Ch.14. Collisions of Fast Ions in a Plasma

Fast Ions in Fusion Plasmas.

1. $\mathrm{D}+\mathrm{T} \rightarrow \mathrm{He}+\mathrm{n}$
α particles with $\sim 3.5 \mathrm{MeV}$
born with an isotropic distribution in \vec{V}
2. Neutral Beam Injection for Plasma Heating.
$E_{b} \sim 100 \mathrm{keV}$ presently
1 MeV needed for reactors.
"highly directed Beam" (anisotropic in $\stackrel{\rightharpoonup}{ }$)
3. Ion Cyclotron Heated Ions
mostly in \perp direction to \vec{B}.
14.2. Slowing-down of Beam Ions due to Collisions with electrons

Consider

$$
v_{T i} \ll V_{b} \ll v_{T e} .
$$

of Beams with M_{b} and Z_{b}.
with Maxwellian background plasma electrons.
\Rightarrow In the frame moving with the beam ions, the situation is similar to the case considered in ch 11. ie. electrons colliding wi more massive (essentially stationary) ions.

In this case, the plasma electrons can transfer "momentum" to the beam ions, but not much energy.
The momentum gained by the beam will be exactly opposite to the velocity of beam ions. \Rightarrow "slow down".

* Momentum Conservation $\Rightarrow-M_{b} \Delta \vec{V}=m_{e} \Delta \vec{V}$
\otimes Change in beam energy; $\Delta W_{b}=\frac{M_{b}}{2}\left(|\vec{V}+\Delta \vec{V}|-V^{2}\right) \approx M_{b} \stackrel{\rightharpoonup}{V} \cdot \Delta \vec{V}$
Energy Conservation $\left.\left.\Rightarrow \Delta W_{e}=\frac{1}{2} m_{e}|\Delta \vec{v}|^{2}=\frac{m_{e}}{2}\left(\frac{M_{b}}{m_{e}}\right)^{2}|\Delta \vec{V}|^{2}=\frac{M_{b}^{2}}{2 m} \cdot \right\rvert\, \Delta \vec{V}\right)^{2}$. $=-\Delta W b$.

$$
\begin{align*}
& \therefore-M_{b} V \Delta V_{11}=\frac{M_{b}^{2}}{2 m}\left(\left.\Delta \stackrel{\rightharpoonup}{V}\right|^{2}=\frac{M_{b}^{2}}{2 m}\left[\left(\Delta V_{11}\right)^{2}+\left(\Delta V_{\perp}\right)^{2}\right] \quad(14.3)\right. \tag{14,2}\\
& \Rightarrow \frac{M_{b}}{2}\left(\Delta V_{\perp}\right)^{2}<m V\left|\Delta V_{11}\right| \ll M_{b} V\left|\Delta V_{11}\right|
\end{align*}
$$

\therefore Energy in beam ion 1 velocity components due to collisional deflection \ll Energy decrease due to slowing down without change of direction
In addition, from $(14.3) \quad\left|\Delta V_{11}\right|<\frac{2 m}{M_{b}} V$, i.e. beam ion momentum loss $O\left(\frac{m_{1}}{\mu_{b}}\right)$ - original momentum " energy loss $\sim O\left(\frac{m}{M_{b}}\right)$ " energy.
$\rightarrow \Delta V_{\perp}<\frac{2 m}{M_{b}} V$ ie., deflection through an angle $\sim\left(\frac{m}{M_{b}}\right)$

$$
\therefore \quad \Delta W_{\perp}=\theta\left(\left(\frac{m}{M_{b}}\right)^{2}\right) \cdot W
$$

In summary, the force of the background electrons on the beam ions is mostly in the nature of a "frictional drag."
(*) Momentum Conservation:

$$
\begin{aligned}
& n_{b} M_{b} \frac{d}{d t}\langle\vec{V}\rangle=-m \int \frac{d\langle\vec{V}\rangle}{d t} f_{e}(v) d^{3} v \quad \text { (14.6) } \\
& \text { mean velocity of } \\
& \text { assume Maxwellian } \\
& \text { beam tons. }
\end{aligned}
$$

(4) From Chit., we can deduce:

$$
\begin{equation*}
\frac{d}{d t}\langle\vec{v}\rangle=-\nu_{e b}(\vec{v}-\vec{V}) \quad(14.7) \tag{1,7}
\end{equation*}
$$

