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Outline

=  Monte Carlo : Sample from a distribution to estimate the distribution
= Markov Chain Monte Carlo (MCMC)

— Applied to Clustering, Unsupervised Learning, Bayesian Inference

"  |mportance Sampling

=  Metropolis-Hastings Algorithm

=  Gibbs Sampling

=  Markov Blanket in Sampling for Bayesian Network

=  Example: Estimation of Gaussian Mixture Model

p(x]0) = Xk p(xX|0x)p(0x|6)
=2z P(XZ|0) =27k P(X|Z = k,0)p(Z = k|0)

p(x|D) = Z P(6.2,01D) =7,p(zlx,6) =7,p(6]x,2) =7
Z,




Markov chain Monte Carlo(MCMC)

= Monte Carlo : Sample from a distribution
- to estimate the distribution for GMM estimation, Clustering
(Labeling, Unsupervised Learning)
- to compute max, mean

» Markov Chain Monte Carlo : sampling using “local” information
- Generic “problem solving technique”
- decision/inference/optimization/learning problem
- generic, but not necessarily very efficient




Monte Carlo Integration

=  General problem: evaluating
Ep[h(X)] = [ h(x)P(x)dx
can be difficult. (J |h(x)|P(x)dx < oo)

= |If we can draw samples x(9)~P(x), then we can estimate

Ep[A(0] ~ oy = z R(x®).

= Monte Carlo integration is great if you can sample from the target
distribution

* But what if you can’t sample from the target?
* Importance sampling: Use of a simple distribution




Importance Sampling

= |dea of importance sampling:

Draw the sample from a proposal distribution QO () and re-weight the integral
using importance weights so that the correct distribution is targeted

h h(X)P(X
Ep[h(X)] = [ (‘w()(x)dx = IEQ[ (Q)(Xg ) .

= Hence, given an iid sample x) from (), our estimator becomes
N
E h(X)P(X) 1 Zh(x(s))P(x(s))
L e | N4 W)




Limitations of Monte Carlo

= Direct (unconditional) sampling
* Hard to get rare events in high-dimensional spaces - Gibbs sampling

=  |mportance sampling
* Do not work well if the proposal Q(x) is very different from target P(x)
* Yet constructing a Q(x) similar to P(x) can be difficult = Markov Chain

= |ntuition: instead of a fixed proposal Q(x), what if we could use an adaptive
proposal?

* X;.1 depends only on X;, not on X, X1, ..., X¢_1
* Markov Chain




Markov Chains: Notation & Terminology

Countable (finite) state space () (e.g. N)

Sequence of random variables {X;} on Q fort = 0,1,2, ...

Definition : {X;} is a Markov Chain if

PXer1 =y | Xe =% 0, Xo = %0) = PXe31 =y | X = x¢)

Notation : P(Xp41 = i | X = j) = pji
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Markov Chains: Notation & Terminology

= letP = (pl-j) - transition probability matrix
- dimension |Q| X |Q]

" letw(j) = P(X; =)
- T : initial probability distribution

= Then m.(j) = X;me—1 (D) pij = (me—1P)() = (moPH()

Ty = 7Tt_1P = ﬂt_zpz == 7T0Pt
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Markov Chains: Fundamental Properties

= Theorem:

- If the limit (llm P ) P exists and Q is finite, then

(TP)(j) = m(j) and ¥;m() = 1
and such m is an unique solution to mP = m (m is called a stationary
distribution)

- No matter where we start, after some time, we will be in any state j with
probability ~ 7 (j)
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Markov Chain Monte Carlo

MCMC algorithm feature adaptive proposals

- Instead of Q(x"), they use Q(x'|x) where x' is the new state being
sampled, and x is the previous sample

- As x changes, Q(x'|x) can also change (as a function of x')
P(x")/QCxr1x)\

" P@)/Qx|x") )

- No matter where we start, after some time, we will be in any state j with

importance
- The acceptance probability is set to A(x'|x) = min (1

probability ~ m(j) Q(x'|x) = Q(x'|x) for Gaussian Why?

