An Overview of C

Algorithmic Thinking

Very diligent =
But, not so smairt

Can do a few of simple
operations (instructions)

Complex operation: a series o
of simple operations

Must be told Iin detall
what to do

— understandable to
computer

— for all possible cases
Algorithmic Thinking
— Algorithms == Recipes

Von Neumann Architecture

Memory

Processor

> Stored Program Concept

Input/Output

Programming Languages

= Algorithms: Developed by people

High-level languages
Programming

Languages Assembly languages

Machine languages

= Computers: Execute algorithms

How to Learn Programming

= | earn by doing
— Do exercises/practices.
— Lectures will give you basic tools only.

" |n the lectures, you will learn:
— Language syntax
— Algorithmic thinking

= Read “An Overview of C” & Try by yourself
— A BookonC

Warning!!

® | ectures
— Seem easy

" Textbook: An Overview of C
— seems that you understand well

" Programming assignments
— more difficult than it seems

= Expect many bugs in your programs

Programming maturity comes with
p.r.a.c.t.i.c.e!!

C Programming Language (1/2)

® Born in the early 1970s with UNIX
= Cis
— Small

« Fewer keywords

— Portable
« Code written on one machine easily moved to another

— Terse
= A very powerful set of operators
= Able to access the machine in the bit level

— Widely used
— The basis for C++ and Java

C Programming Language

= Criticism
— Complicated syntax
— No automatic array bounds checking
— Multiple use of such symbols as * and =

ko —
- —

= Nevertheless, C is an elegant language

Example: Hello world (1/3)

1. Create a C source file

— use a text editor
= Vi, Microsoft Visual C++ Editor, ...

=10/ x|
Oh(F) MEEY M0 2J0 ESEHH)

#include <stdio.h> =
int main{void)}

{

printf{ "Hello worldt#n” };
return 8;

Hello world (2/3)

2.Compile
— Convert source codes to object codes
— Compiler does the job

Borland C++ 5.5.1 for Win32 Copyright <(c> 19293, 28808 Borland

hello.c:
Turbo Incremental Link 5.88 Copyright <c)> 1797. 2088 Borland
Db

Hello world (3/3)

3. Linking

— Convert object codes to executable file
— Linker does the job

4. Debugging

— Fix the bugs in the source codes
— Debugger does the job

5. Run or Excute

D:¥>rhello

Hello world?

D -k

From Source to Executable

Editor

Source
File 1

Source
File n

Compiler

|

(

| Objective

» Objective

File 1

Linker

—éxecutabl%

File n

Debu@
_/

Program Output (1/6)

Source file: sea.c

#include <stdio.h>

int main(void)

{

pr'ian(“from sea to Shining from sea to shining C

C\nll);
return O;

Program Output (2/6)

#include <stdio.h>

" Preprocessor
— built into the C compiler
— Lines beginning with #: communicate with the preprocessor

= #include
— Preprocessor includes a copy of the header file stdio.h

— stdio.h
« provided by the C system
« Declaration of standard input/output functions, e.g. printf()

Program Output (3/6)

iInt main(void) <—— = The 1stline of the function definition

{

for main()
" int, void
— Keywords
— Special meaning to the compiler

Every program has a function named main()
void, no argument / return an int value
{ ... }, the body of a function definition

Program Output (4/6)

printf()
= A function that prints on the screen
= information in the header file stdio.h

“from sea to shinning C\n”

= " .. %! string constantin C
= \n: asingle character called newline

printf(“from sea to shinning C\n”);
" gstatement : end with a semicolon

Program Output (5/6)

return O;

A return statement
causes the value zero to be returned to the operating system

The right brace matches the left brace
ending the function definition for main()

Program Output (6/6)

#include <stdio.h>

int main(void)

#include <stdio.h>

int main(void)

{ {
printf(*from sea to °); printf("from sea\n");
printf("shining C"); printf(“to shining\nC\n");
printf("\n"); return O;
return O;)
}
o from sea
from sea to shining C to shining

C

Compiling

= Convert source file to objective file
— sea.c to sea.o (or sea.obj)

" Object file

— a file with expressions that computers can
understand

" When compiling fails?
— something wrong with source file ...
= expressions with wrong C grammar

Errors in Source File (example)

#Hinclude <stdio.h>

int main(void)

{
printf(“from sea to shining
C\n");
returm O;
}

- returm O;

Incorrect C language grammar

- compiler fails to make an obj
file and returns an error.

