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Outline

 Monte Carlo : Sample from a distribution to estimate the distribution 

 Markov Chain Monte Carlo (MCMC)

‒ Applied to  Clustering, Unsupervised Learning, Bayesian Inference

 Importance Sampling

 Metropolis-Hastings Algorithm

 Gibbs Sampling

 Markov Blanket in Sampling for Bayesian Network

 Example: Estimation of Gaussian Mixture Model
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Markov chain Monte Carlo(MCMC)

 Monte Carlo : Sample from a distribution

- to estimate the distribution for GMM estimation, Clustering  

(Labeling, Unsupervised Learning)

- to compute max, mean

 Markov Chain Monte Carlo : sampling using “local” information

- Generic “problem solving technique”

- decision/inference/optimization/learning problem

- generic, but not necessarily very efficient
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Monte Carlo Integration

 General problem: evaluating

𝔼𝑃 ℎ 𝑋 = ∫ ℎ 𝑥 𝑃 𝑥 𝑑𝑥
can be difficult. (∫ ℎ 𝑥 𝑃 𝑥 𝑑𝑥 < ∞)

 If we can draw samples 𝑥(𝑠)~𝑃 𝑥 , then we can estimate

𝔼𝑃 ℎ 𝑋 ≈ തℎ𝑁 =
1

𝑁


𝑠=1

𝑁

ℎ 𝑥 𝑠 .

 Monte Carlo integration is great if you can sample from the target 
distribution

• But what if you can’t sample from the target?

• Importance sampling: Use of a simple distribution
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Importance Sampling

 Idea of importance sampling:

Draw the sample from a proposal distribution 𝑄(⋅) and re-weight the integral 
using importance weights so that the correct distribution is targeted

𝔼𝑃 ℎ 𝑋 = ∫
ℎ 𝑥 𝑃 𝑥

𝑄 𝑥
𝑄 𝑥 𝑑𝑥 = 𝔼𝑄

ℎ 𝑋 𝑃 𝑋

𝑄 𝑋
.

 Hence, given an iid sample 𝑥 𝑠 from 𝑄, our estimator becomes

𝐸𝑄
ℎ 𝑋 𝑃 𝑋

𝑄 𝑋
=
1

𝑁


𝑠=1

𝑁
ℎ 𝑥 𝑠 𝑃 𝑥 𝑠

𝑄 𝑥 𝑠
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Limitations of Monte Carlo

 Direct (unconditional) sampling

• Hard to get rare events in high-dimensional spaces  Gibbs sampling

 Importance sampling

• Do not work well if the proposal 𝑄 𝑥 is very different from target 𝑃 𝑥

• Yet constructing a 𝑄 𝑥 similar to 𝑃 𝑥 can be difficult  Markov Chain

 Intuition: instead of a fixed proposal 𝑄 𝑥 , what if we could use an adaptive
proposal?

• 𝑋𝑡+1 depends only on 𝑋𝑡, not on 𝑋0, 𝑋1, … , 𝑋𝑡−1
• Markov Chain
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Markov Chains: Notation & Terminology

 Countable (finite) state space Ω (e.g. N)

 Sequence of random variables 𝑋𝑡 on Ω for 𝑡 = 0,1,2, …

 Definition : 𝑋𝑡 is a Markov Chain if

𝑃 𝑋𝑡+1 = 𝑦 | 𝑋𝑡 = 𝑥𝑡, … , 𝑋0 = 𝑥0 = 𝑃 𝑋𝑡+1 = 𝑦 | 𝑋𝑡 = 𝑥𝑡

 Notation : 𝑃 𝑋𝑡+1 = 𝑖 | 𝑋𝑡 = 𝑗 = 𝑝𝑗𝑖

- Random Works

 Example.

