Queuing System III

Wha Sook Jeon

Mobile Computing \& Communications Lab.

$\mathrm{M} / \mathrm{H}_{k} / 1$ (1)

- A single server, infinite-capacity queueing system with hyperexponentially distributed service time of order k

- Since $\mathrm{M} / \mathrm{H}_{k} / 1$ is a $\mathrm{M} / \mathrm{G} / 1$, we can obtain its performance measures, by using the performance measure equations of M/G/1

$\mathrm{M} / \mathrm{H}_{\mathrm{k}} / 1$ (2)

- Remind that $\bar{N}=\lambda E[S]+\frac{\lambda^{2} E\left[S^{2}\right]}{2(1-\lambda E[S])}$ for M/G/1
- $\mathrm{M} / \mathrm{H}_{\mathrm{k}} / 1$
- Probability density function of a k-stage hyperexponential random variable S : $f_{S}(x)=\sum_{i=1}^{k} p_{i} \mu_{i} e^{-\mu_{i} x}$
- Laplace Transform of S

$$
\begin{aligned}
& F^{*}(\theta)=E\left[e^{-\theta S}\right]=\int_{0}^{\infty} e^{-\theta x}\left(\sum_{i=1}^{k} p_{i} \mu_{i} e^{-\mu_{i} x}\right) d x \\
& =\sum_{i=1}^{k} p_{i} \mu_{i} \int_{0}^{\infty} e^{-\theta x} e^{-\mu_{i} x} d x=\sum_{i=1}^{k} p_{i}\left(\frac{\mu_{i}}{\mu_{i}+\theta}\right) \\
& -E[S]=-\lim _{\theta \rightarrow 0} \frac{d F^{*}(\theta)}{d \theta}=\sum_{i=1}^{k} p_{i} \frac{1}{\mu_{i}} \\
& -E\left[S^{2}\right]=\lim _{\theta \rightarrow 0} \frac{d^{2} F^{*}(\theta)}{d \theta^{2}}=\sum_{i=1}^{k} p_{i} \frac{2}{\mu_{i}^{2}} \\
& -\bar{N}=\lambda E[S]+\frac{\lambda^{2} E\left[S^{2}\right]}{2(1-\lambda E[S])}, \quad \bar{T}=E[S]+\frac{\lambda E\left[S^{2}\right]}{2(1-\lambda E[S])}
\end{aligned}
$$

GI/M/1 (1)

- General Independent Arrival Process
- Exponential service time distribution
- Embedded Markov Chain Approach
- We observe the system at an instant that a job arrives
- Then, the time elapsed since the last arrival job does not need to be considered.
- Thus, the system at arrival epochs has Markovian property

- Let N_{k} be a random variable representing the number of jobs in the system at an arrival epoch t_{k}
- Embedded Markov chain is described as $\left\{N_{k}, k=1,2,3, \cdots\right\}$

GI/M/1 (2)

- State probability distribution in EMC
- Let π_{i} be the limiting probability of i jobs in system at an arrival epoch (seen by an arrived job)

$$
\pi_{i}=\sum_{j} \pi_{j} p_{j i}
$$

- where $p_{j i}=\operatorname{Pr}\left\{N_{k+1}=i \mid N_{k}=j\right\}$ and is the probability that

$$
(j+1-i) \text { jobs are served between two arrival epochs }
$$

- We need $P_{j i}\left(P_{j i}=0\right.$ for all $i>j+1$ since $\left.j+1-i \geq 0\right)$
$: P_{j i}$ depends on the number of departing jobs during an interarrival time
- Let r_{m} be a probability that m jobs are served during an interarrival time

$$
r_{m}=\int_{0}^{\infty} \frac{(\mu t)^{m}}{m!} e^{-\mu t} a(t) d t
$$

- $a(t)$: probability density function of random variable representing interarrival time

GI/M/1 (3)

