Queuing Networks

Wha Sook Jeon

Mobile Computing & Communications Lab.

Time Reversibility (1)

Time reversibility

- Statistical characteristic of forward process is the same as that of backward process
- The arrival process of the forward process is the arrival process of the backward process, which is the departure process of the forward process ⇒ The arrival process of time reversible process has the same statistical characteristic as its own departure process

arrival process $_F$ = arrival process $_B$ = departure process $_F$ = departure process $_B$

Time Reversibility (2)

DTMC

- Forward process
 - Transition probability from state i to state j: p_{ij} $p_{ij} = \Pr\{X_{n+1} = j | X_n = i\}$
- Backward process
 - Transition probability from state *i* to state *j*: q_{ij} $q_{ij} = \Pr\{X_n = j | X_{n+1} = i\}$

$$- q_{ij} = \frac{\Pr\{X_n = j, X_{n+1} = i\}}{\Pr\{X_{n+1} = i\}} = \frac{\Pr\{X_{n+1} = i | X_n = j\} \Pr\{X_n = j\}}{\Pr\{X_{n+1} = i\}} = \frac{\pi_j p_{ji}}{\pi_i}$$

• Necessary and sufficient condition for time reversibility: $q_{ij} = p_{ij}$

$$- q_{ij} = \frac{\pi_j p_{ji}}{\pi_i} = p_{ij} \qquad \Rightarrow \pi_i p_{ij} = \pi_j \ p_{ji}$$

• Time reversible DTMC, $\pi_i p_{ij} = \pi_j p_{ji}$

Time Reversibility (3)

Time reversible CTMC : $\pi_i r_{ij} = \pi_j r_{ji}$

- Birth & death process is time reversible
 - Since M/M/c queuing system is a special case of birth & death process, M/M/c is time reversible
 - Arrival process of M/M/c queuing system is the same as its departure process. Thus, departure process of M/M/c is a Poisson process

Open Queuing Networks (1)

- Open Queuing networks with product form solution
 - <Assumption>
 - Poisson arrivals from outside source
 - All servers have exponentially distributed service time
 - A job from device i joins device j with (routing) probability q_{ij}

Each device is modeled as M/M/c, being independent of each other.

Open Queuing Networks (2)

- System state: $(n_1, n_2, n_3, n_4, n_5)$
 - n_i : number of jobs in device i
- Jackson's decomposition theorem

$$P(n_1, n_2, n_3, n_4, n_5) = P_1(n_1) P_2(n_2) P_3(n_3) P_4(n_4) P_5(n_5)$$

- $P(n_1, n_2, n_3, n_4, n_5)$: System state probability
- $P_i(n_i)$: Probability of n_i jobs in device i

<example>

When all devices are M/M/1

$$P_{i}(n_{i}) = \rho_{i}^{n_{i}}(1 - \rho_{i})$$

$$P(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}) = \prod_{i=1}^{5} \rho_{i}^{n_{i}}(1 - \rho_{i})$$

$$- \rho_{i} = \frac{\lambda_{i}}{\mu_{i}}$$

$$- \lambda_{1} = \lambda q_{s1}, \quad \lambda_{2} = \lambda q_{s2}, \quad \lambda_{3} = \lambda q_{s3},$$

$$- \quad \lambda_4 = \lambda_3 + \lambda_2 q_{24} \text{ , } \lambda_5 = \lambda_1 + \lambda_2 q_{25} + \lambda_4$$

Open Queuing Networks (3)

• Performance measure

- < Device i >
- Utilization of device *i*: $\rho_i = \frac{\lambda_i}{\mu_i}$
- Mean number of jobs in device i: $\overline{N}_i = \frac{\rho_i}{1-\rho_i}$
- < System >
- Mean number of jobs: $\overline{N} = \sum_{i=1}^{M} \overline{N}_i$
 - *M*: the number of devices in the network
- Mean sojourn time of a job in the network: $\overline{T} = \frac{\overline{N}}{\lambda}$

Exercise1: Open Queuing Networks

A machine shop has four machines, A, B, C, and D. The numbers of servers in the machines A, B, C and D are one, one, two, and three, respectively. Service time distributions of the servers in the machines A, B, C and D are exponential at their respective rates μ_A , μ_B , μ_C , and μ_D . The shop gets four types of jobs, numbered 1 through 4, where each type requires service on machines in a particular sequence; type 1: ABDA, type 2: CABC, type 3: ACB, type 4: BCAD. The arrival process of type *i* jobs is Poisson at rate λ_i .

