
An Overview of C

Algorithmic Thinking

 Must be told in detail
what to do
− understandable to

computer
− for all possible cases

 Algorithmic Thinking
− Algorithms == Recipes

 Very diligent
 But, not so smart
 Can do a few of simple

operations (instructions)
 Complex operation: a series

of simple operations

2

3

Von Neumann Architecture

Memory Processor Input/Output

▷ Stored Program Concept

Programming Languages

 Algorithms: Developed by people

 Computers: Execute algorithms

Programming
Languages

High-level languages

Assembly languages

Machine languages

4

How to Learn Programming

 Learn by doing
− Do exercises/practices.
− Lectures will give you basic tools only.

 In the lectures, you will learn:
− Language syntax
− Algorithmic thinking

 Read “An Overview of C” & Try by yourself
− A Book on C

5

Warning!!
 Lectures
− seem easy
 Textbook: An Overview of C
− seems that you understand well
 Programming assignments
− more difficult than it seems

 Expect many bugs in your programs

 Programming maturity comes with
 p.r.a.c.t.i.c.e!!

6

C Programming Language (1/2)
 Born in the early 1970s with UNIX
 C is

− Small
■ Fewer keywords

− Portable
■ Code written on one machine easily moved to another

− Terse
■ A very powerful set of operators
■ Able to access the machine in the bit level

− Widely used
− The basis for C++ and Java

C Programming Language
 Criticism

− Complicated syntax
− No automatic array bounds checking
− Multiple use of such symbols as * and =

■ **, ==

 Nevertheless, C is an elegant language

Example: Hello world (1/3)

1. Create a C source file
− use a text editor

■ Vi, Microsoft Visual C++ Editor, …

9

Hello world (2/3)

2.Compile
− Convert source codes to object codes
− Compiler does the job

10

Hello world (3/3)
3. Linking
− Convert object codes to executable file
− Linker does the job

4. Debugging
− Fix the bugs in the source codes
− Debugger does the job

5. Run or Excute

11

From Source to Executable

Debugging

Editor

Source
File 1

Source
File n

Objective
File 1

Compiler

Objective
File n

Linker Executable

12

Program Output (1/6)

#include <stdio.h>

int main(void)
{

printf(“from sea to shining
C\n”);

return 0;
}

Source file: sea.c

from sea to shining C

13

Program Output (2/6)

#include <stdio.h>

 Preprocessor
− built into the C compiler
− Lines beginning with #: communicate with the preprocessor

 #include

− Preprocessor includes a copy of the header file stdio.h
− stdio.h

■ provided by the C system
■ Declaration of standard input/output functions, e.g. printf()

14

Program Output (3/6)

int main(void)
{ . . .
}

 Every program has a function named main()
 void, no argument / return an int value
 { … }, the body of a function definition

15

 The 1st line of the function definition
for main()

 int, void
− Keywords
− Special meaning to the compiler

Program Output (4/6)

printf()
 A function that prints on the screen
 information in the header file stdio.h

“from sea to shinning C\n”
 “… “ : string constant in C
 \n : a single character called newline

printf(“from sea to shinning C\n”);
 statement : end with a semicolon

16

Program Output (5/6)

return 0;
 A return statement
 causes the value zero to be returned to the operating system

}
 The right brace matches the left brace
 ending the function definition for main()

17

Program Output (6/6)
#include <stdio.h>

int main(void)
{

printf(“from sea to “);
printf(“shining C“);
printf(“\n“);
return 0;

}

#include <stdio.h>

int main(void)
{

printf(“from sea\n“);
printf(“to shining\nC\n“);
return 0;

}

from sea to shining C
from sea
to shining
C

18

Compiling

 Convert source file to objective file
− sea.c to sea.o (or sea.obj)

 Object file
− a file with expressions that computers can

understand
 When compiling fails?
− something wrong with source file ...

■ expressions with wrong C grammar

19

Errors in Source File (example)

- returm 0;

 incorrect C language grammar

- compiler fails to make an obj
file and returns an error.

