Markov chain Monte Carlo(MCMC)

Jin Young Choi

- Monte Carlo : Sample from a distribution to estimate the distribution
- Markov Chain Monte Carlo (MCMC)
- Applied to Clustering, Unsupervised Learning, Bayesian Inference
- Importance Sampling
- Metropolis-Hastings Algorithm
- Gibbs Sampling
- Markov Blanket in Sampling for Bayesian Network
- Example: Estimation of Gaussian Mixture Model

$$p(\mathbf{x}|\theta) = \sum_{k} p(\mathbf{x}|\theta_{k})p(\theta_{k}|\theta)$$

= $\sum_{Z} p(\mathbf{x}, Z|\theta) = \sum_{Z=k} p(\mathbf{x}|Z=k, \theta)p(Z=k|\theta)$

$$p(x|D) = \sum_{z,\theta} p(x, z, \theta|D) = ?, p(z|x, \theta) = ?, p(\theta|x, z) = ?$$

Markov chain Monte Carlo(MCMC)

- Monte Carlo : Sample from a distribution
 - to estimate the distribution for GMM estimation, Clustering (Labeling, Unsupervised Learning)
 - to compute max, mean
- Markov Chain Monte Carlo : sampling using "local" information
 - Generic "problem solving technique"
 - decision/inference/optimization/learning problem
 - generic, but not necessarily very efficient

Monte Carlo Integration

- General problem: evaluating $\mathbb{E}_{P}[h(X)] = \int h(x)P(x)dx$ can be difficult. $(\int |h(x)|P(x)dx < \infty)$
- If we can draw samples $x^{(s)} \sim P(x)$, then we can estimate $\mathbb{E}_P[h(X)] \approx \bar{h}_N = \frac{1}{N} \sum_{s=1}^N h(x^{(s)}).$
- Monte Carlo integration is great if you can sample from the target distribution
 - But what if you can't sample from the target?
 - Importance sampling: Use of a simple distribution

Importance Sampling

Idea of importance sampling:

Draw the sample from a proposal distribution $Q(\cdot)$ and re-weight the integral using importance weights so that the correct distribution is targeted $\mathbb{E}_P[h(X)] = \int \frac{h(x)P(x)}{Q(x)}Q(x)dx = \mathbb{E}_Q\left[\frac{h(X)P(X)}{Q(X)}\right].$

• Hence, given an iid sample $x^{(s)}$ from Q, our estimator becomes

$$E_{Q}\left[\frac{h(X)P(X)}{Q(X)}\right] = \frac{1}{N} \sum_{s=1}^{N} \frac{h(x^{(s)})P(x^{(s)})}{Q(x^{(s)})}$$

Limitations of Monte Carlo

- Direct (unconditional) sampling
 - Hard to get rare events in high-dimensional spaces → Gibbs sampling
- Importance sampling
 - Do not work well if the proposal Q(x) is very different from target P(x)
 - Yet constructing a Q(x) similar to P(x) can be difficult \rightarrow Markov Chain
- Intuition: instead of a fixed proposal Q(x), what if we could use an adaptive proposal?
 - X_{t+1} depends only on X_t , not on X_0, X_1, \dots, X_{t-1}
 - Markov Chain

Markov Chains: Notation & Terminology

- Countable (finite) state space Ω (e.g. N)
- Sequence of random variables $\{X_t\}$ on Ω for t = 0, 1, 2, ...
- Definition : $\{X_t\}$ is a Markov Chain if $P(X_{t+1} = y \mid X_t = x_t, ..., X_0 = x_0) = P(X_{t+1} = y \mid X_t = x_t)$

• Notation :
$$P(X_{t+1} = i | X_t = j) = p_{ji}$$

0.3

- Random Works
- Example.

$$p_{AA} = P(X_{t+1} = A | X_t = A) = 0.6$$

$$p_{AE} = P(X_{t+1} = E | X_t = A) = 0.4$$

$$p_{EA} = P(X_{t+1} = A | X_t = E) = 0.7$$

$$p_{EE} = P(X_{t+1} = E | X_t = E) = 0.3$$

Markov Chains: Notation & Terminology

- Let $P = (p_{ij})$ transition probability matrix - dimension $|\Omega| \times |\Omega|$
- Let $\pi_t(j) = P(X_t = j)$

