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Time Reversibility (1)

o Time reversibility

— Statistical characteristic of forward process is the same as that of
backward process

— The arrival process of the forward process is the arrival process of
the backward process, which is the departure process of the
forward process = The arrival process of time reversible process
has the same statistical characteristic as its own departure process
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arrival process g = arrival process , = departure process p = departure process g



Time Reversibility (2)

DTMC

« Forward process
— Transition probability from state i to state J: p;;
Pij = Pr{iX,4+1 =JjlXn =i}
o Backward process
— Transition probability from state i to state J: g;;
dij = Pr{X, = jlXn4s1 =i}

G = PriXn=j, Xn+1=0} _ PriXn+1=i|Xn=j}PriXn=j} _ TjPji
t Pr{Xn+,1=i} Pr{Xn+1=1} T

 Necessary and sufficient condition for time reversibility: q;; = p;;

n.p..
— JE]J
- qij =

w Py T MWibi = T pji =
* Time reversible DTMC, m;p;; = m;pj; 0'0




Time Reversibility (3)

Time reversible CTMC : m;1;; = 71y 0'0

* Birth & death process Is time reversible

— Since M/M/c queuing system is a special case of birth & death
process, M/M/c is time reversible

— Arrival process of M/M/c queuing system is the same as its
departure process. Thus, departure process of M/M/c is a Poisson

process
Poisson process ") Poisson process
withrate A with rate A

M/M/c




Open Queuing Networks (1)

e Open Queuing networks with product form solution

<Assumption>

— Poisson arrivals from outside source
— All servers have exponentially distributed service time
— Ajob from device I joins device ] with (routing) probability g; ;

: 1 d1s 5 ' Poissong R
ds1 Poisson Potsson s0®
i . : M/M/c A 5 M/M/c ;
Poisson arrival £
@ withrated i/ gsp ) 12 )
3 Poisson. Loisso
M/Mic 924 : 4 e
Population source o> g M/M/c
Poisson 3 434

— Each device is modeled as M/M/c, being independent of each other.



Open Queuing Networks (2)

System state: (n{, n,, n3, Ny, nc)
— n;: number of jobs in device i

« Jackson’s decomposition theorem

P(nq,mn,,n3,n4,n5) = Py (ny) P,(ny)P3(n3) Py(ny)Ps(ns)

« P(nq,n,, ng, ny, nsg): System state probability

« P;(n;): Probability of n; jobs in device i

<example>
When all devices are M/M/1
P;(n;) = p;"i(1 - p;)

P(n11n2'n31n4rn5) = i5=1 pini(l - pl)
_ A
- pPi= m

M =M1, Ay =MNgsz2, A3 = Ags3,
Ay =A3 + 2G4, As = A1 + Azq05 + Ay

qs1

ds2

qs3

q1s
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Open Queuing Networks (3)

e Performance measure

< Device | >
-g = - . - }\'.
— Utilization of device i: p; = u_l
l
— Mean number of jobs in device i: N; = 1p;
—Pi

< System >
— Mean number of jobs: N = ¥i1; N;
« M: the number of devices in the network

> | =

— Mean sojourn time of a job in the network: T =



Exercisel: Open Queuing Networks

A machine shop has four machines, A, B, C, and D. The numbers of servers in the machines A, B,
C and D are one, one, two, and three, respectively. Service time distributions of the servers in the
machines A, B, C and D are exponential at their respective rates p,, pg, He, and pp. The shop gets
four types of jobs, numbered 1 through 4, where each type requires service on machines in a
particular sequence; type 1. ABDA, type 2: CABC, type 3: ACB, type 4. BCAD. The arrival
process of type i jobs is Poisson at rate A,.

1) Under what conditions is this system stable?
2) What is the joint stationary distribution of the number of jobs at each machine?

H —> — — — —
— — —
A, — — 3 A —| B — 3 C ——> D
/14 %
Ap=20 + 2 + A3ty Ag=h t Ao+ A3+, Ac=20, + A3+, Ap=Ay +y

1) Aa<pa, 4s<pg, Ac< 2uc, 4p< 3pp
2) Note that the machines A, B, C, and D are an M/M/1. M/M/1, M/M/2, and M/M/3 respectively.