- 1) Under what conditions is this system stable?
- 2) What is the joint stationary distribution of the number of jobs at each machine?

- 1) $\lambda_A < \mu_A$, $\lambda_B < \mu_B$, $\lambda_C < 2\mu_C$, $\lambda_D < 3\mu_D$
- 2) Note that the machines A, B, C, and D are an M/M/1. M/M/1, M/M/2, and M/M/3 respectively.

$$P(n_{A}, n_{B}, n_{C}, n_{D}) = \rho_{A}^{n_{A}} (1 - \rho_{A}) \rho_{B}^{n_{B}} (1 - \rho_{B}) 2\rho_{C}^{n_{C}} P_{C}(0) \frac{9}{2} \rho_{D}^{n_{D}} P_{D}(0)$$

$$n_{A} = \frac{\lambda_{A}}{\mu_{A} - \lambda_{A}}, n_{B} = \frac{\lambda_{B}}{\mu_{B} - \lambda_{B}}, n_{C} = \frac{4\mu_{C}\lambda_{C}}{4\mu_{C}^{2} - \lambda_{C}^{2}},$$

 $n_{\rm D}$: calculate by yourselves, using performance measure equation of an M/M/3 system

Exercise2: Open Queuing Networks

자장면 전문체인점에 자장면을 먹으러 오는 고객들이 도착율 a의 포아송 프로세스로 도착한다. 고객은 도착하자마자 주문을 한 후 자장면이 만들어질 때까지 기다린 후 자장면이 만들어지면 먹고 계산대에서 계산을 한 뒤 떠난다. 따라서 임의의 고객은 기다리든지 먹든지 계산을 하든지 셋 중 하나의 상태에 있다. 자장면을 만드는 요리사의 수와 는 계산원은 각각 1명이다. 요리사가 자장면을 만드는 시간과 먹는 시간, 그리고 계산하는데 걸리는 시간은 각각 평균이 sì, s2, s3인 지수분포를 따른다. 체인점은 충분히 넓다고 가정하자. 고객이 체인점에 머무는 시간을 구하라.

$$- n_1 = \frac{a \times s1}{1 - a \times s1}, \quad T_1 = \frac{s1}{1 - a \times s1}, \qquad T_2 = s2, \qquad n_3 = \frac{a \times s3}{1 - a \times s3}, \quad T_3 = \frac{s3}{1 - a \times s3}$$

$$- T = T_1 + T_2 + T_3$$

Closed Queuing Networks (1)

- Queuing network with no jobs from the outside
- * The total number of jobs within the system is fixed.

- *N*: the total number of jobs in the network
- *M*: the number of devices in the network
- System state: $(n_1, n_2, ..., n_M)$
 - n_i : number of jobs in device i
 - $-N = \sum_{i=0}^{M} n_i$

Closed Queuing Networks (2)

- Assumptions for product form solution
 - The system is in steady state
 - All servers have exponentially distributed service time
 - Jobs are stochastically independent of each other
 - A job from device i joins device j with the (routing) probability q_{ij}
- Gordon and Newell's decomposition theorem

$$P(n_1, n_2, ..., n_M) = \frac{1}{G} F_1(n_1) F_2(n_2) ... F_M(n_M)$$

- $\sum_{\mathbf{n} \in S(M,N)} P(n_1, n_2, \dots, n_M) = 1$
 - $\mathbf{n} = (n_1, n_2, \dots, n_M)$
 - $S(M,N) = \{(n_1, n_2, ..., n_M) | n_1 + n_1 + \cdots + n_M = N\}$
- Normalization factor $G = \sum_{\mathbf{n} \in S(M,N)} \prod_{i=1}^{M} F_i(n_i)$

Closed Queuing Networks (3)

•
$$P(n_1, n_2, ..., n_M) = \frac{1}{G} F_1(n_1) F_2(n_2) ... F_M(n_M)$$

•
$$F_i(n_i) = \begin{cases} 1 & , & n_i = 0 \\ V_i \times S_i(n_i) \times F_i(n_i - 1) & , & n_i \ge 1 \end{cases}$$

- $-V_i$: Visit ratio of device i (relative input rate)
 - X_i : Throughput (Input rate) of device i
- $-s_i(n_i)$: the service time of device i when there are n_i jobs in device i

Insight: Remind that, for open queueing network,

$$P(n_1, n_2, ..., n_M) = P_1(n_1) P_2(n_2) ... P_M(n_M)$$

$$P_i(n_i) = \begin{cases} P_i(0) &, & n_i = 0 \\ \lambda_i \times s_i \times P_i \ (n_i - 1), & n_i \ge 1 \end{cases} \quad \text{in M/M/1}$$