- π_0 : initial probability distribution

• Then
$$\pi_t(j) = \sum_i \pi_{t-1}(i) p_{ij} = (\pi_{t-1} \mathbf{P})(j) = (\pi_0 \mathbf{P}^t)(j)$$

 $\pi_t = \pi_{t-1} \mathbf{P} = \pi_{t-2} \mathbf{P}^2 = \dots = \pi_0 \mathbf{P}^t$

Markov Chains: Fundamental Properties

- Theorem:
 - If the limit $\left(\lim_{t\to\infty} P^t\right) = P$ exists and Ω is finite, then $(\pi P)(j) = \pi(j)$ and $\sum_j \pi(j) = 1$

and such π is an **unique** solution to $\pi P = \pi$ (π is called a **stationary distribution**)

- No matter where we start, after some time, we will be in any state j with probability $\sim \pi(j)$

Markov Chain Monte Carlo

MCMC algorithm feature adaptive proposals

- Instead of Q(x'), they use Q(x'|x) where x' is the new state being sampled, and x is the previous sample
- As x changes, Q(x'|x) can also change (as a function of x')
- The acceptance probability is set to $A(x'|x) = \min\left(1, \frac{P(x')/Q(x'|x)}{P(x)/Q(x|x')}\right)$
- No matter where we start, after some time, we will be in any state j with probability $\sim \pi(j)$ Q(x'|x) = Q(x'|x) for Gaussian Why?

importance

Metropolis-Hastings

- Draws a sample x' from Q(x'|x), where x is the previous sample
- The new sample x' is accepted or rejected with some probability A(x'|x)
 - This acceptance probability is $A(x'|x) = \min\left(1, \frac{P(x')/Q(x'|x)}{P(x)/Q(x|x')}\right)$
 - A(x'|x) is like a ratio of importance sampling weights
 - $\frac{P(x')}{Q(x'|x)}$ is the importance weight for x', $\frac{P(x)}{Q(x|x')}$ is the importance weight for x
 - We divide the importance weight for x' by that of x
 - Notice that we only need to compute P(x')/P(x) rather than P(x') or P(x) separately
 - A(x'|x) ensures that, after sufficiently many draws, our samples will come from the true distribution P(x)

Q(x'|x) = Q(x'|x) for Gaussian Why?

$$\mathbb{E}_{P}[h(X)] = \int \frac{h(x)P(x)}{Q(x)}Q(x)dx = \mathbb{E}_{Q}\left[\frac{h(X)P(X)}{Q(X)}\right]$$

- Initialize starting state $x^{(0)}$,
- Burn-in: while samples have "not converged"
 - $x = x^{(t)}$
 - t = t + 1
 - Sample $x^* \sim Q(x^*|x)$ // draw from proposal

Sample u~Uniform(0,1) // draw acceptance threshold

• If
$$u < A(x^*|x) = \min\left(1, \frac{P(x^*)Q(x|x^*)}{P(x)Q(x^*|x)}\right)$$
, $x^{(t)} = x^*$ // transition
• Else $x^{(t)} = x$ // stay in current state

Repeat until converging •

$$A(x'|x) = \min\left(1, \frac{P(x')/Q(x'|x)}{P(x)/Q(x|x')}\right)$$

- Let Q(x'|x) be a Gaussian centered on x
- We're trying to sample from a bimodal distribution P(x)

$$A(x'|x) = \min\left(1, \frac{P(x')/Q(x'|x)}{P(x)/Q(x|x')}\right)$$

- Let Q(x'|x) be a Gaussian centered on x
- We're trying to sample from a bimodal distribution P(x)

$$A(x'|x) = \min\left(1, \frac{P(x')/Q(x'|x)}{P(x)/Q(x|x')}\right)$$

- Let Q(x'|x) be a Gaussian centered on x
- We're trying to sample from a bimodal distribution P(x)

$$A(x'|x) = \min\left(1, \frac{P(x')/Q(x'|x)}{P(x)/Q(x|x')}\right)$$

- Let Q(x'|x) be a Gaussian centered on x
- We're trying to sample from a bimodal distribution P(x)