- $\pi_{i}=\sum_{n=0}^{\infty} \pi_{i-1+n} r_{n} \quad$ for $i>0$

$$
=\pi_{i-1} r_{0}+\pi_{i} r_{1}+\pi_{i+1} r_{2}+\pi_{i+2} r_{3}+\cdots
$$

- $\pi_{0}=\sum_{j=0}^{\infty} \pi_{j} p_{j 0}$,
where $\quad p_{j 0}=1-\sum_{n=0}^{j} r_{n}$

- One-step State Transition Matrix

$$
\mathrm{P}=\left[\begin{array}{cccccc}
1-r_{0} & r_{0} & 0 & 0 & 0 & \ldots \\
1-\sum_{n=0}^{1} r_{n} & r_{1} & r_{0} & 0 & 0 & \ldots \\
1-\sum_{n=0}^{2} r_{n} & r_{2} & r_{1} & r_{0} & 0 & \ldots \\
1-\sum_{n=0}^{3} r_{n} & r_{3} & r_{2} & r_{1} & r_{0} & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ldots
\end{array}\right]
$$

- Outgoing transition probabilities from the state j

GI/M/1 (4)

- We use the operator method to find the solution

$$
\begin{array}{ll}
\checkmark & \text { Let } \pi_{i}=\beta \pi_{i-1} \\
\checkmark & \text { Then, } \pi_{i}=\beta \pi_{i-1}=\beta^{2} \pi_{i-2}=\beta^{3} \pi_{i-3}=\cdots=\beta^{i} \pi_{0} \\
\checkmark & \pi_{i}=\pi_{0} \beta^{i}(0<\beta<1)
\end{array}
$$

- From $\sum_{i=0}^{\infty} \pi_{i}=1, \quad \pi_{i}=(1-\beta) \beta^{i}$
- We need β

$$
-\pi_{i}=\sum_{n=0}^{\infty} \pi_{i-1+n} r_{n} \rightarrow(1-\beta) \beta^{i}=\sum_{n=0}^{\infty}(1-\beta) \beta^{i-1+n} r_{n} \rightarrow \beta=\sum_{n=0}^{\infty} \beta^{n} r_{n}
$$

- $\beta=\sum_{n=0}^{\infty} \beta^{n} \int_{0}^{\infty} \frac{(\mu t)^{n}}{n!} e^{-\mu t} a(t) d t$
$=\int_{0}^{\infty} \sum_{n=0}^{\infty} \frac{(\beta \mu t)^{n}}{n!} e^{-\mu t} a(t) d t$
$=\int_{0}^{\infty} e^{-(\mu-\beta \mu) t} a(t) d t$
$=F_{A}{ }^{*}(\mu-\beta \mu)$

GI/M/1 (5)

- We should calculate β for an arrival process, using

$$
\beta=F_{A}{ }^{*}(\mu-\beta \mu)
$$

- Example
- Poisson Arrivals (M/M/1): $F_{A}{ }^{*}(\mathrm{~s})=\frac{\lambda}{\lambda+s}$
- $\beta=\frac{\lambda}{\lambda+\mu-\beta \mu} \Rightarrow(\lambda+\mu-\beta \mu) \beta=\lambda \quad \Rightarrow \quad(\mu \beta-\lambda)(\beta-1)=0$
- Since $0<\beta<1, \quad \beta=\frac{\lambda}{\mu}$
- Erlang-k arrivals $\left(\mathrm{E}_{k} / \mathrm{M} / 1\right): F_{A}{ }^{*}(\mathrm{~s})=\left(\frac{k \lambda}{k \lambda+s}\right)^{k}$
- $\beta=\left(\frac{k \lambda}{k \lambda+\mu-\beta \mu}\right)^{k}$
- When $k=2, \beta=\left(\frac{2 \lambda}{2 \lambda+\mu-\beta \mu}\right)^{2} \Rightarrow \quad \beta=\frac{2 \lambda}{\mu}+\frac{1}{2}-\sqrt{\frac{2 \lambda}{\mu}+\frac{1}{4}}$

