Round-Robin Scheduling (An Example of M/G/1 system)

Wha Sook Jeon
Mobile Computing \& Communications Lab.

Round-Robin Scheduling System

- Poisson Arrival with rate λ
- Service time:
- An integer multiple of the time-slice with fixed length Q
- The number of time-slices for service has a geometric distribution
$-\operatorname{Pr}\{\mathrm{a}$ job needs i time-slices for service $\}=\delta^{i-1}(1-\delta)$

Arrival of a job
with five time-slices

An M/G/1 system

- If we need merely the mean number of jobs in the system, we can use the measures of M/G/1.
- $\bar{N}=\lambda \mathrm{E}[S]+\frac{\lambda^{2} \mathrm{E}\left[S^{2}\right]}{2(1-\lambda \mathrm{E}[S])}$
- $\rho=\lambda \mathrm{E}[S]$
- $\mathrm{E}[S]=\sum_{n=0}^{\infty} n Q \delta^{n-1}(1-\delta)=\frac{Q}{(1-\delta)}$
- $\mathrm{E}\left[S^{2}\right]=\sum_{n=0}^{\infty} n^{2} Q^{2} \delta^{n-1}(1-\delta)=\frac{(1+\delta) Q^{2}}{(1-\delta)^{2}}$
- Little's law cannot be directly applied to calculate the response time of a job.

Response time in RR Scheduling (1)

- Consider the system in steady state.
- Let us focus on an arriving job that finds j jobs in the system and requires k quanta of service.
- We tag this job with (k, j) : Tagged job
- $\quad P_{j}$: the probability of j jobs in the system at the arrival of a job
- $\quad w_{k}(j)$: the expected response time for given (k, j)
- w_{k} : the response time of a job requiring k time-slices of service
- $w_{k}=\sum_{j=0}^{\infty} P_{j} w_{k}(j)$
- T : mean response time
- $T=\sum_{k=1}^{\infty} w_{k} \delta^{k-1}(1-\delta)$
- Now, we will derive $w_{k}(j)$

Arrival of a job
with five time-slices ($k=5$)

Response time in RR Scheduling (2)

- Define "Pass Length" as the period from the arrival time of the tagged job at the queue to the time instance that the tagged job returns to the queue.
- $v_{i}(j)$: the length of i th pass of the tagged job
- $w_{k}(j)=\sum_{i=1}^{k} v_{i}(j)$
- Let us examine the tagged job returns to the queue for $2^{\text {nd }}$ pass
- How many jobs are ahead on average?
- $j \delta+$ (new arrivals during the $1^{\text {st }}$ pass of the tagged job) $=j \delta+\lambda E\left[v_{1}(j)\right]$
- $E\left[v_{2}(j)\right]=Q\left(j \delta+\lambda E\left[v_{1}(j)\right]+1\right)$
- $\mathrm{E}\left[v_{i+1}(j)\right]=\mathrm{Q}\left(N_{1}+N_{2}\right)+\mathrm{Q}$
- N_{1} : the average number of jobs that were ahead of the i th pass of tagged job and return for the further serve
- N_{2} : the average number of new arrivals during the i th pass of tagged job

Response time in RR Scheduling (3)

- Suppose there were L jobs in the system when the tagged job returns to the queue for the i th pass.
- $v_{i}(\mathrm{j})=L \mathrm{Q}+\mathrm{Q}=>\mathrm{L}=\frac{v_{i}(\mathrm{j})-Q}{Q} \Rightarrow \mathrm{E}[\mathrm{L}]=\frac{\mathrm{E}\left[v_{i}(\mathrm{j})\right]}{Q}-1$
- Among L, only the $L \delta$ jobs on average will return for the next service.
- $N_{1}=\delta\left(\frac{E\left[v_{i}(j)\right]}{Q}-1\right)$
- $N_{2}=\lambda E\left[v_{i}(j)\right]$
- $\mathrm{E}\left[v_{i+1}(j)\right]=\mathrm{Q} \delta\left(\frac{\mathrm{E}\left[v_{i}(\mathrm{j})\right]}{Q}-1\right)+\mathrm{Q} \lambda \mathrm{E}\left[v_{i}(\mathrm{j})\right]+\mathrm{Q}$

$$
=\mathrm{E}\left[v_{i}(j)\right](\delta+\lambda \mathrm{Q})+\mathrm{Q}(1-\delta) \quad \text { for } i>2
$$