- debugging:

change “returm 0;” to “return 0;”

20

Errors in Source File (example)

D:W>hce hello.c

Borland C++ 5.5.1 for Wind2 Copyright <c2>» 1973, 2880 Borland
hello.c:

Error E2451 hello.c 6: Undefined symbol 'returm’ in function main
Error E237? hello.c 6: Statement missing ; in function main

Harning WBAYHA hello.c ¥: Function shouwld return a value in function

2 2 pprpors in Compile ==
Db

21

Linking and Running a Program

® Linking
— The process to make an executable program
out of objective file(s)

= Sea.o (or sea.obj) -2 a.out (sea.exe)

" Run a program

— type "a.out” or "sea”
= computer prints “from see to shining C”

22

Simple Examples

1. Assignments
2. Control Flow

[EX.1] Distance of a marathon in kilometers

" Marathon: 26 miles 385 yards
" 1yard — 1/1760 mile
" 1 mile— 1.609 km

ﬂ Marathon

= (26 + 385/1760) miles
" (26 + 385/1760) x 1.609 km

24

Variable, Expressions, Assignment (1/7)

/* the distance of a marathon in kilometers */

#include <stdio.h>

int main(void)

{
int miles, yards;
float kilometers;

miles = 26;
yards = 385;
kilometers = 1.609 * (miles + yards / 1760.0);

printf("\nA marathon is %f kilometers.\n\n",
kilometers);

return O;

25

Variable, Expressions, Assignment (2/7)

[* the distance of a marathon in kilometers */

S A
— comment
— ignored by the compiler

26

Variable, Expressions, Assignment (3/7)

Int miles, yards,;

" Int
— A keyword, integer value

= declaration of the variables miles and yards of type int
= declarations and statements end with a semicolon
= variable: memory space to hold a value

float kilometers:

= float
— akeyword, real value

= declaration of the variable kilometers of type float

27

Variable, Expressions, Assignment (4/7)

miles = 26;
yards = 385;
kKilometers = 1.609 * (miles + yards / 1760.0);

= Assignment statement
— variable = expression;
— Equal sign (=) : assignment operator

— The value of the expression on the right side of the equal sign
IS assigned to the variable

= EXpression
— On the right side of assignment operators

— constants , variables, or combinations of operators with
variables and constants

28

Variable, Expressions, Assignment (5/7)

26, 385
= An integer constant
" |nteger types: short, int, long, ...

1.609, 17/60.0

= A floating-point constant

= Three floating types : float, double, long double

= floating-point constants are automatically of type double

29

Variable, Expressions, Assignment (6/7)

Evaluation of Expression
= Conversion rule
— Division of two integers results in an integer values. 7/2 is 3
— A double divided by an integer
« Integer is automatically converted to double

« 7.0/2is3.5
kilometers = 1.609 * (miles + yards / 1760); bug!!!

printf(“\nA marathon is %f kilometers.\n\n", kilometers);
= Control string

= 0f . format, conversion specification
— Matched with the remaining argument, the variable kilometers

30

Variable, Expressions, Assignment (7/7)

/*the distance of a marathon in kilometers*/
#include <stdio.h>
int main(void)
{
int miles, yards;
float kilometers;

miles = 26;

yards = 385;

kilometers = 1.609 * (miles + yards / 1760.0);

printf("\nA marathon is %f kilometers.\n\n", kilometers);
return O;

}

A marathon is 42.195970 kilometers.

31

[EX.2] Average Score (1/2)

#include <stdio.h>
int main(void)

{

int scorel, score?2, score3, avg_score;
Int num_score;

scorel = 87; score? = 93; score3 = 100;
hum_score = 3;

avg_score = (scorel + score2 + score3) / num_score;

printf("Average score: %d\n", avg_score);
return O;

}

Average score: 93

32

[EX.2] Average score (2/2)

#include <stdio.h>
int main(void)

{

float fscorel, fscore2, fscore3;
float avg_fscore;
int hum_score;

fscorel = 87.0; fscore2 = 93.0; fscore3 = 100.0;
num_score = 3;

avg_fscore = (fscorel + fscore2 + fscore3) / num_score;

printf("Average score: %f\n", avg_fscore);
return O;