Importance sampling with MCMC with adaptive
a (bad) proposal Q(x) proposal Q(x'|x)
P(x) P(x)
Q(x) Q(x2|x")
o &0 :
x3 x1 x2 x|  x2  x3
P11 P12 py P11 7 P12 py;

10
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Metropolis-Hastings

= Draws a sample x’ from Q(x'|x), where x is the previous sample
= The new sample x' is accepted or rejected with some probability A(x'|x)

P(x’)/Q(x'Ix))
" P(x)/Q(x|x")

* This acceptance probability is A(x'|x) = min (1

« A(x'|x) is like a ratio of importance sampling weights

P(xr)

——— is the importance weight for x’, PCO
ox'|x)

Q(x|xr)

is the importance weight for x

* We divide the importance weight for x’ by that of x
* Notice that we only need to compute P(x")/P(x) rather than P(x") or P(x) separately

* A(x'|x) ensures that, after sufficiently many draws, our samples will come
from the true distribution P(x)

Q(x'|x) = Q(x'|x) for Gaussian Why? E,[h(0)] = [ %Q(x)dx =E, l

h(X)P(X)
Q(X)
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The MH Algorithm

= Initialize starting state x(®,

= Burn-in: while samples have “not converged”

o yx = x®

e t=t+1

* Sample x*~Q(x"|x) // draw from proposal

e Sample u~Uniform(0,1) // draw acceptance threshold

e If u<A(x*|x) = min (1, F;J(g:))gg*lli))), x® = y*

// transition

* Else x(t) =X // stay in current state

* Repeat until converging

12



A(x'|x) = min (1,

P(x")/Q(x'|x)

P(x)/Q(x|x")

)

The MH Algorithm

Example:
* Let Q(x'|x) be a Gaussian centered on x

* We're trying to sample from a bimodal distribution P(x)

Initialize x(@

P(x)

Q(x1|x0)




A(x'|x) = min (1,

P(x")/Q(x'|x)

P(x)/Q(x|x")

)

The MH Algorithm

Example:
* Let Q(x'|x) be a Gaussian centered on x

* We're trying to sample from a bimodal distribution P(x)

Initialize x(@
1
Draw, accept x P (X)

Q(x1|x0)




A(x'|x) = min (1,

The MH Algorithm

P(x")/Q(x'|x)

P(x)/Q(x|x")

)

Example:
* Let Q(x'|x) be a Gaussian centered on x

* We're trying to sample from a bimodal distribution P(x)

Initialize x(©@
Draw, accept x’
Draw, accept x?

P(x)

Q(2x")




A(x'|x) = min <1,

The MH Algorithm

P(x")/Q(x'|x)

P(x)/Q(x|x")

)

Example:
* Let Q(x'|x) be a Gaussian centered on x

* We're trying to sample from a bimodal distribution P(x)

Initialize x(©

Draw, accept x'

Draw, accept x? P(x)
Draw but reject; set x3=x2

° o
x1 x0 x2 x (rejected)
X3




A1) min<1 P(x’)/Q(x’Ix)>

"P(x)/Q(x|x")

The MH Algorithm

Example:
* Let Q(x'|x) be a Gaussian centered on x
* We're trying to sample from a bimodal distribution P(x)

We reject because P(x')/P(x2) is very small,
Initialize x© hence A(x’[x?) is close to zero!

Draw, accept x’

Draw, accept x2

Draw but reject; set x3=x?

P(x)

Q(x|x2)

° o
x!' x0 x* x (rejected)
X3




A(x'|x) = min (1,

P(x")/Q(x'|x)

P(x)/Q(x|x")

)

The MH Algorithm

Example:
* Let Q(x'|x) be a Gaussian centered on x

* We're trying to sample from a bimodal distribution P(x)

Initialize x(©

Draw, accept x'
Draw, accept x?
Draw but reject; set x3=x2
Draw, accept x*

P(x)

18



A1) min(l P(x’)/Q(x’Ix)>

"P(x)/Q(x|x")

The MH Algorithm

Example:
* Let Q(x'|x) be a Gaussian centered on x
* We're trying to sample from a bimodal distribution P(x)

Initialize x(©

Draw, accept x'

Draw, accept x?

Draw but reject; set x3=x2
Draw, accept x*

Draw, accept x°

P(x)

Q(x3x?)




The MH Algorithm

A(x'|x) = min (1,

P(x")/Q(x'|x)

P(x)/Q(x|x")

)

Example:

* Let Q(x'|x) be a Gaussian centered on x

* We're trying to sample from a bimodal distribution P(x)

Initialize x(©

Draw, accept x'

Draw, accept x2

Draw but reject; set x3=x2
Draw, accept x*

Draw, accept x5

The adaptive proposal Q(x’|x) allows
us to sample both modes of P(x)!