𝑝𝐴𝐴 = 𝑃 𝑋𝑡+1 = 𝐴 | 𝑋𝑡 = 𝐴 = 0.6
𝑝𝐴𝐸 = 𝑃 𝑋𝑡+1 = 𝐸 | 𝑋𝑡 = 𝐴 = 0.4
𝑝𝐸𝐴 = 𝑃 𝑋𝑡+1 = 𝐴 | 𝑋𝑡 = 𝐸 = 0.7
𝑝𝐸𝐸 = 𝑃 𝑋𝑡+1 = 𝐸 | 𝑋𝑡 = 𝐸 = 0.3
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Markov Chains: Notation & Terminology

 Let 𝑷 = 𝑝𝑖𝑗 - transition probability matrix

- dimension Ω × Ω

 Let 𝜋𝑡 𝑗 = 𝑃 𝑋𝑡 = 𝑗

- 𝜋0 : initial probability distribution

 Then   𝜋𝑡 𝑗 = σ𝑖 𝜋𝑡−1 𝑖 𝑝𝑖𝑗 = 𝜋𝑡−1𝑷 𝑗 = 𝜋0𝑷
𝑡 𝑗

𝜋𝑡 = 𝜋𝑡−1𝑷 = 𝜋𝑡−2𝑷
2 =∙∙∙= 𝜋0𝑷

𝑡
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Markov Chains: Fundamental Properties

 Theorem:

- If the limit lim
𝑡→∞

𝑃𝑡 = 𝑃 exists and  Ω is finite, then 

𝜋𝑃 𝑗 = 𝜋 𝑗 and σ𝑗 𝜋 𝑗 = 1

and such 𝜋 is an unique solution to 𝜋𝑷 = 𝜋 (𝜋 is called a stationary 
distribution)

- No matter where we start, after some time, we will be in any state 𝑗 with 
probability ~ 𝜋 𝑗
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Markov Chain Monte Carlo

MCMC algorithm feature adaptive proposals

- Instead of 𝑄 𝑥′ , they use 𝑄(𝑥′|𝑥) where 𝑥′ is the new state being 
sampled, and 𝑥 is the previous sample

- As 𝑥 changes, 𝑄 𝑥′|𝑥 can also change (as a function of 𝑥′)

- The acceptance probability is set to 𝐴 𝑥′|𝑥 = min 1,
𝑃 𝑥′ /𝑄 𝑥′|𝑥

𝑃 𝑥 /𝑄 𝑥|𝑥′

- No matter where we start, after some time, we will be in any state 𝑗 with 
probability ~ 𝜋 𝑗

10
→ 𝑝12
← 𝑝21

𝑝22𝑝11 → 𝑝12
← 𝑝21

𝑝22𝑝11

importance

𝑄 𝑥′|𝑥 = 𝑄 𝑥′|𝑥 for Gaussian Why?



Metropolis-Hastings

 Draws a sample 𝑥′ from 𝑄 𝑥′|𝑥 , where 𝑥 is the previous sample

 The new sample 𝑥′ is accepted or rejected with some probability 𝐴 𝑥′|𝑥

• This acceptance probability is 𝐴 𝑥′|𝑥 = min 1,
𝑃 𝑥′ /𝑄 𝑥′|𝑥

𝑃 𝑥 /𝑄 𝑥|𝑥′

• 𝐴 𝑥′|𝑥 is like a ratio of importance sampling weights

•
𝑃 𝑥′

𝑄 𝑥′ 𝑥
is the importance weight for 𝑥′, 

𝑃 𝑥

𝑄 𝑥|𝑥′
is the importance weight for 𝑥

• We divide the importance weight for 𝑥′ by that of 𝑥

• Notice that we only need to compute 𝑃 𝑥′ /𝑃 𝑥 rather than 𝑃 𝑥′ or 𝑃 𝑥 separately

• 𝐴 𝑥′ 𝑥 ensures that, after sufficiently many draws, our samples will come 
from the true distribution 𝑃(𝑥)
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𝔼𝑃 ℎ 𝑋 = ∫
ℎ 𝑥 𝑃 𝑥