$$A(x'|x) = \min\left(1, \frac{P(x')/Q(x'|x)}{P(x)/Q(x|x')}\right)$$

- Let Q(x'|x) be a Gaussian centered on x
- We're trying to sample from a bimodal distribution P(x)

$$A(x'|x) = \min\left(1, \frac{P(x')/Q(x'|x)}{P(x)/Q(x|x')}\right)$$

- Let Q(x'|x) be a Gaussian centered on x
- We're trying to sample from a bimodal distribution P(x)

$$A(x'|x) = \min\left(1, \frac{P(x')/Q(x'|x)}{P(x)/Q(x|x')}\right)$$

- Let Q(x'|x) be a Gaussian centered on x
- We're trying to sample from a bimodal distribution P(x)

$$A(x'|x) = \min\left(1, \frac{P(x')/Q(x'|x)}{P(x)/Q(x|x')}\right)$$

- Let Q(x'|x) be a Gaussian centered on x
- We're trying to sample from a bimodal distribution P(x)

Gibbs Sampling

- Gibbs Sampling is an MCMC algorithm that samples each random variable of a graphical model, one at a time
 - GS is a special case of the MH algorithm
- Consider a factored state space
 - $x \in \Omega$ is a vector $x = (x_1, ..., x_m)$
 - Notation: $x_{-i} = \{x_1, ..., x_{i-1}, x_{i+1}, ..., x_m\}$

Gibbs Sampling

$$A(x'|x) = \min\left(1, \frac{P(x')/Q(x'|x)}{P(x)/Q(x|x')}\right)$$

- The GS algorithm:
- 1. Suppose the graphical model contains variables x_1, \dots, x_n
- 2. Initialize starting values for x_1, \dots, x_n
- 3. Do until convergence:
 - 1. Pick a component $i \in \{1, ..., n\}$
 - 2. Sample value of $z \sim P(x_i | x_{-i})$, and update $x_i \leftarrow z$
- When we update x_i, we <u>immediately</u> use its new value for sampling other variables x_j
- $P(x_i|x_{-i})$ achieves the acceptance probability in MH algorithm.

$$\begin{aligned} A(x'_i, x_{-i} | x_i, x_{-i}) &= \min(1, \frac{P(x'_i | x_{-i})Q(x_i, x_{-i} | x'_i, x_{-i})}{P(x_i | x_{-i})Q(x'_i, x_{-i} | x_i, x_{-i})}) \\ &= \min(1, \frac{P(x'_i | x_{-i})P(x_i | x_{-i})}{P(x_i | x_{-i})P(x'_i | x_{-i})}) \end{aligned}$$

Markov Blankets

- The conditional $P(x_i|x_{-i})$ can be obtained using Markov Blanket
 - Let $MB(x_i)$ be the Markov Blanket of x_i , then

$$P(x_i \mid x_{-i}) = P(x_i | \mathrm{MB}(x_i))$$

 For a Bayesian Network, the Markov Blanket of x_i is the set containing its parents, children, and co-parents

- Consider the GMM
 - The data x (position) are extracted from two Gaussian distribution
 - We do NOT know the class y of each data, and information of the Gaussian distribution
 - Initialize the class of each data at t = 0 to randomly

$$p(\mathbf{x}|\theta) = \sum_{k} p(\mathbf{x}|\theta_{k})p(\theta_{k}|\theta)$$
$$= \sum_{Z} p(\mathbf{x}, Z|\theta) = \sum_{Z=k} p(\mathbf{x}|Z=k, \theta)p(Z=k|\theta)$$

Sampling
$$P(y_i | x_{-i}, y_{-i})$$
 at $t = 1$, we compute:
 $P(y_i = 0 | x_{-i}, y_{-i}) \propto \mathcal{N}(x_i | \mu_{x_{-i},0}, \sigma_{x_{-i},0})$
 $P(y_i = 1 | x_{-i}, y_{-i}) \propto \mathcal{N}(x_i | \mu_{x_{-i},1}, \sigma_{x_{-i},1})$

where

$$\mu_{x_{-i},K} = MEAN(X_{iK}), \sigma_{x_{-i},K} = VAR(X_{iK})$$

$$X_{iK} = \{x_j \mid x_j \in x_{-i}, y_j = K\}$$

And update y_i with $P(y_i | x_{-i}, y_{-i})$ and repeat for all data

Now t = 2, and we repeat the procedure to sample new class of each data

And similarly for t = 3, 4, ...