GI/M/1 (6)

* The mean sojourn time of a job in EMC is the same as the mean sojourn of a job in the original GI/M/1.
- T : Sojourn time of a job in the system

$$
\mathrm{E}[T]=\sum_{i=0}^{\infty}(i+1) \frac{1}{\mu} \pi_{i}=\sum_{i=0}^{\infty}(i+1) \frac{1}{\mu}(1-\beta) \beta^{i}=\frac{1}{\mu(1-\beta)}
$$

- W: Waiting time of a job in queue
$-\mathrm{E}[W]=\sum_{i=0}^{\infty} i \frac{1}{\mu} \pi_{i}=\sum_{i=0}^{\infty} i \frac{1}{\mu}(1-\beta) \beta^{i}=\frac{\beta}{\mu(1-\beta)}$
$-E[W]=E[T]-E[S]=\frac{1}{\mu(1-\beta)}-\frac{1}{\mu}=\frac{\beta}{\mu(1-\beta)}$
- N_{A} : the number of jobs in system seen by an arriving job
$-\mathrm{E}\left[N_{A}\right]=\sum_{i=0}^{\infty} i \pi_{i}=\sum_{i=0}^{\infty} i(1-\beta) \beta^{i}=\frac{\beta}{1-\beta}$
- Since $E[W]=E\left[N_{A}\right] \times E[S], \quad E\left[N_{A}\right]=\frac{\beta}{\mu(1-\beta)} \times \mu=\frac{\beta}{1-\beta}$
* The number of jobs in server seen by an arriving job: $1-\pi_{0}=\boldsymbol{\beta}$

GI/M/1 (7)

* Derivation using Laplace Transform
- Let T_{i} be the sojourn time of a job arriving while seeing i jobs in system

$$
-\quad T_{i}=X_{1}+X_{2}+\ldots+X_{i+1}
$$

- X : a random variable for the service time of a job
\checkmark an exponential random variable with rate μ
- $F_{X}{ }^{*}(s)=\frac{\mu}{\mu+s}$

$$
-F_{T_{i}}^{*}(s)=\left(F_{X}^{*}(s)\right)^{i+1}=\left(\frac{\mu}{\mu+s}\right)^{i+1}
$$

- T : the sojourn time of a job in the system

$$
\begin{aligned}
& -F_{T}{ }^{*}(s)=\sum_{i=0}^{\infty} F_{T_{i}}{ }^{*}(s) \pi_{i}=\sum_{i=0}^{\infty}\left(\frac{\mu}{\mu+s}\right)^{i+1}(1-\beta) \beta^{i}=\frac{\mu(1-\beta)}{\mu(1-\beta)+s} \\
& -\mathrm{E}[T]=-\lim _{s \rightarrow 0} \frac{d F_{T}{ }^{*}(s)}{d s}=\frac{1}{\mu(1-\beta)}
\end{aligned}
$$

The sojourn time of a job is exponentially distributed with mean $\frac{1}{\mu(1-\beta)}$

GI/M/1 (8)

- N : the number of jobs in system, seen by an outside observer
- By Little’s Law,

$$
\mathrm{E}[N]=\lambda \mathrm{E}[T]=\frac{\lambda}{\mu(1-\beta)}
$$

* The number of jobs in server seen by an outside observer: $\lambda / \boldsymbol{\mu}$ (by Little’s law)
- Since an arrival process is not Poisson, the PASTA (Poisson Arrivals See Time Averages) property does not hold
$-\mathrm{E}[N] \neq \mathrm{E}\left[N_{A}\right]$, this is $\frac{\lambda}{\mu(1-\beta)} \neq \frac{\beta}{1-\beta}$
- If and only if Poisson arrivals $(\mathrm{GI} \rightarrow \mathrm{M}), \mathrm{E}[N]=\mathrm{E}\left[N_{A}\right]$ That is, since $\beta=\frac{\lambda}{\mu}$ in $\mathrm{M} / \mathrm{M} / 1$

$$
-E[N]=\frac{\lambda}{\mu(1-\beta)}=\frac{\lambda}{\mu-\lambda}, E\left[N_{A}\right]=\frac{\beta}{1-\beta}=\frac{\lambda}{\mu-\lambda}
$$