𝑄 𝑥
𝑄 𝑥 𝑑𝑥 = 𝔼𝑄

ℎ 𝑋 𝑃 𝑋

𝑄 𝑋
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The MH Algorithm

 Initialize starting state 𝑥(0), 

 Burn-in: while samples have “not converged”

• 𝑥 = 𝑥(𝑡)

• 𝑡 = 𝑡 + 1

• Sample  𝑥∗~𝑄(𝑥∗|𝑥) // draw from proposal

• Sample 𝑢~Uniform 0,1 // draw acceptance threshold

• If 𝑢 < 𝐴 𝑥∗ 𝑥 = min 1,
𝑃 𝑥∗ 𝑄(𝑥|𝑥∗)

𝑃 𝑥 𝑄 𝑥∗|𝑥
, 𝑥(𝑡)= 𝑥∗ // transition

• Else   𝑥(𝑡) = 𝑥 // stay in current state

• Repeat until converging
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The MH Algorithm

Example:

• Let 𝑄 𝑥′|𝑥 be a Gaussian centered on 𝑥

• We’re trying to sample from a bimodal distribution 𝑃 𝑥

𝐴 𝑥′|𝑥 = min 1,
𝑃 𝑥′ /𝑄 𝑥′|𝑥

𝑃 𝑥 /𝑄 𝑥|𝑥′
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The MH Algorithm

Example:

• Let 𝑄 𝑥′|𝑥 be a Gaussian centered on 𝑥

• We’re trying to sample from a bimodal distribution 𝑃 𝑥
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The MH Algorithm
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Gibbs Sampling

 Gibbs Sampling is an MCMC algorithm that samples each random variable of a 
graphical model, one at a time

• GS is a special case of the MH algorithm

 Consider a factored state space

• 𝑥 ∈ Ω is a vector 𝑥 = 𝑥1, … , 𝑥𝑚
• Notation: 𝑥−𝑖 = 𝑥1, … , 𝑥𝑖−1, 𝑥𝑖+1, … , 𝑥𝑚
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Gibbs Sampling

 The GS algorithm:

1. Suppose the graphical model contains variables 𝑥1, … , 𝑥𝑛
2. Initialize starting values for 𝑥1, … , 𝑥𝑛
3. Do until convergence:

1. Pick a component 𝑖 ∈ 1, … , 𝑛

2. Sample value of 𝑧~𝑃 𝑥𝑖|𝑥−𝑖 , and update 𝑥𝑖 ← 𝑧

 When we update 𝑥𝑖, we immediately use its new value for sampling other 
variables 𝑥𝑗

 𝑃 𝑥𝑖|𝑥−𝑖 achieves the acceptance probability in MH algorithm.
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𝐴 𝑥′|𝑥 = min 1,
𝑃 𝑥′ /𝑄 𝑥′|𝑥

𝑃 𝑥 /𝑄 𝑥|𝑥′



Markov Blankets

 The conditional 𝑃 𝑥𝑖 𝑥−𝑖 can be obtained using Markov Blanket

• Let 𝑀𝐵(𝑥𝑖) be the Markov Blanket of 𝑥𝑖, then

𝑃 𝑥𝑖 | 𝑥−𝑖 = 𝑃 𝑥𝑖|MB 𝑥𝑖

 For a Bayesian Network, the Markov Blanket of 𝑥𝑖 is the set containing its 
parents, children, and co-parents
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Gibbs Sampling: An Example

 Consider the GMM

• The data 𝑥 (position) are extracted from two Gaussian distribution

• We do NOT know the class 𝑦 of each data, and information of the Gaussian 
distribution

• Initialize the class of each data at 𝑡 = 0 to randomly

24

Gaussian with mean 3,−3 , variance 3

Gaussian with mean 1,2 , variance 2



Gibbs Sampling: An Example

Sampling 𝑃 𝑦𝑖 𝑥−𝑖 , 𝑦−𝑖) at 𝑡 = 1, we compute:

𝑃 𝑦𝑖 = 0 |𝑥−𝑖 , 𝑦−𝑖 ∝ 𝒩 𝑥𝑖|𝜇𝑥−𝑖,0, 𝜎𝑥−𝑖,0
𝑃 𝑦𝑖 = 1 | 𝑥−𝑖 , 𝑦−𝑖 ∝ 𝒩 𝑥𝑖|𝜇𝑥−𝑖,1, 𝜎𝑥−𝑖,1

where
𝜇𝑥−𝑖,𝐾 = 𝑀𝐸𝐴𝑁 𝑋𝑖𝐾 , 𝜎𝑥−𝑖,𝐾 = 𝑉𝐴𝑅 𝑋𝑖𝐾
𝑋𝑖𝐾 = 𝑥𝑗 | 𝑥𝑗 ∈ 𝑥−𝑖 , 𝑦𝑗 = 𝐾

And update 𝑦𝑖 with 𝑃 𝑦𝑖 |𝑥−𝑖 , 𝑦−𝑖 and repeat for all data
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Iteration of 𝑖 at the same 𝑡

0 1



Gibbs Sampling: An Example

Now 𝑡 = 2, and we repeat the procedure to sample new class of each data

And similarly for 𝑡 = 3, 4, …
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Gibbs Sampling: An Example

 Data 𝑖’s class can be chosen with tendency of 𝑦𝑖
• The classes of the data can be oscillated after the sufficient sequences

• We can assume the class of datum as more frequently selected class

 In the simulation, the final class is correct with the probability of 94.9% at 𝑡 =
100
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Interim Summary

Markov Chain Monte Carlo methods use adaptive proposals 𝑄 𝑥′ 𝑥 to sample from 
the true distribution 𝑃 𝑥

Metropolis-Hastings allows you to specify any proposal 𝑄 𝑥′|𝑥

• But choosing a good 𝑄 𝑥′|𝑥 requires care

Gibbs sampling sets the proposal 𝑄 𝑥𝑖
′|𝑥−1 to the conditional distribution 𝑃 𝑥𝑖

′|𝑥−1
• Acceptance rate always 1.

• But remember that high acceptance usually entails slow exploration

• In fact, there are better MCMC algorithms for certain models
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Overview

 Unsupervised Modelling of Binary Data  

 What is Boltzmann Machine ?

 Restricted Boltzmann Machine (RBM)

 RBM Learning  

 Contrast Divergence (CD) 

 Example
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Unsupervised Modelling of Binary Data

3

ℎ = 𝜎(𝑊1𝑣) ℎ

𝑣

𝑊1

𝑜

ℎ

𝑊2

𝑜 = 𝜎(𝑊2ℎ)

1    0   0    1     1   0     0    1    0    0    0     1

0    1   0    1     0   0     1    1    0    1    0     1

…….

1    0   0    1     1   0     0    1    0    0    0     1         If no desired outputs ?



Modeling binary data

 Given a training set of binary vectors, fit a model that will assign a probability to 
other binary vectors
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Name
Harry 
Potter

Avatar LOTR3 Gladiator Titanic Glitter

Alice 1 1 1 0 0 0

Bob 1 0 1 0 0 0

Carol 1 1 1 0 0 0

David 0 0 1 1 1 0

Eric 0 0 1 1 0 0

Fred 0 0 1 1 1 0

Prefer SF/fantasy

Prefer Oscar winner

If component 𝑗
of vector 𝑥 is on

If component 𝑗
of vector 𝑥 is off

𝑝 𝑥 =ෑ

𝑗

𝑥𝑗𝑝𝑗 + 1 − 𝑥𝑗 1 − 𝑝𝑗



Modeling binary data

 Modelling with Boltzmann Machine
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Name
Harry 
Potter