Closed Queuing Networks (4)

- Derivation of V_i ,
 - For any appropriate link, $V_0 = 1$.
 - Then, calculate other V_i values : $V_i = \sum_{j=0}^{M} V_j q_{ji}$

< Example >

$$V_0 = 1, V_0 = V_2 + V_3,$$

$$V_1 = \frac{1}{4}V_1 + V_0, V_2 = \frac{2}{4}V_1, V_3 = \frac{1}{4}V_1$$

$$\Rightarrow V_1 = \frac{4}{3}, V_2 = \frac{2}{3}, V_3 = \frac{1}{3}$$

Closed Queuing Networks (5)

Derivation for the product form solution

- < Notation > $\mathbf{n} \coloneqq (n_1, n_2, ..., n_i, ..., n_j, ..., n_M)$ $\mathbf{n}_{ij} \coloneqq (n_1, n_2, ..., n_i 1, ..., n_j + 1, ..., n_M)$ $r(\mathbf{n} \to \mathbf{k}) : \text{ transition rate from state } \mathbf{n} \text{ to state } \mathbf{k}$
- 1. Steady State Assumption (in-rate = out-rate)
 - $\sum_{l} P(l)r(l \rightarrow \mathbf{n}) = P(n)\sum_{k} r(n \rightarrow k)$
- 2. Exponential Server Assumption (in Steady State)
 - $\sum_{\mathbf{n}_{ij}} P(\mathbf{n}_{ij}) r(\mathbf{n}_{ij} \to \mathbf{n}) = P(\mathbf{n}) \sum_{\mathbf{n}_{ij}} r(\mathbf{n} \to \mathbf{n}_{ij})$

Closed Queuing Networks (6)

3. Independent Routing of each job

•
$$r(\mathbf{n} \to \mathbf{n}_{ij}) = q_{ij} \frac{\delta(n_i)}{s_i(n_i)}$$
 where $\delta(n_i) = \begin{cases} 1 & n_i > 0 \\ 0 & n_i = 0 \end{cases}$

* Exponential Server and Independent Routing of each job

$$P(\boldsymbol{n}) \sum_{\mathbf{n}_{ij}} r(\boldsymbol{n} \to \mathbf{n}_{ij}) = \sum_{\mathbf{n}_{ij}} P(\mathbf{n}_{ij}) r(\mathbf{n}_{ij} \to \mathbf{n})$$

$$- P(\boldsymbol{n}) \sum_{i} \sum_{j} q_{ij} \frac{\delta(n_i)}{s_i(n_i)} = \sum_{i} \sum_{j} \frac{\delta(n_i)\delta(n_j+1)}{s_j(n_j+1)} q_{ji} P(\mathbf{n}_{ij})$$

$$P(\boldsymbol{n}) \sum_{i} \frac{\delta(n_i)}{s_i(n_i)} = \sum_{i} \sum_{j} \frac{\delta(n_i)}{s_j(n_j+1)} q_{ji} P(\mathbf{n}_{ij})$$

Closed Queuing Networks (7)

> Define

•
$$F_i(n_i) = \begin{cases} 1 & , & n_i = 0 \\ y_i \times s_i(n_i) \times F_i(n_i - 1) & , & n_i \ge 1 \end{cases}$$

where y_i 's are unknown parameters

Assume: $P(n_1, n_2, ..., n_M) = C F_1(n_1) F_2(n_2) ... F_M(n_M)$

From
$$P(\mathbf{n}) \sum_{i} \frac{\delta(n_i)}{s_i(n_i)} = \sum_{i} \sum_{j} \frac{\delta(n_i)}{s_j(n_j+1)} q_{ji} P(\mathbf{n}_{ij}),$$

$$\frac{C F_{1}(n_{1}) F_{2}(n_{2}) \dots F_{M}(n_{M}) \sum_{i} \frac{\delta(n_{i})}{s_{i}(n_{i})}}{s_{i}(n_{i})} = \sum_{i} \sum_{j} \frac{\delta(n_{i})}{s_{j}(n_{j}+1)} q_{ji} \frac{C F_{1}(n_{1}) F_{2}(n_{2}) \dots \delta(n_{i})}{s_{j}(n_{j}+1)} F_{i}(n_{i})} F_{i}(n_{i}) \dots F_{M}(n_{M}) = \sum_{i} \sum_{j} \frac{\delta(n_{i})}{s_{j}(n_{j}+1)} q_{ji} \frac{C F_{1}(n_{1}) F_{2}(n_{2}) \dots \delta(n_{i})}{s_{j}(n_{j}+1)} F_{i}(n_{i}) \dots F_{M}(n_{M})$$