(in the Laboratory frame). where

$$
\begin{equation*}
\nu_{e b}=\frac{n_{b} Z_{b}^{2} e^{4} \ln \Lambda}{4 \pi \epsilon_{0}^{2} m^{2}|\vec{v}-\vec{V}|^{3}} \tag{14,8}
\end{equation*}
$$

Using (14.6), $\quad \frac{d}{d t}\langle\vec{V}\rangle=\frac{Z_{b}^{2} e^{4} \ln A}{4 \pi \epsilon_{0}^{2} m M_{b}} \int \frac{\vec{V}-\vec{V}}{|\vec{V}-\vec{V}|^{3}} f_{e}(v) d^{3} v$

Note that $\quad \frac{\vec{v}-\vec{V}}{|\vec{V}-\vec{V}|^{3}}=\frac{\partial}{\partial \vec{V}} \frac{1}{|\vec{v}-\vec{V}|}$
(This identity has appeared in the context of Coulomb force or gravity).
Then, $\quad \frac{d}{d t}\langle\vec{V}\rangle=-\frac{z_{b}^{2} e^{4} \ln \lambda}{4 \pi \epsilon_{0}^{2} m M_{b}} \frac{\partial}{\partial \vec{V}} I(\vec{V})$
where

$$
\begin{aligned}
I(\vec{V})= & -\int \frac{f_{e}(v) d^{3} v}{|\vec{v}-\vec{V}|}=-2 \pi \int \frac{f_{e}(v) v^{2} d v \cdot \sin \theta d \theta}{\left(v^{2}+v^{2}-2 v \cdot V \cos \theta\right)^{1 / 2}} \\
& \cdots=-\frac{2 \pi}{V} \int_{0}^{\infty} d v v \operatorname{l}_{e}(v)\{-|v-V|+v+V\}
\end{aligned}
$$

see Fig 14.1.

$$
\begin{aligned}
& \therefore I=-4 \pi \int_{0}^{\infty} v f_{e}(v) d v-\frac{4 \pi}{V} \int_{0}^{V} v^{2} f_{e}(v) d v \\
& \text { and } \\
&-\frac{\partial I}{\partial \vec{V}}=-\frac{4 \pi \vec{V}}{V^{3}} \int_{0}^{V} v^{2} f_{e}(v) d v .
\end{aligned}
$$

For Maxwellian $f_{e}(v)$ and $V \ll v_{T e}$, we obtain

$$
\frac{d}{d t}\langle\stackrel{\rightharpoonup}{V}\rangle=-\frac{2^{1 / 2} n_{e} z_{b}^{2} e^{4} m^{1 / 2} \ln \Lambda}{12 \pi^{3 / 2} \epsilon_{0}^{2} M_{b} T_{e}^{3 / 2}} \stackrel{\rightharpoonup}{V} \quad(14,12)
$$

(slowing down time) ${ }^{-1}$: independent of $|\vec{V}|$! depends on "Te".
Taking $M_{b} \stackrel{\rightharpoonup}{V}$. of (14.12), we obtain

$$
\begin{equation*}
\frac{d}{d t} W_{b}=-\frac{2^{1 / 2} n_{e} z_{b}^{2} \epsilon_{m}^{1 / 2} \ln \Lambda}{6 \pi^{3 / 2} \epsilon_{0}^{2} M_{b} T_{e}^{3 / 2}} W_{b} \tag{14,13}
\end{equation*}
$$

14.3. Slowing -down of Beam Ions due to Collisions with backgnd Ions

Consider $M_{b} \gg M$ case first.
The situation is similar to Beam slowing down due to collisions with $e^{-} s$ up to some point. i.e.,

$$
n_{b} M_{b} \frac{d}{d t}\langle\vec{V}\rangle=-M \int \frac{d\langle\dot{V}\rangle}{d t} f_{i}(v) d^{3} v \quad(14,16)
$$

where

$$
\begin{aligned}
\frac{d\langle\vec{v}\rangle}{d t} & =-\nu_{i b}(\vec{v}-\vec{v}) \text { and } \\
\nu_{i b} & =\frac{n_{b} z^{2} z_{b}^{2} e^{4} \ln \lambda}{4 \pi \epsilon_{0}^{2} M^{2}|\vec{v}-\vec{v}|^{3}}
\end{aligned} \quad(14.17)
$$