- Data *i*'s class can be chosen with tendency of y_i
 - The classes of the data can be oscillated after the sufficient sequences
 - We can assume the class of datum as more frequently selected class
- In the simulation, the final class is correct with the probability of 94.9% at t = 100

Markov Chain Monte Carlo methods use adaptive proposals Q(x'|x) to sample from the true distribution P(x)

Metropolis-Hastings allows you to specify any proposal Q(x'|x)

• But choosing a good Q(x'|x) requires care

Gibbs sampling sets the proposal $Q(x_i'|x_{-1})$ to the conditional distribution $P(x_i'|x_{-1})$

- Acceptance rate always 1.
- But remember that high acceptance usually entails slow exploration
- In fact, there are better MCMC algorithms for certain models

Bolzmann Machine

Jin Young Choi

Overview

- Unsupervised Modelling of Binary Data
- What is Boltzmann Machine ?
- Restricted Boltzmann Machine (RBM)
- RBM Learning
- Contrast Divergence (CD)
- Example

Unsupervised Modelling of Binary Data

Modeling binary data

 Given a training set of binary vectors, fit a model that will assign a probability to other binary vectors

Name	Harry Potter	Avatar	LOTR3	Gladiator	Titanic	Glitter				
Alice	1	1	1	0	0	0)			
Bob	1	0	1	0	0	0	Prefer SF/fantasy			
Carol	1	1	1	0	0	0]			
David	0	0	1	1	1	0)			
Eric	0	0	1	1	0	0	Prefer Oscar winner			
Fred	0	0	1	1	1	0				
$p(x) = \prod_{j} \left(x_j p_j + (1 - x_j)(1 - p_j) \right)$										
			If com of vect	ponent <i>j</i> or <i>x</i> is on	If co of ve	omponen ector <i>x</i> is	off 4			

Modeling binary data

Modelling with Boltzmann Machine

Name	Harry Potter	Avatar	LOTR3	Gladiator	Titanic	Glitter
Alice	1	1	1	0	0	0
Bob	1	0	1	0	0	0
Carol	1	1	1	0	0	0
David	0	0	1	1	1	0
Eric	0	0	1	1	0	0
Fred	0	0	1	1	1	0

Prefer SF/fantasy

Prefer Oscar winner

- *w_{ij}* represents a correlation between nodes
- $p(v) = \sum_{h} p(h)p(v|h)$

Boltzmann Machine

Probability distribution on binary vectors x

$$P(x) = \frac{\exp(-E(x))}{Z}$$
$$E(x) = -\frac{1}{2}x^{T}Wx - \theta^{T}x$$
$$= -\sum_{k < i} x_{k} w_{ki} x_{i} - \sum_{k} \theta_{k} x_{k}$$

• From the entropy maximization

$$\max_{P(x)} - \sum_{x} P(x) \ln P(x)$$

s.t $\sum_{x} P(x) = 1, \alpha = \sum_{x} P(x)E(x)$

• Z is the partition function that ensures $\sum_{x} P(x) = 1$

$$Z = \sum_{x} \exp(-E(x))$$

$$x^{(t+1)} = \sigma(Wx^{(t)})$$

Boltzmann Machine

$$x^{(t+1)} = \sigma(Wx^{(t)})$$

i

Wij

Probability distribution on binary vectors x

$$P(x) = \frac{\exp(-E(x))}{\sum_{k=1}^{Z} \sum_{k < j} x_k w_{kj} x_j - \sum_k \theta_k x_k}$$

