea to shinning C\n”
 “… “ : string constant in C
 \n : a single character called newline

printf(“from sea to shinning C\n”);
 statement : end with a semicolon

16

Program Output (5/6)

return 0;
 A return statement
 causes the value zero to be returned to the operating system

}
 The right brace matches the left brace
 ending the function definition for main()

17

Program Output (6/6)
#include <stdio.h>

int main(void)
{

printf(“from sea to “);
printf(“shining C“);
printf(“\n“);
return 0;

}

#include <stdio.h>

int main(void)
{

printf(“from sea\n“);
printf(“to shining\nC\n“);
return 0;

}

from sea to shining C
from sea
to shining
C

18

Compiling

 Convert source file to objective file
− sea.c to sea.o (or sea.obj)

 Object file
− a file with expressions that computers can

understand
 When compiling fails?
− something wrong with source file ...

■ expressions with wrong C grammar

19

Errors in Source File (example)

- returm 0;

 incorrect C language grammar

- compiler fails to make an obj
file and returns an error.

- debugging:

change “returm 0;” to “return 0;”

#include <stdio.h>

int main(void)
{

printf(“from sea to shining
C\n”);

returm 0;
}

20

Errors in Source File (example)

21

Linking and Running a Program

 Linking
− The process to make an executable program

out of objective file(s)
■ sea.o (or sea.obj)  a.out (sea.exe)

 Run a program
− type “a.out” or “sea”

■ computer prints “from see to shining C”

22

Simple Examples

1. Assignments
2. Control Flow

[Ex.1] Distance of a marathon in kilometers

24

 Marathon: 26 miles 385 yards
 1 yard 1/1760 mile
 1 mile 1.609 km

 (26 + 385/1760) miles
 (26 + 385/1760) x 1.609 km

Marathon

Variable, Expressions, Assignment (1/7)

/* the distance of a marathon in kilometers */
#include <stdio.h>
int main(void)
{

int miles, yards;
float kilometers;

miles = 26;
yards = 385;
kilometers = 1.609 * (miles + yards / 1760.0);
printf(“\nA marathon is %f kilometers.\n\n”,

kilometers);
return 0;

}
25

Variable, Expressions, Assignment (2/7)

/* the distance of a marathon in kilometers */

 /* … */
− comment
− ignored by the compiler

26

Variable, Expressions, Assignment (3/7)

int miles, yards;
 Int

− A keyword, integer value
 declaration of the variables miles and yards of type int
 declarations and statements end with a semicolon
 variable: memory space to hold a value

float kilometers;
 float

− a keyword, real value
 declaration of the variable kilometers of type float
 27

Variable, Expressions, Assignment (4/7)
miles = 26;
yards = 385;
kilometers = 1.609 * (miles + yards / 1760.0);

 Assignment statement

− variable = expression;
− Equal sign (=) : assignment operator
− The value of the expression on the right side of the equal sign

is assigned to the variable
 Expression

− On the right side of assignment operators
− constants , variables, or combinations of operators with

variables and constants
28

Variable, Expressions, Assignment (5/7)
26, 385
 An integer constant
 integer types: short, int, long, …

1.609, 1760.0
 A floating-point constant
 Three floating types : float, double, long double
 floating-point constants are automatically of type double

29

Variable, Expressions, Assignment (6/7)

Evaluation of Expression
 Conversion rule

− Division of two integers results in an integer values. 7/2 is 3
− A double divided by an integer

■ Integer is automatically converted to double
■ 7.0/2 is 3.5

kilometers = 1.609 * (miles + yards / 1760); bug!!!

printf(“\nA marathon is %f kilometers.\n\n”, kilometers);
 Control string
 %f : format, conversion specification

− Matched with the remaining argument, the variable kilometers

30

Variable, Expressions, Assignment (7/7)
/*the distance of a marathon in kilometers*/
#include <stdio.h>
int main(void)
{

int miles, yards;
float kilometers;

miles = 26;
yards = 385;
kilometers = 1.609 * (miles + yards / 1760.0);
printf(“\nA marathon is %f kilometers.\n\n”, kilometers);
return 0;

}

A marathon is 42.195970 kilometers.
31

[Ex.2] Average Score (1/2)

Average score: 93
32

#include <stdio.h>
int main(void)
{
 int score1, score2, score3, avg_score;
 int num_score;

 score1 = 87; score2 = 93; score3 = 100;
 num_score = 3;
 avg_score = (score1 + score2 + score3) / num_score;
 printf(“Average score: %d\n”, avg_score);
 return 0;
}

[Ex.2] Average score (2/2)