P(Na, Ng ., Nc, Np) = pa™ (1 — pa) pp™B (1 — pg) 2pc"“P:(0) ngnDPD (0)
n. = Aa N — _“4ucic
AT pa-24" B 28" C apc?-ac”
Ny : calculate by yourselves, using performance measure equation of an M/M/3 system



Exercise2: Open Queuing Networks

AGH HSHMAHN A PHS Hod 2 1

EMHMAZ TESICH DHS T XEHALOA 22 St & AHA0D{0| LSO X
MW7EX Z1CHel & X EHol S AXH H A

CF. T2t M deolo] N2 Z[tte| =X HEX] AlLtZ stEX A F
Eiofl UCH AFHE 2UEE 22| =9F = ALH2 2HZ
Ab7b REF RS QHE S AlZba o= Az J2| D A Asted Z
2tzt Mol 51, 52,5390 X4 EEE GECH AAFYL $E23
StAF. L ZHo] M QI Ho MR = AlZtZ +5tet.

S2
M/M/1 : M/M/1
M/M/o0
axsl s1 __axs3 _ s3
L T 1—axs1’ = 1—axs1’ I; = sz, Nz = 1—axs3’ T3

— 1—axs3

- T=T1+T2+T3



Closed Queuing Networks (1)

4

L/

» Queuing network with no jobs from the outside
» The total number of jobs within the system is fixed.

L)

4

L/

L)

e 2

e

— 3

q1

~ N: the total number of jobs in the network
— M: the number of devices in the network
o System state: (n{,n,, ..., ny)
— n;: number of jobs in device i
- N= Zlivioni



Closed Queuing Networks (2)

« Assumptions for product form solution
— The system is in steady state
— All servers have exponentially distributed service time
— Jobs are stochastically independent of each other
— A job from device i joins device ] with the (routing) probability g;;

¢ Gordon and Newell’s decomposition theorem

1
P(ny,ny, ..., ny) = C Fi(ny) F,(ny) ... Fyy(ny)

* ZnES(M,N) P(nll n2) "-;nM) — 1
v o n= (nl,nz, ,nM)

v S(M,N) = {(nq,n,,..,ny)ny +nq, + - +ny = N}

+ Normalization factor G = Ynesany [1i51 Fi ()

10



Closed Queuing Networks (3)

1
* P(ny,ny, ..,ny)= c Fi(ny) F,(ny) ... Fy(ny)

1 , n; =0
* R = {Vi x s;(ny)) x Fp(n; — 1), nzz 1
— V; : Visit ratio of device 1 (relative input rate)
« X; :Throughput (Input rate) of device i
— s;(n;) : the service time of device i when there are n; jobs in device i

Insight: Remind that, for open queueing network,
P(ny,ny, ..., ny) = P1(ny) P,(ny) ... Py(ny)

PL(O) ) n; = 0

Pi(n) = {/h- sxP(n—1), mo>1 PM/M/1

11



Closed Queuing Networks (4)

Derivation of V;,
— For any appropriate link, V, =1.

— Then, calculate other V; values : V; = 94:0 Viqji

< Example > Vo =1
ST P N

V0:1,V0:V2+V3, : 4_> 2 ‘:

1 2 1 1 :

V1:ZV1+V0,V2:ZV1,V3:ZV1 : l .—i—b

| :
4 2 1 ' — 3 N
= =35, V=3.V3=3 ! 1/ 4 —

\ 4 /

—————————————————————————————————

12



Closed Queuing Networks (5)

¢ Derivation for the product form solution

< Notation >
= N:=(Ng, N, 0, Ny o, N, e, Ny )

— Ny = (ny,ny,...,n; — 1, . nj+ 1, e, My )
— r(n - k) : transition rate from state n to state k

1. Steady State Assumption (in-rate = out-rate)
YiPDr(l-n)=Pn) Y, r(n-k)

2. Exponential Server Assumption (in Steady State)
Znij P(nij)r( n; - n) =P(n) Znijr(n - Ny;)

13



Closed Queuing Networks (6)

3. Independent Routing of each job

1 ni>0
0 Tli=0

d(n; —
T(TlR—) nij) = qij Si((TTlli)) where 5(710—{

Tll'>0

»» Exponential Server and Independent Routing of each job

-1z n+1>0

P() In,r(n—ny) = In, P(n.,)r(ﬁ S

5("1) 6(n1)6(n +1)
d(n; d(n;
Pm)y W=y 5 Mg pn,)

i s;(n;) =) sj(nj+1)

14



Closed Queuing Networks (7)

> Define

1 ) n; = 0
Filne) = {3’1' xs(n)xF(n;—1), ni=1
where y;’s are unknown parameters

> Assume: P(nq,n,, ...,ny) = C F;(ny) F,(n,) ... Fy(ny)

o(ng) _ o(n;)

From P(m) %, 5oy = LiZy Sonvny Dt P09,
o (ny)
Pt L, 5 s Al
_ : /S(nl)
=y y 28 o B ) E ). 1”—@‘1—}
ZI Z j sin ./|/])q]lkg\ | Yis L(nl)
- Yy &+ 1) Blus) Bl

15



Closed Queuing Networks (8)

S(n;) _ 6(”1) y]
Zi si(n;) Z ZJ si(n;) ]l Yi

5 20(1-3, 2y ) -0

I si(n;)

yi
Thus, 1 = ZJ y_iq”

Vi = ?4=1 Yidji

*» Note that the y;’s can be anything as long as they satisfy
the above equation.