Gibbs Sampling

$$P(x_{i} = 1 | x_{-i}) = \frac{P(x_{i} = 1, x_{-i})}{P(x_{i} = 1, x_{-i}) + P(x_{i} = 0, x_{-i})}$$
(1)
$$= \frac{ex p(-E(x_{i} = 1, x_{-i}))}{ex p(-E(x_{i} = 1, x_{-i})) + ex p(-E(x_{i} = 0, x_{-i}))}$$
(1)
$$= \frac{1}{1 + ex p(-E(x_{i} = 0, x_{-i}) + E(x_{i} = 1, x_{-i}))}$$
(1)
$$= \frac{1}{1 + ex p(-\sum_{j \neq i} w_{ij} x_{j} - \theta_{i})} = \sigma(\sum_{j \neq i} w_{ij} x_{j} + \theta_{i})$$

Modeling binary data

 Given a training set of binary vectors, fit a model that will assign a probability to other binary vectors

Restricted Boltzmann Machine

Marginal distribution P(v)

$$P(v) = \sum_{h} P(h)P(v|h) = \sum_{h} P(v,h) = \frac{\sum_{h} \exp(-E(v,h))}{Z}$$

- P(v, h) is a Boltzmann distribution with energy function E(v, h)
- And P(v) is a Boltzmann distribution with a energy F(v)

$$P(v) = \frac{\exp(-F(v))}{Z}$$
$$F(v) = -\ln\sum_{h}^{Z} \exp(-E(v,h))$$

 the energy F(v) cannot be represented as a quadratic form in v (Why?)

Maximize the product of probabilities assigned to training set V

$$\arg\max_{W}\prod_{v\in V}P(v)$$

• Or equivalently, maximize the sum of log probability of *V*:

$$\arg\max_{W}\sum_{v\in \mathbf{V}}\ln P(v)$$

• The model is updated after each training token or in batch mode $w_{ij} \leftarrow w_{ij} + \alpha \frac{\partial \ln P(v)}{\partial w_{ij}}\Big|_{v=v^1}$

$$P(v) = \frac{\exp(-F(v))}{Z}$$
$$F(v) = -\ln\sum_{h}^{Z} \exp(-E(v,h))$$

- Stochastic gradient ascent
 - Calculate the gradient of the log likelihood, given a training token v^1 $\frac{\partial \ln P(v)}{\partial w_{ij}}\Big|_{v=v^1} = -\frac{\partial F(v)}{\partial w_{ij}}\Big|_{v=v^1} - \frac{\partial \ln Z}{\partial w_{ij}}$ $= v_i^1 h_j^1 - \frac{\partial}{\partial w_{ij}} \ln \sum_{v} \exp(-F(v))$ $= v_i^1 h_j^1 - \frac{1}{\sum_{v} \exp(-F(v))} \sum_{v} \exp(-F(v)) \frac{\partial F(v)}{\partial w_{ij}}$ $= v_i^1 h_j^1 - \frac{1}{Z} \sum_{ij} \exp(-F(v)) v_i h_j$ $= v_i^1 h_i^1 - \sum_{v} P(v) v_i h_i$ Expectation of $v_i h_i$ $= v_i^1 h_i^1 - \left\langle v_i h_j \right\rangle_{model}$ w

Stochastic gradient ascent

$$F(v) = -\ln \sum_{h} \exp(-E(v,h))$$
$$E(v,h) = -\sum_{\forall i,j} v_i w_{ij} h_j$$

$$\frac{\partial F(v)}{\partial w_{ij}} = -\frac{\partial}{\partial w_{ij}} \ln \sum_{h} \exp(-E(v,h))$$
$$= -\frac{1}{\sum_{h} \exp(-E(v,h))} \sum_{h} \exp(-E(v,h)) \left(-\frac{\partial E(v,h)}{\partial w_{ij}}\right)$$
$$= -v_i h_i \qquad \text{for fixed } v, h$$

$$\frac{\partial \ln P(v)}{\partial w_{ij}}\Big|_{v=v^1} = v_i^1 h_j^1 - \langle v_i h_j \rangle_{model}$$

• If there are K iid training tokens v^1, \dots, v^K

$$\frac{\partial}{\partial w_{ij}} \sum_{k} \ln P(v^{k}) = \sum_{k} \frac{\partial \ln P(v^{k})}{\partial w_{ij}}$$
$$= \left(v_{i}^{1} h_{j}^{1} + \dots + v_{i}^{K} h_{j}^{K} - K \langle v_{i} h_{j} \rangle_{model} \right)$$