Average score: 93.333333
33

#include <stdio.h>
int main(void)
{
 float fscore1, fscore2, fscore3;
 float avg_fscore;
 int num_score;

 fscore1 = 87.0; fscore2 = 93.0; fscore3 = 100.0;
 num_score = 3;
 avg_fscore = (fscore1 + fscore2 + fscore3) / num_score;
 printf(“Average score: %f\n”, avg_fscore);
 return 0;
}

Flow of Control: Alternative actions (1/5)

#include <stdio.h>
int main(void)
{

int a, b;
……
a = 1;
if (b == 3)
 a = 5;
printf(“%d”, a);
return 0;

}

34

if statement

if (expr)
 statement
 If expr is nonzero(true), then statement is executed;
 otherwise, it is skipped

if (b==3)
 a = 5;
 == : equal to operator
 b==3

− logical expression : either the integer value 1 (true) or 0 (false)

35

Flow of Control: Alternative actions (2/5)

#include <stdio.h>
int main(void)
{

int a, b;
b = 3;
a = 1;
if (b == 3)
 a = 5;
printf(“%d”, a);
return 0;

}

5

#include <stdio.h>
int main(void)
{

int a, b;
b = 2;
a = 1;
if (b == 3)
 a = 5;
printf(“%d”, a);
return 0;

}

1
36

Flow of Control: Alternative actions (3/5)

if (a == 3)
{
 b = 5;
 c = 7;
}

Compound statement
 A group of statement surrounded by braces
 a statement, itself

37

Flow of Control: Alternative actions (4/5)

if (expr)
 statement1
else
 statement2

 if (cnt == 0)
 {
 a = 2;
 b = 3;
 c = 5;
 }
 else
 {
 a = -2;
 b = -3;
 c = -5;
 }

38

Flow of Control: Alternative actions (5/5)

Flow of Control: Looping (1/4)

#include <stdio.h>
int main(void)
{

int i = 1, sum = 0;

while (i <= 5)
{
 sum = sum + i;
 ++i;
}
printf(“sum = %d\n”, sum);
return 0;

}

while statement

39

Flow of Control: Looping (2/4)

 If expr is true, the compound statement is executed,
 and control is passed back to the beginning of the while loop

for the process to start over again
 The while loop is repeatedly executed until the test fails

++i;
 ++ : increment operator
 i = i + 1;

while (expr)
 statement

while (i <= 5)
{

sum = sum + i;
 ++i;
}

40

Flow of Control: Looping (3/4)
#include <stdio.h>
int main(void)
{

int i = 1, sum = 0;

while (i <= 5)
{
 sum = sum + i;
 ++i;
}
printf(“sum = %d\n”, sum);
return 0;

}

1+2+3+4+5

sum = 15

41

Flow of Control: Looping (4/4)

#include <stdio.h>
int main(void)
{

int i, sum = 0;

for (i=1; i <= 5; ++i)
{
 sum = sum + i;
}
printf(“sum = %d\n”,

sum);
return 0;

}

for statement

42

for (expr1; expr2; expr3)
 statement

expr1;
while (expr2) {
 statement
 expr3;
}

is semantically equivalent to

C Program is …

 A sequence of FUNCTIONS
− main() function is executed first

 A FUNCTION consists of:
− Declarations
− Statements

 Declaration: variable names and their types
− int miles;

 Statement: data processing or control
− miles = 26;
− if (b == 3) { …};
− printf(…);

43

	An Overview of C
	Algorithmic Thinking
	Von Neumann Architecture
	Programming Languages
	How to Learn Programming
	Warning!!
	C Programming Language (1/2)
	C Programming Language
	Example: Hello world (1/3)
	Hello world (2/3)
	Hello world (3/3)
	From Source to Executable
	Program Output (1/6)
	Program Output (2/6)
	Program Output (3/6)
	Program Output (4/6)
	Program Output (5/6)
	Program Output (6/6)
	Compiling
	Errors in Source File (example)
	Errors in Source File (example)
	Linking and Running a Program
	Simple Examples
	[Ex.1] Distance of a marathon in kilometers
	Variable, Expressions, Assignment (1/7)
	Variable, Expressions, Assignment (2/7)
	Variable, Expressions, Assignment (3/7)
	Variable, Expressions, Assignment (4/7)
	Variable, Expressions, Assignment (5/7)
	Variable, Expressions, Assignment (6/7)
	Variable, Expressions, Assignment (7/7)
	[Ex.2] Average Score (1/2)
	[Ex.2] Average score (2/2)
	Flow of Control: Alternative actions (1/5)
	Flow of Control: Alternative actions (2/5)
	Flow of Control: Alternative actions (3/5)
	Flow of Control: Alternative actions (4/5)
	Flow of Control: Alternative actions (5/5)
	Flow of Control: Looping (1/4)
	Flow of Control: Looping (2/4)
	Flow of Control: Looping (3/4)
	Flow of Control: Looping (4/4)
	C Program is …