Avatar LOTR3 Gladiator Titanic 𝐺𝑙𝑖𝑡𝑡𝑒𝑟

Alice 1 1 1 0 0 0

Bob 1 0 1 0 0 0

Carol 1 1 1 0 0 0

David 0 0 1 1 1 0

Eric 0 0 1 1 0 0

Fred 0 0 1 1 1 0

𝑖

𝑗

𝑤𝑖𝑗

Prefer SF/fantasy

Prefer Oscar winner

…

Hidden nodes Visible nodes

 𝑝 𝑣 = σℎ 𝑝 ℎ 𝑝(𝑣|ℎ)

 𝑤𝑖𝑗 represents a correlation between nodes

𝑥(𝑡+1) = 𝜎(𝑊𝑥 𝑡 )



Boltzmann Machine

 Probability distribution on binary vectors 𝑥

𝑃 𝑥 =
exp −𝐸 𝑥

𝑍

𝐸 𝑥 = −
1

2
𝑥𝑇𝑊𝑥 − 𝜃𝑇𝑥

= −σ𝑘<𝑗 𝑥𝑘𝑤𝑘𝑗𝑥𝑗 − σ𝑘 θ𝑘𝑥𝑘

• From the entropy maximization

max
𝑃 𝑥

−

𝑥

𝑃 𝑥 ln𝑃 𝑥

𝑠. 𝑡 

𝑥

𝑃 𝑥 = 1, 𝛼 =

𝑥

𝑃 𝑥 𝐸 𝑥

• 𝑍 is the partition function that ensures σ𝑥𝑃 𝑥 = 1

𝑍 =

𝑥

exp −𝐸 𝑥
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𝑘

𝑗

𝑤𝑘𝑗

𝑥(𝑡+1) = 𝜎(𝑊𝑥 𝑡 )



Boltzmann Machine

 Probability distribution on binary vectors 𝑥

𝑃 𝑥 =
exp −𝐸 𝑥

𝑍
• 𝐸 𝑥 = −σ𝑘<𝑗 𝑥𝑘𝑤𝑘𝑗𝑥𝑗 − σ𝑘 θ𝑘𝑥𝑘

 Gibbs Sampling

𝑃 𝑥𝑖 = 1|𝑥−𝑖 =
𝑃 𝑥𝑖 = 1, 𝑥−𝑖

𝑃 𝑥𝑖 = 1, 𝑥−𝑖 + 𝑃 𝑥𝑖 = 0, 𝑥−𝑖

=
𝑒𝑥 𝑝 −𝐸 𝑥𝑖 = 1, 𝑥−𝑖

𝑒𝑥 𝑝 −𝐸 𝑥𝑖 = 1, 𝑥−𝑖 + 𝑒𝑥 𝑝 −𝐸 𝑥𝑖 = 0, 𝑥−𝑖

=
1

1 + 𝑒𝑥 𝑝 −𝐸 𝑥𝑖 = 0, 𝑥−𝑖 + 𝐸 𝑥𝑖 = 1, 𝑥−𝑖

=
1

1 + exp(−σ𝑗≠𝑖𝑤𝑖𝑗𝑥𝑗 − θ𝑖)
= 𝜎(

𝑗≠𝑖

𝑤𝑖𝑗𝑥𝑗 + θ𝑖 )
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𝑥(𝑡+1) = 𝜎(𝑊𝑥 𝑡 )