$\mathrm{H}_{2} / \mathrm{M} / 1$ (Example of GI/M/1)

- GI/M/l
- $\beta=F_{A}{ }^{*}(\mu-\beta \mu)$
$-E[N]=\frac{\lambda}{\mu(1-\beta)}, E[T]=\frac{1}{\mu(1-\beta)}, E[W]=\frac{\beta}{\mu(1-\beta)}$
- $\mathrm{H}_{2} / \mathrm{M} / 1$
- Remind that a k-stage hyperexponential random variable $\left(\mathrm{H}_{k}\right)$ is

$$
\begin{aligned}
& F_{A}{ }^{*}(\theta, k)=\sum_{i=1}^{k} p_{i}\left(\frac{\lambda_{i}}{\lambda_{i}+\theta}\right) \\
- & F_{A}{ }^{*}(\theta, 2)=\frac{p \lambda_{1}}{\lambda_{1}+\theta}+\frac{(1-p) \lambda_{2}}{\lambda_{2}+\theta} \\
- & \beta=\frac{p \lambda_{1}}{\lambda_{1}+\mu-\beta \mu}+\frac{(1-p) \lambda_{2}}{\lambda_{2}+\mu-\beta \mu} \\
\therefore \quad & \beta=1, \quad \beta=\frac{\mu+\lambda_{1}+\lambda_{2}}{2 \mu}+\sqrt{\left(\frac{\mu+\lambda_{1}+\lambda_{2}}{2 \mu}\right)^{2}-\frac{p \lambda_{1}+(1-p) \lambda_{2}}{\mu}}, \\
& \beta=\frac{\mu+\lambda_{1}+\lambda_{2}}{2 \mu}-\sqrt{\left(\frac{\mu+\lambda_{1}+\lambda_{2}}{2 \mu}\right)^{2}-\frac{p \lambda_{1}+(1-p) \lambda_{2}}{\mu}}
\end{aligned}
$$

Exercises

1. There are two machines and one repairman in a small factory. For the machine $i(i=1,2)$, its lifespan is exponentially distributed with mean $1 / \lambda_{\mathrm{i}}$ and the time taken to fix the machine i is exponentially distributed with mean $1 / \mu_{i}$.

- This system can be modeled as a continuous time Markov chain. Define the system state.
- Draw the transition rate diagram

System state (수리중인 기계, 수리대기중인 기계 개수)

$$
\begin{aligned}
& (\lambda 1+\lambda 2) \pi_{0,0}=\mu 1 \pi_{1,0}+\mu 2 \pi_{2,0} \\
& (\mu 1+\lambda 2) \pi_{1,0}=\lambda 1 \pi_{0,0}+\mu 2 \pi_{2,1} \\
& (\mu 2+\lambda 1) \pi_{2,0}=\lambda 2 \pi_{0,0}+\mu 1 \pi_{1,2} \\
& \mu 1 \pi_{1,2}=\lambda 2 \pi_{1,0} \\
& \mu 2 \pi_{2,1}=\lambda 1 \pi_{2,0} \\
& \pi_{0,0}+\pi_{1,0}+\pi_{2,0}+\pi_{1,2}+\pi_{2,1}=1
\end{aligned}
$$

2. A taxi alternates between three locations. When it reaches location 1 , it is equally likely to go next to either 2 or 3 . When it reaches 2 it will next go to 1 with probability $1 / 3$ and to 3 with probability $2 / 3$. From 3 it always goes to 1 . The moving time from location i to location j is t_{ij} according to exponential distribution. And, $\mathrm{t}_{12}=\mathrm{t}_{21}=20, \mathrm{t}_{13}=\mathrm{t}_{31}=30, \mathrm{t}_{23}=30$.
(1) What is the (limiting) probability that the taxi's most recent stop was at location i, $\mathrm{i}=1,2,3$?
(2) What is the (limiting) probability that the taxi is heading for location 2.