QEC|x2)

P(x)

20



Gibbs Sampling

= Gibbs Sampling is an MCMC algorithm that samples each random variable of a
graphical model, one at a time

 GSis aspecial case of the MH algorithm

= Consider a factored state space
» x € Qisavector x = (X1, ..., X;p)
* Notation: x_; = {Xq, ..., Xj_1, Xj41) o) X}

21



Gibbs Sampling

A(x'|x) = min (1,

P(?C’)/Q(?C'IX))
P(x)/Q(x|x")

w N =

The GS algorithm:

Suppose the graphical model contains variables x4, ..., x,

Initialize starting values for x4, ...,

Do until convergence:

1. Pick a componenti € {1, ...,

nj

n

2. Sample value of z~P(x;|x_;), and update x; « z

When we update x;, we immediately use its new value for sampling other

variables Xj

P(x;|x_;) achieves the acceptance probability in MH algorithm.

A(xl x|z, x_y)

man(1,

min(1,

P(@z—)Q(zi, 7l 1)

P(I z_;)Q(zl, v_;|x;, ;)
P(z!|z—,)P( |r_z})

" P(x;|z_;)P(zl|xz_:)

)

22



Markov Blankets

» The conditional P(x;|x_;) can be obtained using Markov Blanket

* Let MB(x;) be the Markov Blanket of x;, then
P(x; | x—) = P(x;|MB(x;))

" For a Bayesian Network, the Markov Blanket of x; is the set containing its
parents, children, and co-parents

23



Gibbs Sampling: An Example

Ground Truth

al . - N Gaussian with mean (1,2), variance 2

-10

= Consider the GMM
* The data x (position) are extracted from two Gaussian distribution

* We do NOT know the class y of each data, and information of the Gaussian
distribution

* Initialize the class of each data at t = 0 to randomly
p(x|6) = X p(x|6x)p(6k[6)

=2z P(%Z|0) =2z, p(x|Z = k,0)p(Z = kI|6)

24



Gibbs Sampling: An Example

t=1

S 279861 -0136397 5
%/aar_?_'( 7 8076742)

L e

m an (1 5891, -0. 11834%
&am 48. %0 353345678791 5)
: . var=1(3.4138, 9.52

an = (1.5065, 0.0081079)
fifehd: 00&43963660)84467
ar-=(3.4116, 9.4064)

\ A

Sampling P(y; |x_;, y-

where

And update y; with P(y; |x_;, y_

Iteration of i atthe same t

i)att =1, we compute:
P(yl =0 |x—i1y—
P(yl =1 |x—iJY—

i) X N(xilﬂx_i,o» Ux_i,O)
i) X N(xil.ux_i,li Jx_i,l)

Ux_;k = MEAN (Xik), Ox_j,K = VAR(Xik)
XiK = {X] |x] € x_i,yj = K}

;) and repeat for all data

25



Gibbs Sampling: An Example

n'= (1.2276, 0.78667)
(2.6689, 6.9218)

san = (2.5765, -1.5547)
(3:1685, 8/4035)

= (0.90114, 1.5067)
(1.9188, 4.7365)

.8023, 6.1392)

1= (2.9152, -2.2918)

(0.89665, 1.7813)
(1.8198, 3.4298)

(
2.1708, 4.6234)

2.9898, -2.7094

n = (0.93387, 2.0824)
617, 2.1732)

= (2.9146, -2.9307)
2.94,3.3719)
0 2 4 6 g 1‘0 12

Now t = 2, and we repeat the procedure to sample new class of each data

And similarly for t = 3,4, ...

26



Gibbs Sampling: An Example

t=0
6 .
Ground Truth
class1 T
4t
\_1
of S e = ) PH
e [}
: R Ry
> 2 : 1
4t
6
1ass0 \ I I I I I \
: : 345 99 487 533 546 302 133 382 505 847
8r - 1 data index
x ‘ | I Ground Truth [ Gibbs |
-4 2 0 2 4 6 8 10 12

= Datai’s class can be chosen with tendency of y;
* The classes of the data can be oscillated after the sufficient sequences
* We can assume the class of datum as more frequently selected class

= |n the simulation, the final class is correct with the probability of 94.9% at t =
100

27



Interim Summary

Markov Chain Monte Carlo methods use adaptive proposals Q(x'|x) to sample from
the true distribution P(x)

Metropolis-Hastings allows you to specify any proposal Q (x'|x)
* But choosing a good Q(x'|x) requires care

Gibbs sampling sets the proposal Q(x,"|x_) to the conditional distribution P(x; |x_1)
* Acceptance rate always 1.
* But remember that high acceptance usually entails slow exploration
* Infact, there are better MCMC algorithms for certain models

28



Bolzmann Machine

Jin Young Choi




Overview

» Unsupervised Modelling of Binary Data
= What is Boltzmann Machine ?