𝑖

𝑗

𝑤𝑖𝑗

1



Restricted Boltzmann Machine

 Variant of Boltzmann Machine

 Restrict the connectivity to make learning easier

• There is a hidden layer and visible layer

• No hidden-to-hidden or visible-to-visible connections

• Hidden units extends the class of distributions that can be modeled

 Energy function

𝐸 𝑣, ℎ = −

∀𝑖,𝑗

𝑣𝑖𝑤𝑖𝑗ℎ𝑗 −

𝑖

𝑏𝑖
𝑣𝑣𝑖 −

𝑗

𝑏𝑗
ℎℎ𝑗 = −𝑣𝑇𝑊ℎ − 𝑣𝑇𝑏𝑣 − ℎ𝑇𝑏ℎ

• Vectors ℎ, 𝑣 are of dimension 𝐽 × 1 and 𝐼 × 1

• 𝑊 is of dimension 𝐼 × 𝐽

ℎ = 𝜎(𝑊𝑣)
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ℎ

𝑣

𝑊

Bias of RBM

 𝑝 𝑣 = σℎ 𝑝 ℎ 𝑝(𝑣|ℎ)

𝑖

𝑗

𝑤𝑖𝑗

…

Hidden nodes Visible nodes

𝑥(𝑡+1) = 𝜎(𝑊𝑥 𝑡 )



Modeling binary data

 Given a training set of binary vectors, fit a model that will assign a probability to 
other binary vectors

9

Name
Harry 
Potter

Avatar LOTR3 Gladiator Titanic Glitter

Alice 1 1 1 0 0 0

Bob 1 0 1 0 0 0

Carol 1 1 1 0 0 0

David 0 0 1 1 1 0

Eric 0 0 1 1 0 0

Fred 0 0 1 1 1 0

Prefer SF/fantasy

Prefer Oscar winner

𝑖

𝑗

𝑤𝑖𝑗

…

Hidden nodes Visible nodes

𝑥(𝑡+1) = 𝜎(𝑊𝑥 𝑡 )



Restricted Boltzmann Machine

 Marginal distribution 𝑃 𝑣

𝑃 𝑣 =

ℎ

𝑃 ℎ 𝑃 𝑣|ℎ =

ℎ

𝑃 𝑣, ℎ =
σℎ exp −𝐸 𝑣, ℎ

𝑍

• 𝑃 𝑣, ℎ is a Boltzmann distribution with energy function 𝐸 𝑣, ℎ

• And 𝑃 𝑣 is a Boltzmann distribution with a energy 𝐹 𝑣

𝑃 𝑣 =
exp −𝐹 𝑣

𝑍

𝐹 𝑣 = − ln

ℎ

exp −𝐸 𝑣, ℎ

• the energy 𝐹 𝑣 cannot be represented as a quadratic form in 𝑣

(Why?)

10



RBM Learning

 Maximize the product of probabilities assigned to training set 𝑉

argmax
𝑊

ෑ

𝑣∈V

𝑃 𝑣

 Or equivalently, maximize the sum of log probability of 𝑉:

argmax
𝑊



𝑣∈V

ln 𝑃 𝑣

 The model is updated after each training token or in batch mode

𝑤𝑖𝑗 ← 𝑤𝑖𝑗 + 𝛼
𝜕 ln𝑃 𝑣

𝜕𝑤𝑖𝑗
ቚ
𝑣=𝑣1

11



RBM Learning

 Stochastic gradient ascent

• Calculate the gradient of the log likelihood, given a training token 𝑣1

𝜕 ln𝑃 𝑣

𝜕𝑤𝑖𝑗
ቚ
𝑣=𝑣1

= −
𝜕𝐹 𝑣

𝜕𝑤𝑖𝑗
ቚ
𝑣=𝑣1

−
𝜕 ln𝑍

𝜕𝑤𝑖𝑗

𝜕 ln𝑃 𝑣

𝜕𝑤𝑖𝑗
ቚ
𝑣=𝑣1

= 𝑣𝑖
1ℎ𝑗

1 −
𝜕

𝜕𝑤𝑖𝑗
ln

𝑣

exp −𝐹 𝑣

𝜕 ln𝑃 𝑣

𝜕𝑤𝑖𝑗
ቚ
𝑣=𝑣1

= 𝑣𝑖
1ℎ𝑗

1 −
1

σ𝑣 exp −𝐹 𝑣


𝑣

exp −𝐹 𝑣
𝜕𝐹 𝑣

𝜕𝑤𝑖𝑗

𝜕 ln𝑃 𝑣

𝜕𝑤𝑖𝑗
ቚ
𝑣=𝑣1

= 𝑣𝑖
1ℎ𝑗

1 −
1

𝑍


𝑣

exp −𝐹 𝑣 𝑣𝑖ℎ𝑗

= 𝑣𝑖
1ℎ𝑗

1 − σ𝑣𝑃 𝑣 𝑣𝑖ℎ𝑗

= 𝑣𝑖
1ℎ𝑗

1 − 𝑣𝑖ℎ𝑗 𝑚𝑜𝑑𝑒𝑙

12

Expectation of 𝑣𝑖ℎ𝑗

𝑃 𝑣 =
exp −𝐹 𝑣

𝑍

𝐹 𝑣 = − ln

ℎ

exp −𝐸 𝑣, ℎ



RBM Learning

 Stochastic gradient ascent

𝐹 𝑣 = − ln

ℎ

exp −𝐸 𝑣, ℎ

𝐸 𝑣, ℎ = −

∀𝑖,𝑗

𝑣𝑖𝑤𝑖𝑗ℎ𝑗

𝜕𝐹 𝑣

𝜕𝑤𝑖𝑗
= −

𝜕

𝜕𝑤𝑖𝑗
ln

ℎ

exp −𝐸 𝑣, ℎ

𝜕 ln𝑃 𝑣

𝜕𝑤𝑖𝑗
ቚ
𝑣=𝑣1

= −
1

σℎ exp −𝐸 𝑣, ℎ


ℎ

exp −𝐸 𝑣, ℎ −
𝜕𝐸 𝑣, ℎ

𝜕𝑤𝑖𝑗

𝜕 ln𝑃 𝑣

𝜕𝑤𝑖𝑗
ቚ
𝑣=𝑣1

= −𝑣𝑖ℎ𝑗

𝜕 ln𝑃 𝑣

𝜕𝑤𝑖𝑗
ቚ
𝑣=𝑣1

13

for fixed 𝑣, ℎ



RBM Learning

 If there are 𝐾 iid training tokens 𝑣1, … , 𝑣𝐾

𝜕

𝜕𝑤𝑖𝑗
σ𝑘 ln 𝑃 𝑣𝑘 = σ𝑘

𝜕 ln 𝑃 𝑣𝑘

𝜕𝑤𝑖𝑗

= 𝑣𝑖
1ℎ𝑗

1 +⋯+ 𝑣𝑖
𝐾ℎ𝑗

𝐾 − 𝐾 𝑣𝑖ℎ𝑗 𝑚𝑜𝑑𝑒𝑙

• So that…
𝜕

𝜕𝑤𝑖𝑗
𝔼𝑣 ln 𝑃 𝑣 ≈

𝜕

𝜕𝑤𝑖𝑗

1

𝐾


𝑘

ln 𝑃 𝑣𝑘 = 𝑣𝑖ℎ𝑗 𝑑𝑎𝑡𝑎
− 𝑣𝑖ℎ𝑗 𝑚𝑜𝑑𝑒𝑙

• ∆𝑤𝑖𝑗 = 𝜂( 𝑣𝑖ℎ𝑗 𝑑𝑎𝑡𝑎
− 𝑣𝑖ℎ𝑗 𝑚𝑜𝑑𝑒𝑙

)
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Data statistics Model statistics