- System state: (departure location \longrightarrow arrival location)

$$
\begin{aligned}
& \pi_{2,1}=\frac{1}{19}, \pi_{1,3}=\frac{9}{38} \\
& \pi_{3,1}=\frac{25}{38}, \pi_{1,2}=\frac{3}{19}, \pi_{2,3}=\frac{3}{19}
\end{aligned}
$$

(1) Last stop location:

$$
\text { 1: } \pi_{1,3}+\pi_{1,2}=\frac{15}{38}
$$

$$
2: \pi_{2,1,}+\pi_{2,3}=\frac{4}{19}
$$

$$
3: \pi_{3,1}=\frac{25}{38}
$$

$$
\text { (2) } \pi_{1,2}=\frac{3}{19}
$$

3. Consider an $M / G / 1$ system in which a departing job immediately joins the queue with probability p or departs the system with probability (1-p). The queuing discipline is FCFS, and the service time for a returning job is independent of its previous service times. Let $\mathrm{B}^{*}(\mathrm{~s})$ be the Laplace transform for the service time and let $\mathrm{B}_{\mathrm{T}}^{*}(\mathrm{~s})$ be the Laplace transform for the total service time of a job.
(1) Show that $B_{T}^{*}(s)=(1-p) B^{*}(s) /\left\{1-p B^{*}(s)\right\}$
(2) Find the first moment and second moment of the total service time, using p and the first moment and second moment of the service time.
(3) Find the average number of jobs in the system

$$
\begin{aligned}
& -B_{T}{ }^{*}(\theta)=\mathrm{E}\left[e^{-\theta\left(S_{1}+S_{2}+\cdots+S_{N}\right)}\right] \\
& \quad=\sum_{k=1}^{\infty} \mathrm{E}\left[e^{-\theta\left(S_{1}+S_{2}+\cdots+S_{N}\right)} \mid N=k\right] \times \operatorname{Pr}\{N=k\} \\
& \quad=\sum_{k=1}^{\infty} \mathrm{E}\left[e^{-\theta\left(S_{1}+S_{2}+\cdots+S_{k}\right)}\right] \times p^{k-1}(1-p) \\
& \quad=\sum_{k=1}^{\infty}\left(\mathrm{E}\left[e^{-\theta S}\right]\right)^{k} \times p^{k-1}(1-p)=\frac{(1-p) B^{*}(\theta)}{1-B^{*}(\theta)} \\
& \quad=(1-\mathrm{p}) B^{*}(\theta) \sum_{k=1}^{\infty}\left(p B^{*}(\theta)\right)^{k-1}=\frac{(1-p) B^{*}(\theta)}{1-p B^{*}(\theta)}
\end{aligned}
$$

(2) Find the first moment and second moment of the total service time, using p and the first moment and second moment of the service time.

- $B_{T}{ }^{*}(\theta)=\frac{(1-p) B^{*}(\theta)}{1-p B^{*}(\theta)}$
- $E[T]=-\lim _{\theta \rightarrow 0} \frac{d B_{T}{ }^{*}(\theta)}{d \theta}=\frac{E[S]}{1-p}$
- $E\left[T^{2}\right]=\lim _{\theta \rightarrow 0} \frac{d^{2} B_{T}{ }^{*}(\theta)}{d \theta^{2}}=\frac{(1-p) E\left[S^{2}\right]+2 p(E[S])^{2}}{(1-p)^{2}}$
(3) Find the average number of jobs in the system
- $\bar{N}=\lambda E[T]+\frac{\lambda^{2} E\left[T^{2}\right]}{2(1-\lambda E[T])}$