- Remind that $\mathrm{E}\left[v_{2}(j)\right]=\mathrm{Q}\left(j \delta+\lambda \mathrm{E}\left[v_{1}(j)\right]+1\right)$

Response time in RR Scheduling (4)

- $\mathrm{E}\left[v_{i+1}(j)\right]=\mathrm{E}\left[v_{i}(j)\right](\delta+\lambda \mathrm{Q})+\mathrm{Q}(1-\delta) \quad$ for $i>2$
- $\quad E\left[v_{2}(j)\right]=\mathrm{Q}\left(j \delta+\lambda E\left[v_{1}(j)\right]+1\right)$
- Simplify notations: $E_{i}(j):=\mathrm{E}\left[v_{i}(j)\right], \alpha:=\delta+\lambda \mathrm{Q}, \beta:=\mathrm{Q}(1-\delta)$
- $E_{i+1}(j)=\alpha E_{i}(j)+\beta \quad$ for $i>2$
- $E_{2}(j)=\mathrm{Q}\left(j \delta+\lambda E_{1}(j)+1\right)$
- $E_{i}(j)=\alpha^{i-2} E_{2}(j)+\frac{\beta\left(1-\alpha^{i-2}\right)}{1-\alpha} \quad$ for $i \geq 2$
- $w_{k}(j)=\sum_{i=1}^{k} E_{i}(j)=E_{1}(j)+\sum_{i=2}^{k} E_{i}(j)$

$$
\begin{aligned}
& =E_{1}(j)+E_{2}(j) \sum_{i=2}^{k} \alpha^{i-2}+\frac{\beta}{1-\alpha} \sum_{i=2}^{k}\left(1-\alpha^{i-2}\right) \\
& =E_{1}(j)+\frac{1-\alpha^{k-1}}{1-\alpha} E_{2}(j)+\frac{\beta}{1-\alpha}(k-1)-\frac{\beta}{1-\alpha} \frac{1-\alpha^{k-1}}{1-\alpha} \\
& =E_{1}(j)+\mathrm{Q} \frac{1-\alpha^{k-1}}{1-\alpha}\left(j \delta+\lambda E_{1}(j)+1-\frac{1-\delta}{1-\alpha}\right)+\frac{1-\delta}{1-\alpha}(k-1) Q
\end{aligned}
$$

Response time in RR Scheduling (5)

- $w_{k}(j)=E_{1}(j)+\mathrm{Q} \frac{1-\alpha^{k-1}}{1-\alpha}\left(j \delta+\lambda E_{1}(j)+1-\frac{1-\delta}{1-\alpha}\right)+\frac{1-\delta}{1-\alpha}(k-1) \mathrm{Q}$
- Let $\rho=\lambda \mathrm{E}[S]=\frac{\lambda Q}{(1-\delta)}$.
- Then, $\frac{1-\delta}{1-\alpha}=\frac{1}{1-\rho} \quad$ (remind that $\alpha:=\delta+\lambda \mathrm{Q}$)
- Therefore, $w_{k}(j)=E_{1}(j)+\frac{Q\left(1-\alpha^{k-1}\right)}{1-\alpha}\left(j \delta+\lambda E_{1}(j)-\frac{\rho}{1-\rho}\right)+\frac{Q(k-1)}{1-\rho}$
- w_{k} : mean response time of job with k time-slices