: unknown

𝜕 ln𝑃 𝑣

𝜕𝑤𝑖𝑗
ቚ
𝑣=𝑣1

= 𝑣𝑖
1ℎ𝑗

1 − 𝑣𝑖ℎ𝑗 𝑚𝑜𝑑𝑒𝑙



Model statistics

 𝑣𝑖ℎ𝑗 𝑚𝑜𝑑𝑒𝑙
can be estimated by using any MCMC algorithm

• But nobody knows 𝑡𝑐𝑜𝑛𝑣 which indicates the step at which 𝑣𝑖ℎ𝑗 converges

15
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ℎ𝑗~𝜎(𝑤𝑗
𝑇𝑣 + 𝑐𝑗)
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𝑇ℎ + 𝑐𝑖)



Model statistics

 Contrast Divergence (CD) [Bengio, et al.]: Starting at the given training token 

𝑣(1), ℎ(1), run the Markov chain for 𝑛 steps:

• 𝑣(1), ℎ(1) → ⋯ → 𝑣(𝑛+1), ℎ(𝑛+1)

• With the edge weight 𝑤𝑖𝑗

 And we can approximate
𝜕 ln𝑃 𝑣

𝜕𝑤𝑖𝑗
ቚ
𝑣=𝑣1

≈ 𝑣𝑖
1
ℎ𝑗

1
− 𝑣𝑖

𝑛+1
ℎ𝑗

𝑛+1

 CD-𝟏 → 𝑤𝑒𝑖𝑔ℎ𝑡 𝑐ℎ𝑎𝑛𝑔𝑒 → CD-𝟑 → . . . → CD-𝟓 → . . . → CD-𝟕 . . . CD-𝟗

16

CD-𝑛



Example of RBM

 Train the RBM using following data (with CD-1)

• 6 visible units (each movies) with 2 hidden units

17

Name
Harry 
Potter

Avatar LOTR3 Gladiator Titanic Glitter

Alice 1 1 1 0 0 0

Bob 1 0 1 0 0 0

Carol 1 1 1 0 0 0

David 0 0 1 1 1 0

Eric 0 0 1 1 0 0

Fred 0 0 1 1 1 0

Prefer SF/fantasy

Prefer Oscar winner



Example of RBM

 And… the network is trained by the following weights:

• 𝑊 =
4.97 2.27 4.11 −4.01 −5.60 −2.92

−7.09 −5.18 2.52 6.75 3.25 −2.82

• The first hidden unit seems to correspond to the SF/fantasy , and the 
second hidden unit seems to correspond to the Oscar winners movies

• If the RBM is presented to a new user, George, who has  0,0,0,1,1,0 as his 
preferences, then It turns the second hidden unit on

18

Name
Harry 
Potter

Avatar LOTR3 Gladiator Titanic Glitter

Alice 1 1 1 0 0 0

Bob 1 0 1 0 0 0

Carol 1 1 1 0 0 0

David 0 0 1 1 1 0

Eric 0 0 1 1 0 0

Fred 0 0 1 1 1 0

Prefer SF/fantasy

Prefer Oscar winner



Persistent CD

 A set of samples 𝑣1, … 𝑣𝐾 is drawn(observed) from the model 
distribution

• The set is maintained and updated whenever the model is updated

• 𝐾 Markov chains are run in parallel and, on every update, several 
steps of Gibbs sampling are performed in each chain

• The model statistics are derived by averaging over the samples:

𝑣𝑖ℎ𝑗 𝑚𝑜𝑑𝑒𝑙
=
1

𝐾


𝑘

𝑣𝑖
𝑘,(𝑛+1)

ℎ𝑗
𝑘,(𝑛+1)

 Persistent CD generally works better than CD
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Interim Summary

 Boltzmann machines try to model a realistic brain learning mechanism 
(unsupervised model).

 Boltzmann machines and Restricted Boltzmann machines are based on 
the energy model 

 Undirected Graph model such as Markov random field

 The RBM is the simple type of Boltzmann machine, and it can be easily 
learned

• We use the Contrastive Divergence (CD) to train the RBM

 Persistent Contrastive Divergence is the improved version of CD, and it 
lesson the problem that CD does not guarantee the fast convergence
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