- debugging:

change “returm 0;” to “return 0;”

#include <stdio.h>

int main(void)
{

printf(“from sea to shining
C\n”);

returm 0;
}

20

Errors in Source File (example)

21

Linking and Running a Program

 Linking
− The process to make an executable program

out of objective file(s)
■ sea.o (or sea.obj) a.out (sea.exe)

 Run a program
− type “a.out” or “sea”

■ computer prints “from see to shining C”

22

Simple Examples

1. Assignments
2. Control Flow

[Ex.1] Distance of a marathon in kilometers

24

 Marathon: 26 miles 385 yards
 1 yard 1/1760 mile
 1 mile 1.609 km

 (26 + 385/1760) miles
 (26 + 385/1760) x 1.609 km

Marathon

Variable, Expressions, Assignment (1/7)

/* the distance of a marathon in kilometers */
#include <stdio.h>
int main(void)
{

int miles, yards;
float kilometers;

miles = 26;
yards = 385;
kilometers = 1.609 * (miles + yards / 1760.0);
printf(“\nA marathon is %f kilometers.\n\n”,

kilometers);
return 0;

}
25

Variable, Expressions, Assignment (2/7)

/* the distance of a marathon in kilometers */

 /* … */
− comment
− ignored by the compiler

26

Variable, Expressions, Assignment (3/7)

int miles, yards;
 Int

− A keyword, integer value
 declaration of the variables miles and yards of type int
 declarations and statements end with a semicolon
 variable: memory space to hold a value

float kilometers;
 float

− a keyword, real value
 declaration of the variable kilometers of type float
 27

Variable, Expressions, Assignment (4/7)
miles = 26;
yards = 385;
kilometers = 1.609 * (miles + yards / 1760.0);

 Assignment statement

− variable = expression;
− Equal sign (=) : assignment operator
− The value of the expression on the right side of the equal sign

is assigned to the variable
 Expression

− On the right side of assignment operators
− constants , variables, or combinations of operators with

variables and constants
28

Variable, Expressions, Assignment (5/7)
26, 385
 An integer constant
 integer types: short, int, long, …

1.609, 1760.0
 A floating-point constant
 Three floating types : float, double, long double
 floating-point constants are automatically of type double

29

Variable, Expressions, Assignment (6/7)

Evaluation of Expression
 Conversion rule

− Division of two integers results in an integer values. 7/2 is 3
− A double divided by an integer

■ Integer is automatically converted to double
■ 7.0/2 is 3.5

kilometers = 1.609 * (miles + yards / 1760); bug!!!

printf(“\nA marathon is %f kilometers.\n\n”, kilometers);
 Control string
 %f : format, conversion specification

− Matched with the remaining argument, the variable kilometers

30

Variable, Expressions, Assignment (7/7)
/*the distance of a marathon in kilometers*/
#include <stdio.h>
int main(void)
{

int miles, yards;
float kilometers;

miles = 26;
yards = 385;
kilometers = 1.609 * (miles + yards / 1760.0);
printf(“\nA marathon is %f kilometers.\n\n”, kilometers);
return 0;

}

A marathon is 42.195970 kilometers.
31

[Ex.2] Average Score (1/2)

Average score: 93
32

#include <stdio.h>
int main(void)
{
 int score1, score2, score3, avg_score;
 int num_score;

 score1 = 87; score2 = 93; score3 = 100;
 num_score = 3;
 avg_score = (score1 + score2 + score3) / num_score;
 printf(“Average score: %d\n”, avg_score);
 return 0;
}

[Ex.2] Average score (2/2)

Average score: 93.333333
33

#include <stdio.h>
int main(void)
{
 float fscore1, fscore2, fscore3;
 float avg_fscore;
 int num_score;

 fscore1 = 87.0; fscore2 = 93.0; fscore3 = 100.0;
 num_score = 3;
 avg_fscore = (fscore1 + fscore2 + fscore3) / num_score;
 printf(“Average score: %f\n”, avg_fscore);
 return 0;
}

Flow of Control: Alternative actions (1/5)

#include <stdio.h>
int main(void)
{

int a, b;
……
a = 1;
if (b == 3)
 a = 5;
printf(“%d”, a);
return 0;

}

34

if statement

if (expr)
 statement
 If expr is nonzero(true), then statement is executed;
 otherwise, it is skipped

if (b==3)
 a = 5;
 == : equal to operator
 b==3

− logical expression : either the integer value 1 (true) or 0 (false)