For election backgnd, we had to perform integration in \vec{v}, but Now we can assume $|\vec{V}| \gg|\vec{v}|$ and integration in \vec{V} is unnecessary.

$$
\Rightarrow \quad \frac{d}{d t}\langle\stackrel{\rightharpoonup}{v}\rangle=-\frac{n_{i} z^{2} z_{b}^{2} e^{4} \ln \Lambda}{4 \pi \epsilon_{0}^{2} M M_{b} V^{3}} \vec{V} \quad(14.19)
$$

(*)

$$
\frac{d}{d t} W_{b}=-\frac{2^{1 / 2} n_{i} Z^{2} Z_{b}^{2} t^{4} \ln \Lambda M_{b}^{1 / 2}}{8 \pi \epsilon_{0}^{2} M W_{b}^{3 / 2}} \cdot W_{b}
$$

only depends on "Wb not W_{T}. .r T_{i} of backgnd Recall this case assumed $M_{b} \gg M_{\text {。 }}$
(*) Now, we assume $M b \ll M$. This case is somewhat similar to electrons being pitch-angle scattedred by heavier target ions.

While $\quad\left(\Delta V_{\perp}\right)^{2} \gg\left(\Delta V_{11}\right)^{2}$ ie., slowing-down is a subdominant process compared to the pitch-angle scattering,

A straighfurd analysis (\sim the one for ($11.11>$) leads to

$$
\frac{d}{d t} W_{b}=-\frac{M_{b}^{2}}{2 M} \frac{d}{d t}\left(\Delta v_{1}\right)^{2}=-\frac{2^{1 / 2} n \cdot Z^{2} Z_{b}^{2} e^{4} M_{b}^{1 / 2} \ln N}{8 \pi \epsilon_{0}^{2} M W_{b}^{3 / 2}} W_{b}
$$

(14.24)
i.e. the same with (14.20) for $M_{b} \gg M$ case.
\rightarrow We can deduce (14.20) and (14.24) apply to the case Mb ~M as well.
14.4. "Critical" Beam-Ion Energy.

Combining (14.13) and (14.20), we have

$$
\frac{d}{d t} w_{b}=-\frac{2^{1 / 2} n_{e} z_{b}^{2} e^{4} m^{1 / 2} \ln \Lambda}{6 \pi^{3 / 2} G_{0}^{2} M b}\left(\frac{W_{b}}{T_{e}^{3 / 2}}+\frac{C}{W_{b}^{1 / 2}}\right) \quad(14225)
$$

where $C=\frac{3 \pi^{1 / 2} Z M_{b}^{3 / 2}}{4 m^{12} M} \approx 57$, for proton M_{b} and $M_{r} Z$.
Two terms on RHS of (14.25) are equal for

$$
\frac{W_{b, \text { crit }}}{T_{e}}=c^{2 / 3} \approx 15
$$

$*$ For $W_{b}>W_{b, c r i t,}$ slowing-down on electrons (dst term) dominates, and for $W_{b}<W_{b . c r i t ~}$ ", ions (Ind term) dominates. Homework Problem 14.1 on page 239.
14.5. FOKKER-PLANCK EQN for Energetic Ions

* For isotropic source of energetic ions, we can ignore the effects of pitch angle scattering and consider only. Slowing down due to collisions with back ground electrons and ions as described by Eqs (14.12) and (14.19). Then F-P ego without velocity space diffusion is:

$$
\left(\frac{\partial f}{\partial t}\right)_{\text {coll }}=-\frac{\partial}{\partial \stackrel{\rightharpoonup}{V}} \cdot\left(\frac{d\langle\Delta \vec{V}\rangle}{d t} f\right) \quad(14.28)
$$

From $(14,12),(14,19)$ and (14.28),

$$
\frac{\partial f_{b}}{\partial t}=\frac{n_{e} z_{b}^{2} e^{4} \ln \Lambda}{4 \pi \epsilon_{0}^{2} M_{b} M} \frac{\partial}{\partial \vec{V}} \cdot\left[\frac{\vec{V}}{v^{3}}\left(1+\frac{v^{3}}{v_{\text {crit }}^{3}}\right) f_{b}\right] \quad(14.29)
$$

where

$$
V_{\text {crit }}=\left(\frac{2 W_{b, \text { crit }}}{M_{b}}\right)^{1 / 2}=3^{1 / 3} Z^{1 / 3}\left(\frac{\pi}{2}\right)^{1 / 6}\left(\frac{T_{e}}{m^{1 / 3} M^{2 / 3}}\right)^{112}
$$