» Restricted Boltzmann Machine (RBM)
» RBM Learning

= Contrast Divergence (CD)

= Example




Unsupervised Modelling of Binary Data

10 01 0 O0O0 1 If no desired outputs ?

1 00 1

1
1

10 01 0 0O

1 00 1
0 101

11 010

00




Modeling binary data

Given a training set of binary vectors, fit a model that will assign a probability to
other binary vectors

Potter

Alice
Bob
Carol
David

Eric
Fred

o O O +r»r O Bk

p(x) = 1_[ XiDj

R T T
R, B P, O O O

Prefer SF/fantasy

Prefer Oscar winner

0 0
0 0o
0 0
1 0o
0 0 }
1 0

(1-2x)(1- Pj)D

A

\

If component j
of vector x is on

If component j
of vector x is off




Modeling binary data

= Modelling with Boltzmann Machine

Potter
1

Alice 1 1 0 0 0
Bob 1 0 1 0 0 0
Carol 1 1 1 0 0 0
David 0 0 1 1 1 0
Eric 0 0 1 1 0 0
Fred 0 0 1 1 1 0
Prefer SF/fantasy Hidden nodes Visible nodes

Prefer Oscar winner

w;; represents a correlation between nodes

= p(v) = Xpp(Wp(v|h)




Boltzmann Machine

= Probability distribution on binary vectors x XD = gWwx®)
exp(—E(x
P(x) — p(—E())
Z
1
E(x) = —cx'Wx—0"x Wi

= — Zk<j Xkaij — Zk kak

* From the entropy maximization

max Z P(x)InP(x)

5.t Z P(x)=1,a= ZP(x)E(x) O
 Z is the partition function that ensures ), P(x) = 1

Z = Z exp(—E(x))




Boltzmann Machine (D = 5 Wx®)

= Probability distribution on binary vectors x

P(x) = exp(—ZE(x))
. E(x) = — X< XkWijXj — Lk O Xy

= Gibbs Sampling

P(.X'i — 1, x_l-)
P(x;=1, x_;) + P(x; =0, x_l-)
B exp(—E(x; =1, x_y))
ex p(—E(xi =1, x_l-)) + ex p(—E(xl- =0, x_l-))
1
14ex p(—E(x; =0, x_)) +E(x; =1, x_;))
1

= =0 w;ixj + 0;
1+ exp(— 2z wijXj — 0:) (z 5%+ 0i)

J#Fi

P(x; = 1x_) =




xED = g(Wx®)

Wij

Restricted Boltzmann Machine

= Variant of Boltzmann Machine

= Restrict the connectivity to make learning easier
* There is a hidden layer and visible layer Hidden nodes  Visible nodes
* No hidden-to-hidden or visible-to-visible connections
* Hidden units extends the class of distributions that can be modeled

Bias of RBM
= Energy function / \
E(o,h) = = ) vwyjhy = ) bYv— Y bfihy = —v"Wh — v"b” — hTh"
L J

Vi,j

 Vectors h, v are of dimension/ X 1and [ X 1
tors v are / = p(v) = Ly p(Wp(|h)
« W isofdimensionl X J

h=oc(Wv)




Modeling binary data

Given a training set of binary vectors, fit a model that will assign a probability to
other binary vectors

ACLA] LOTR3 | Gladiator | Titanic
Potter
1

Alice 1 1 0 0 0o
Bob 1 0 1 0 0 0
Carol 1 1 1 0 0 0
David 0 0 1 1 1 0 )
Eric 0 0 1 1 0 0
Fred 0 0 1 1 1 0

xED = g(Wx®)

Wij

Prefer SF/fantasy

Prefer Oscar winner

Hidden nodes Visible nodes




Restricted Boltzmann Machine

= Marginal distribution P(v)

P(v) = ) PPWIR) = ) P(,h) = S exp(=E(v, b))
h h

Z

* P(v,h) is a Boltzmann distribution with energy function E (v, h)

* And P(v) is a Boltzmann distribution with a energy F (v)

P(v) = exp(—ZF(v))
F(v) = —In exp(—E(v, h))
2.

* the energy F(v) cannot be represented as a quadratic form in v
(Why?)