$$
\begin{aligned}
w_{k} & =\sum_{j=0}^{\infty} P_{j} w_{k}(j)=\sum_{j=0}^{\infty} P_{j} \times\left\{E_{1}(j)+\frac{Q\left(1-\alpha^{k-1}\right)}{1-\alpha}\left(\delta j+\lambda E_{1}(j)-\frac{\rho}{1-\rho}\right)+\frac{Q(k-1)}{1-\rho}\right\} \\
& =\sum_{j=0}^{\infty} E_{1}(j) P_{j}+\frac{Q\left(1-\alpha^{k-1}\right)}{1-\alpha}\left(\delta \sum_{j=0}^{\infty} j P_{j}+\lambda \sum_{j=0}^{\infty} E_{1}(j) P_{j}-\frac{\rho}{1-\rho} \sum_{j=0}^{\infty} P_{j}\right)+\frac{Q(k-1)}{1-\rho} \sum_{j=0}^{\infty} P_{j} \\
& =\overbrace{k, 1}+\frac{Q\left(1-\alpha^{k-1}\right)}{1-\alpha}\left(\delta \bar{N}+\lambda D_{k, 1}-\frac{\rho}{1-\rho}\right)+\frac{Q(k-1)}{1-\rho}
\end{aligned}
$$

Mean length of the $1^{\text {st }}$ pass of a job with k time-slices

Response time in RR Scheduling (6)

- We should know $D_{k, 1}$ and \bar{N}
- Since the RR model is M/G/1, we can use the result of M/G/1
- $\bar{N}=\rho+\frac{\rho^{2}(1+\delta)}{2(1-\rho)}$
- $\quad D_{k, 1}=\sum_{j=0}^{\infty} P_{j} E_{1}(j)$,

Note that $E_{1}(j)$ is the mean first pass length of the tagged job arrived seeing j jobs in the system

$$
\checkmark \quad E_{1}(0)=\mathrm{Q}
$$

$$
\checkmark \quad \text { For } j \geq 1, E_{1}(j)=\frac{Q}{2}+(j-1) \mathrm{Q}+\mathrm{Q}=\frac{Q}{2}+j \mathrm{Q}
$$

- $\quad D_{k, 1}=P_{0} \mathrm{Q}+\sum_{j=1}^{\infty}\left(\frac{Q}{2}+j \mathrm{Q}\right) P_{j}$

$$
\begin{aligned}
& =P_{0} \mathrm{Q}+\frac{Q}{2} \sum_{j=1}^{\infty} P_{j}+\mathrm{Q} \sum_{j=1}^{\infty} j P_{j} \\
& =P_{0} \mathrm{Q}+\frac{Q}{2}\left(1-P_{0}\right)+Q \bar{N}=(1-\rho) Q+\frac{Q}{2} \rho+\bar{N} Q \\
& =Q-\frac{\rho Q}{2}+\bar{N} Q
\end{aligned}
$$

Response time in RR Scheduling (7)

- $\quad D_{k, 1}$ is independent of k since it is just the length of the first pass. Also, it is equal to the mean response time when $k=1$. Thusm, $D_{k, 1}=w_{1}$ for notation consistency
- $w_{k}=w_{1}+\frac{Q\left(1-\alpha^{k-1}\right)}{1-\alpha}\left(\delta \bar{N}+\lambda w_{1}-\frac{\rho}{1-\rho}\right)+\frac{Q(k-1)}{1-\rho}$
- T: Mean response time

$$
\begin{aligned}
T & =\sum_{k=1}^{\infty} w_{k} \delta^{k-1}(1-\delta) \\
& =w_{1}+\frac{Q}{1-\alpha}\left(\delta \bar{N}+\lambda w_{1}-\frac{\rho}{1-\rho}\right) \frac{\delta(1-\alpha)}{1-\alpha \delta}+\frac{Q}{1-\rho} \frac{\delta}{1-\delta} \\
& . \quad \bar{N}=\rho+\frac{\rho^{2}(1+\delta)}{2(1-\rho)} \\
& \text { - } \quad w_{1}=Q-\frac{\rho Q}{2}+\bar{N} Q \\
& \cdot \alpha=\delta+\lambda \mathrm{Q} \\
=\mathrm{E}[S] & =\frac{Q}{(1-\delta)}
\end{aligned}
$$

- Total waiting time in queue: $W=T-\frac{Q}{(1-\delta)}$