}

Average score: 93.333333

33

Flow of Control: Alternative actions (1/5)

if statement
#include <stdio.h>
int main(void)

{

a-=1
if(b==3)
az=Db;
printf("%d", a);
return O;

34

Flow of Control: Alternative actions (2/5)

If (expr)
statement

= |f expr is nonzero(true), then statement is executed,
= otherwise, it is skipped

If (b==3)

a=>5;
= == equal to operator
= ph==3

— logical expression : either the integer value 1 (true) or O (false)

35

Flow of Control: Alternative actions (3/5)

#include <stdio.h>
int main(void)
{
int a, b;
b=3;
a=1;
if (b==3)
a=Db;
printf("%d", a);
return O;

#include <stdio.h>

int main(void)

{
int a, b;
b=2;
a=1;
if (b==3)

az=Db;
printf("%d", a);
return O;

36

Flow of Control: Alternative actions (4/5)

If (a==3)
{
b =5;
C =/,
}

Compound statement

= A group of statement surrounded by braces
= astatement, itself

37

Flow of Control: Alternative actions (5/5)

if (cnt == 0)
if (expr) {
statementl a=2
else b = 3:
statement?2 } C= 5
else
{
a=-2;
b=-3;
c=-b;
}

38

Flow of Control: Looping (1/4)

while statement

#include <stdio.h>
int main(void)

{

int i=1, sum=0;

while (i<=5)
{
sum = sum + i;
++|
}
printf("sum = %d\n", sum);
return O;

39

Flow of Control: Looping (2/4)

while (i <= 5)
{
sum = sum + i;
++{;
while (expr))
statement

++i;

If expr is true, the compound statement is executed,

and control is passed back to the beginning of the while loop
for the process to start over again

The while loop is repeatedly executed until the test fails

++ : iIncrement operator
=i+ 1;

40

Flow of Control: Looping (3/4)

#include <stdio.h>
int main(void)

{

int i=1, sum=0;

while (i<=5)
{
sum = sum + i;
++
}
printf(“*sum = %d\n", sum);
return O;

1+2+3+4+5

sum = 15

41

Flow of Control: Looping (4/4)

for statement

#include <stdio h> for (exprl; expr2; expr3)
int main(void) statement
{
int i, sum=0; is semantically equivalent to
for (i=1; i <= 5; ++i) exprl;
{ while (expr2) {
sum = sum + i statement
} expr3;
printf("sum = %d\n", }
sum);
return O;

42

C Program is ...

= A sequence of FUNCTIONS
— main() function is executed first

= A FUNCTION consists of:

— Declarations
— Statements

= Declaration: variable names and their types
— Int miles;

= Statement: data processing or control
— miles = 26;
— if(b==3){..};
— printf(...);

43

	An Overview of C
	Algorithmic Thinking
	Von Neumann Architecture
	Programming Languages
	How to Learn Programming
	Warning!!
	C Programming Language (1/2)
	C Programming Language
	Example: Hello world (1/3)
	Hello world (2/3)
	Hello world (3/3)
	From Source to Executable
	Program Output (1/6)
	Program Output (2/6)
	Program Output (3/6)
	Program Output (4/6)
	Program Output (5/6)
	Program Output (6/6)
	Compiling
	Errors in Source File (example)
	Errors in Source File (example)
	Linking and Running a Program
	Simple Examples
	[Ex.1] Distance of a marathon in kilometers
	Variable, Expressions, Assignment (1/7)
	Variable, Expressions, Assignment (2/7)
	Variable, Expressions, Assignment (3/7)
	Variable, Expressions, Assignment (4/7)
	Variable, Expressions, Assignment (5/7)
	Variable, Expressions, Assignment (6/7)
	Variable, Expressions, Assignment (7/7)
	[Ex.2] Average Score (1/2)
	[Ex.2] Average score (2/2)
	Flow of Control: Alternative actions (1/5)
	Flow of Control: Alternative actions (2/5)
	Flow of Control: Alternative actions (3/5)
	Flow of Control: Alternative actions (4/5)
	Flow of Control: Alternative actions (5/5)
	Flow of Control: Looping (1/4)
	Flow of Control: Looping (2/4)
	Flow of Control: Looping (3/4)
	Flow of Control: Looping (4/4)
	C Program is …