10



RBM Learning

= Maximize the product of probabilities assigned to training set V

arg max 1_[ P(v)

veV
= Or equivalently, maximize the sum of log probability of V:

arg max 2 In P(v)

vevV

= The model is updated after each training token or in batch mode
0InP(v)

an'j

Wi < Wi+ a
Y Y v=vp1

11



exp(—F(v))

RBM Learning P(v) = "2

F(v) =—1In Z exp(—E(v, h))

= Stochastic gradient ascent k

* Calculate the gradient of the log likelihood, given a training token v
dlnP(v) oF (v) dlnZ

v=pl aWU

OWU v=pl aWU
d
= Ullh]l - Wlnz exp(—F(v))

lj ”

4.1 1 B oF (v)
= Vi hj Zv exp(—F(v)) Z exp( F(v)) aWij

1
= vihi — Ez exp(—F(v))v;h;
v

— v}h} -y, P(U)Uihj Expectation of v;h;

= Uilhjl - (Uihj




RBM Learning

= Stochastic gradient ascent

F(v) = —lnz exp(—E(v, h))

h

E(U, h) - — z viwijhj

Vi,
oF (v) 0
= — lnz exp(—E (v, h)
an'j aWU - p( )
1

N _% exp(—E(v, h)) -

= —v;h; for fixed v, h

exp(—E(v, h)) (—

0E (v, h)
Owij

)

13



dlnP(v
- Do = ot = ()
RBM Learning Wij lv=v
= |f there are K iid training tokens vl .., vE
0 K _ d In P(v¥)
aWij Zk ln P(v ) = Zk —aWij
_ (.11 KK
—_ (vi h] + e + vi h] - K<vihj)m0del)
* So that...
1
~ _ KY — (1.h. —{1.h.
aWij IEv [ln P(v)] - aWU K z In P(U ) B <vlh])data <vlh]>m0del
“ / \
Data statistics Model statistics

: unknown

14



Model statistics

= (vihj) can be estimated by using any MCMC algorithm

model
* But nobody knows t,,,,, Which indicates the step at which (vihj) converges

hj~a(Wij +¢j)

000l [0Qal[o oJole

(vihj/ W / / . (vihj)/ ? ntasy
ofe ofe

t=1 t=2 t = infinity
viNO'(Wérh + Ci)

15



Model statistics

= Contrast Divergence (CD) [Bengio, et al.]: Starting at the given training token
v, hM run the Markov chain for n steps:
e p(U M) .5 D) p(n+1)

* With the edge weight [Wij]

= And we can approximate
dlnP(v)

aWij

~ 1,(Dp D) (n+1) , (n+1)

T CD-n

v=pl

= CD-1 - weight change - CD-3 —»...—>CD-5—->...->CD-7...CD-9




Example of RBM

= Train the RBM using following data (with CD-1)
* 6 visible units (each movies) with 2 hidden units

H
arry LOTR3 | Gladiator | Titanic
Potter

Alice 1 1 0 0 0o

Bob 1 0 1 0 0 0 | Prefer SF/fantasy
Carol 1 1 1 0 0 0 J

David O 0 1 1 1 0o )

Eric 0 0 1 1 0 0 } Prefer Oscar winner
Fred 0 0 1 1 1 0 J

17



Example of RBM

= And... the network is trained by the following weights:

. W—[ 497 227 411 —-401 -560 -2.92
- 1-7.09 -5.18 252 6.75 3.25 -—2.82

Potter

Alice 1 1 0 0 0

Bob 1 0 1 0 0 0 Prefer SF/fantasy
Carol 1 1 1 0 0 0

David 0 0 1 1 1 0

Eric 0 0 1 1 0 0 Prefer Oscar winner
Fred 0 0 1 1 1 0

* The first hidden unit seems to correspond to the SF/fantasy, and the
second hidden unit seems to correspond to the Oscar winners movies

* If the RBM is presented to a new user, George, who has [0,0,0,1,1,0] as his
preferences, then It turns the second hidden unit on

18




Persistent CD

= A set of samples v1, ... vX is drawn(observed) from the model
distribution

* The setis maintained and updated whenever the model is updated

* K Markov chains are run in parallel and, on every update, several
steps of Gibbs sampling are performed in each chain

 The model statistics are derived by averaging over the samples:

1 k,(n+1) , k,(n+1)
(vihj>model - Ez vi hj
K

= Persistent CD generally works better than CD

19



Interim Summary

= Boltzmann machines try to model a realistic brain learning mechanism
(unsupervised model).

= Boltzmann machines and Restricted Boltzmmann machines are based on
the energy model

= Undirected Graph model such as Markov random field

= The RBM is the simple type of Boltzmann machine, and it can be easily
learned

* We use the Contrastive Divergence (CD) to train the RBM

= Persistent Contrastive Divergence is the improved version of CD, and it
lesson the problem that CD does not guarantee the fast convergence
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