35

Flow of Control: Alternative actions (2/5)

#include <stdio.h>
int main(void)
{

int a, b;
b = 3;
a = 1;
if (b == 3)
 a = 5;
printf(“%d”, a);
return 0;

}

5

#include <stdio.h>
int main(void)
{

int a, b;
b = 2;
a = 1;
if (b == 3)
 a = 5;
printf(“%d”, a);
return 0;

}

1
36

Flow of Control: Alternative actions (3/5)

if (a == 3)
{
 b = 5;
 c = 7;
}

Compound statement
 A group of statement surrounded by braces
 a statement, itself

37

Flow of Control: Alternative actions (4/5)

if (expr)
 statement1
else
 statement2

 if (cnt == 0)
 {
 a = 2;
 b = 3;
 c = 5;
 }
 else
 {
 a = -2;
 b = -3;
 c = -5;
 }

38

Flow of Control: Alternative actions (5/5)

Flow of Control: Looping (1/4)

#include <stdio.h>
int main(void)
{

int i = 1, sum = 0;

while (i <= 5)
{
 sum = sum + i;
 ++i;
}
printf(“sum = %d\n”, sum);
return 0;

}

while statement

39

Flow of Control: Looping (2/4)

 If expr is true, the compound statement is executed,
 and control is passed back to the beginning of the while loop

for the process to start over again
 The while loop is repeatedly executed until the test fails

++i;
 ++ : increment operator
 i = i + 1;

while (expr)
 statement

while (i <= 5)
{

sum = sum + i;
 ++i;
}

40

Flow of Control: Looping (3/4)
#include <stdio.h>
int main(void)
{

int i = 1, sum = 0;

while (i <= 5)
{
 sum = sum + i;
 ++i;
}
printf(“sum = %d\n”, sum);
return 0;

}

1+2+3+4+5

sum = 15

41

Flow of Control: Looping (4/4)

#include <stdio.h>
int main(void)
{

int i, sum = 0;

for (i=1; i <= 5; ++i)
{
 sum = sum + i;
}
printf(“sum = %d\n”,

sum);
return 0;

}

for statement

42

for (expr1; expr2; expr3)
 statement

expr1;
while (expr2) {
 statement
 expr3;
}

is semantically equivalent to

C Program is …

 A sequence of FUNCTIONS
− main() function is executed first

 A FUNCTION consists of:
− Declarations
− Statements

 Declaration: variable names and their types
− int miles;

 Statement: data processing or control
− miles = 26;
− if (b == 3) { …};
− printf(…);

43

	An Overview of C
	Algorithmic Thinking
	Von Neumann Architecture
	Programming Languages
	How to Learn Programming
	Warning!!
	C Programming Language (1/2)
	C Programming Language
	Example: Hello world (1/3)
	Hello world (2/3)
	Hello world (3/3)
	From Source to Executable
	Program Output (1/6)
	Program Output (2/6)
	Program Output (3/6)
	Program Output (4/6)
	Program Output (5/6)
	Program Output (6/6)
	Compiling
	Errors in Source File (example)
	Errors in Source File (example)
	Linking and Running a Program
	Simple Examples
	[Ex.1] Distance of a marathon in kilometers
	Variable, Expressions, Assignment (1/7)
	Variable, Expressions, Assignment (2/7)
	Variable, Expressions, Assignment (3/7)
	Variable, Expressions, Assignment (4/7)
	Variable, Expressions, Assignment (5/7)
	Variable, Expressions, Assignment (6/7)
	Variable, Expressions, Assignment (7/7)
	[Ex.2] Average Score (1/2)
	[Ex.2] Average score (2/2)
	Flow of Control: Alternative actions (1/5)
	Flow of Control: Alternative actions (2/5)
	Flow of Control: Alternative actions (3/5)
	Flow of Control: Alternative actions (4/5)
	Flow of Control: Alternative actions (5/5)
	Flow of Control: Looping (1/4)
	Flow of Control: Looping (2/4)
	Flow of Control: Looping (3/4)
	Flow of Control: Looping (4/4)
	C Program is …