» Applying to the throughput, X;= ¥7.; X;q;;
« Applying to the visit ratio V; 1= X;/ X, Vi= XL, Viqj;

16



Closed Queuing Networks (9)

» In summary
1
P(ny,ny, ...,ny) = A Fi(ny) F,(ny) ... Fy(ny)
= G = Ynesaum [it1 F;(n;)

_F _ { 1 ) n; =0
() =y s ) x B (m—1),  m>1

— V; = XiLoV;q;; (Forany appropriate link, Vo =1)

Note that the number of feasible states can be too many to calculate G

17



Closed Queuing Networks (10)

*» Buzen’s Recursive Algorithm for simply calculating G

- Letgn(n) = ZHES(m,n) Hgl Fi(n;)

where n = (nq,n,, ..., Ny) , S(m,n) = {(ny, ny, ..., NNy + ny + -+ +ny, = nj

- G = guy(N)

- g1(n) = Fi(n)
— gm(0) = ?;1 F;(0)=1
= Gm(M) = ko En(k) Xn, .n._)estm—-1n—k) [T Fi(ny), (n>0m>1)

= Z;;L:O Fn(k)gm—1(n — kl

Jm (n) can be calculated in a recursive fashion

18



Closed Queuing Networks (11)

e (alculation of g,,(n):

gm(n) = gm—l(O)Fm(n) + gm—l(l)Fm(n — 1) + Im-1 (Z)Fm(n — 2)
+ - +gm—1(n — 1)Fm(1) T Im-1 (n)Fm(O)

1 2 m-1 m M
o 1 1 | .| 1xkm 1| 1
+
1| F(Q) | 92D | ... | 9m-1(DsE (0]
11 | Fun-1) [ g2 (0-1)] ... | gmaa(-Dx F )
+
n | Fin) | g20n) | ... | 9m-1(Mx F0)= gm (M)
: : : gu(N-1)
N | Fi(N) | g2(N) Igu(N) |=¢6

19



Closed Queuing Networks (12)

— When the service rate of each device is constant (a single server)
e« ss(n)=s;,Vn; =21 = E,(k) =VusmEn,(k—1)

- gm() = B, (0)gm-1(n) + Z;cl=1 Fn(k)gm-1(n — k)
= gm-1(n) + Viusp, 2712':1 Fn(k —1)gm—1(n — k)

— gm—l(n) + VmSm gm(n - 1) 22;5 Fn(@)gm-1(n—1-a)
1 2 m-1 m M
0 1 1 1 1 1
1| Fi(1) [ 921) | ... |9m-1 (D) | gimn(D)
n-1 Fl(n'l) 9> (ﬂ-l) e | Im-1 (ﬂ-l) gm(n'l)x V. s,
n | Fun) | g2(0) | ... Gmea® [T = gp(m)
N | Fi(N) | g2(N)




Closed Queuing Networks (13)

Performance measure
— Throughput of device M: Xy,

1
« Xy = le¥=1 Py (k) 5110
v Py (k) : Probability that there are k jobs in the device M

7 Py(k) = Xnyng,.ny—pesm-1.8—-k) P s iy 1, k)

1
= Z(nl,nz,...,nM_l)ES(M—l,N—k) EF1 (ny) ... Fy—1 (npy—1) Fpy (k)

- lFM(")M:"_)

= Xy = FM(k)gM 1(N — k)s O

1
= Yi=1 c Visyk)Fy (k

5

_VM Zk 1FM(k 1) gy-1(N — k)__VM gu(N —1)
—oFu(m) gy—1(N — 1 —m) /

21



Closed Queuing Networks (14)

] X Vi . ..
Since —=— forany devicesi, |
Xj YV

— System throughput : X,

XO: Xm — gM(N_l)

Vm G
— Throughput of any device i
Xi = Vi Xy
— System response time: T i ——————————— R
. !' 2/4 : 2 : \E
To > N jobs X > ‘_i_)_> 1 — .-E_’
i ‘ > 3 -
| Y !
\\ 1/4 * /

By Little’s L T=2
Ittie’'s Law, -
y XO Vo :l
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