• So that... $\frac{\partial}{\partial w_{ij}} \mathbb{E}_{v}[\ln P(v)] \approx \frac{\partial}{\partial w_{ij}} \frac{1}{K} \sum_{k} \ln P(v^{k}) = \langle v_{i}h_{j} \rangle_{data} - \langle v_{i}h_{j} \rangle_{model}$ • $\Delta w_{ij} = \eta(\langle v_{i}h_{j} \rangle_{data} - \langle v_{i}h_{j} \rangle_{model})$ Data statistics
i unknown

Model statistics

- $\langle v_i h_j \rangle_{model}$ can be estimated by using any MCMC algorithm
 - But nobody knows t_{conv} which indicates the step at which $\langle v_i h_j \rangle$ converges $h_j \sim \sigma(w_j^T v + c_j)$

Model statistics

- Contrast Divergence (CD) [Bengio, et al.]: Starting at the given training token $v^{(1)}$, $h^{(1)}$, run the Markov chain for n steps:
 - $v^{(1)}, h^{(1)} \rightarrow \cdots \rightarrow v^{(n+1)}, h^{(n+1)}$
 - With the edge weight $[w_{ij}]$
- And we can approximate

$$\frac{\partial \ln P(v)}{\partial w_{ij}}\Big|_{v=v^1} \approx v_i^{(1)} h_j^{(1)} - v_i^{(n+1)} h_j^{(n+1)}$$
CD-n

• **CD-1** \rightarrow weight change \rightarrow **CD-3** $\rightarrow \ldots \rightarrow$ **CD-5** $\rightarrow \ldots \rightarrow$ **CD-7** \ldots **CD-9**

Example of RBM

- Train the RBM using following data (with CD-1)
 - 6 visible units (each movies) with 2 hidden units

Name	Harry Potter	Avatar	LOTR3	Gladiator	Titanic	Glitter	
Alice	1	1	1	0	0	0)
Bob	1	0	1	0	0	0	Prefer SF/fantas
Carol	1	1	1	0	0	0)
David	0	0	1	1	1	0)
Eric	0	0	1	1	0	0	Prefer Oscar wir
Fred	0	0	1	1	1	0]

Example of RBM

And... the network is trained by the following weights:

•	$W = \left[\right]$	4.97 	2.27 -5.18	4.11 2.52	-4.01 6.75	-5.60 3.25	-2.92 -2.82	
	Name	Harry Potter	Avatar	LOTR3	Gladiator	Titanic	Glitter	
	Alice	1	1	1	0	0	0)
	Bob	1	0	1	0	0	0	Prefer SF/fantasy
	Carol	1	1	1	0	0	0	
	David	0	0	1	1	1	0	j
	Eric	0	0	1	1	0	0	Prefer Oscar winner
	Fred	0	0	1	1	1	0	

- The first hidden unit seems to correspond to the SF/fantasy , and the second hidden unit seems to correspond to the Oscar winners movies
- If the RBM is presented to a new user, George, who has [0,0,0,1,1,0] as his preferences, then It turns the second hidden unit on

Persistent CD

- A set of samples v¹, ... v^K is drawn(observed) from the model distribution
 - The set is maintained and updated whenever the model is updated
 - *K* Markov chains are run in parallel and, on every update, several steps of Gibbs sampling are performed in each chain
 - The model statistics are derived by averaging over the samples:

$$\langle v_i h_j \rangle_{model} = \frac{1}{K} \sum_k v_i^{k,(n+1)} h_j^{k,(n+1)}$$

Persistent CD generally works better than CD

Interim Summary

- Boltzmann machines try to model a realistic brain learning mechanism (unsupervised model).
- Boltzmann machines and Restricted Boltzmann machines are based on the energy model
- Undirected Graph model such as Markov random field
- The RBM is the simple type of Boltzmann machine, and it can be easily learned
 - We use the Contrastive Divergence (CD) to train the RBM
- Persistent Contrastive Divergence is the improved version of CD, and it lesson the problem that CD does not guarantee the fast convergence