(4) In spherical coordinates in velocity space, the divergence operator for this situation with isotropic $f_{b}(V)$ simplifies:

$$
\frac{\partial}{\partial \vec{V}} \cdot \vec{A}=\frac{1}{V^{2}} \frac{\partial}{\partial V}\left(V^{2} A_{r}\right)+\frac{1}{V \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta A_{\theta}\right)+\frac{1}{v \sin \theta \partial \phi} \frac{\partial A_{\phi}}{\partial \phi}
$$

$\Rightarrow E q(14.29)$ becomes.

$$
\begin{equation*}
\frac{\partial}{\partial t} f_{b}=\frac{n_{e} Z_{b}^{2} e^{4} \ln \Lambda}{4 \pi t_{0}^{2} M_{b} M} \quad \frac{1}{V^{2}} \frac{\partial}{\partial V}\left[\left(1+\frac{V^{3}}{V_{\text {crit }}^{3}}\right) f_{b}\right] \tag{14,30}
\end{equation*}
$$

(*) Consider the energetic ions created (or injected) at $V=V_{0}$ continuously in time at a source rate " S ".

$$
\left(\frac{\partial f_{b}}{\partial t}\right)_{\text {source }}=\frac{S S\left(V-V_{0}\right)}{4 \pi V^{2}}(14.31)
$$

By definition, $\left(\frac{\partial n}{\partial t}\right)_{\text {source }}=\int d V 4 \pi V^{2}\left(\frac{\partial f_{b}}{\partial t}\right)_{\text {source }}=S$.
(*) For $V \neq V_{0}, \quad \frac{\partial f_{b}}{\partial t}=0$ at steady state $(\quad(14.30)=0)$,

$$
\Rightarrow\left[\begin{array}{c}
f_{b}=0 \quad \text { for } \quad V>v_{0} \\
\left(1+\frac{v^{3}}{v_{\text {crit }}^{3}}\right) f_{b}=C \quad \text { for } \quad V<v_{0}
\end{array}\right.
$$

* A constant "C" can be determined by applying

$$
\lim _{\epsilon \rightarrow 0} \int_{V_{0}-\epsilon}^{V_{0}+\epsilon} d V V^{2}-[\operatorname{RHS} \text { of }(14,30)+\operatorname{RHS} \text { of }(14,31)]=0
$$

This leads to

$$
-C \frac{n_{e} Z Z b^{2} e^{4} \ln \Lambda}{4 \pi \epsilon_{0}^{2} M_{b} M}+\frac{S}{4 \pi}=0 \quad(14.33)
$$

Finally, the steady state beam distribution function is given by

$$
\begin{aligned}
f_{b}(V) & =\frac{S \epsilon_{0}^{2} M M_{b}}{n_{e} Z Z_{b}^{2} e^{4} \ln \Lambda}\left(\frac{1}{1+V^{3} / V_{c r i t}^{3}}\right), \quad V \leq V_{0} \\
& 0
\end{aligned}
$$

"Slowing Down Distribution Function"
(*) Application to Fusion product Alpha particles from $D=T$ fusion reaction :

$$
\begin{aligned}
& S=n_{D} n_{T}\left\langle\sigma^{\langle Q}\right\rangle_{D T}, \quad \text { strong fin of } \\
& V_{0}=1.3 \times 10^{7} \mathrm{~m} / \mathrm{sec} \text { for } E_{\alpha}=3.5 \mathrm{MeV} \\
& \langle\sigma V\rangle_{D T}=4.2 \times 10^{-22} \mathrm{~m}^{3} / \mathrm{sec} \quad \text { at } \quad T_{i}=20 \mathrm{keV} .
\end{aligned}
$$

strong fin of temperature.

For this, Wbicrit $\simeq 30 \mathrm{Te}$ (ie., 600 keV for $\mathrm{Te}_{e}=20 \mathrm{keV}$),

$$
f_{b}\left(V^{\prime}\right)
$$

$$
\text { For } T_{e}=20 \mathrm{keV}, \quad E_{b}=3.5 \mathrm{MeV}
$$