Closed Queuing Networks (8)

$$\sum_{i} \frac{\delta(n_i)}{s_i(n_i)} = \sum_{i} \sum_{j} \frac{\delta(n_i)}{s_i(n_i)} q_{ji} \frac{y_j}{y_i}$$

$$\sum_{i} \frac{\delta(n_i)}{s_i(n_i)} \left(1 - \sum_{j} \frac{y_j}{y_i} q_{ji} \right) = 0$$
Thus, $1 = \sum_{j} \frac{y_j}{y_i} q_{ji}$

$$y_i = \sum_{j=1}^M y_j q_{ji}$$

- * Note that the y_i 's can be anything as long as they satisfy the above equation.
 - Applying to the throughput, $X_i = \sum_{j=1}^{M} X_j q_{ji}$
 - Applying to the visit ratio $V_i := X_i / X_0$, $V_i = \sum_{j=1}^M V_j q_{ji}$

Closed Queuing Networks (9)

In summary

$$P(n_1, n_2, ..., n_M) = \frac{1}{G} F_1(n_1) F_2(n_2) ... F_M(n_M)$$

$$-G = \sum_{\mathbf{n} \in S(M,N)} \prod_{i=1}^{M} F_i(n_i)$$

$$- F_i(n_i) = \begin{cases} 1 & , & n_i = 0 \\ V_i \times S_i(n_i) \times F_i(n_i - 1) & , & n_i \ge 1 \end{cases}$$

$$-V_i = \sum_{j=0}^{M} V_j q_{ji}$$
 (For any appropriate link, $V_0 = 1$)

Note that the number of feasible states can be too many to calculate G

Closed Queuing Networks (10)

*Buzen's Recursive Algorithm for simply calculating *G*

- Let
$$g_m(n) \coloneqq \sum_{\mathbf{n} \in S(m,n)} \prod_{i=1}^m F_i(n_i)$$

where $\mathbf{n} = (n_1, n_2, ..., n_m)$, $S(m,n) = \{(n_1, n_2, ..., n_m) | n_1 + n_1 + \cdots + n_m = n\}$
- $G = g_M(N)$
- $g_1(n) = F_1(n)$
- $g_m(0) = \prod_{i=1}^m F_i(0) = 1$
- $g_m(n) = \sum_{k=0}^n F_m(k) \sum_{(n_1...n_{m-1}) \in S(m-1,n-k)} \prod_{i=1}^{m-1} F_i(n_i)$, $(n > 0, m > 1)$
= $\sum_{k=0}^n F_m(k) g_{m-1}(n-k)$

 $g_m(n)$ can be calculated in a recursive fashion

Closed Queuing Networks (11)

• Calculation of $g_m(n)$:

$$g_m(n) = g_{m-1}(0)F_m(n) + g_{m-1}(1)F_m(n-1) + g_{m-1}(2)F_m(n-2) + \dots + g_{m-1}(n-1)F_m(1) + g_{m-1}(n)F_m(0)$$

	1	2		<i>m</i> -1	m		M	
0	1	1	•••	$1 \times F_m(n)$	1	•••	1	
1	$F_1(1)$	$g_2(1)$	•••	$g_{m-1}^{+}(1)_{\times F_{m}(n-1)}$	1)			
•	:	÷		:				
<i>n</i> -1	$F_1(n-1)$	$g_2(n-1)$	• • •	$g_{m-1}^+(n-1)_{\mathbf{x}} F_m$	1)			
n	$F_1(n)$	$g_2(n)$	•••	$g_{m-1}^{+}(n) \times F_m(0)$	$=g_m(n)$			
:	÷	•					$g_M(N-1)$	
N	$F_1(N)$	$g_2(N)$					$g_M(N)$	= G

Closed Queuing Networks (12)

- When the service rate of each device is constant (a single server)

•
$$s_i(n_i) = s_i$$
, $\forall n_i \ge 1$ \Rightarrow $F_m(k) = V_m s_m F_m(k-1)$

$$- g_m(n) = F_m(0)g_{m-1}(n) + \sum_{k=1}^n F_m(k)g_{m-1}(n-k)$$

$$= g_{m-1}(n) + V_m s_m \sum_{k=1}^n F_m(k-1)g_{m-1}(n-k)$$

$$= g_{m-1}(n) + V_m s_m g_m(n-1)$$

$$\sum_{a=0}^{n-1} F_m(a)g_{m-1}(n-1-a)$$

	1	2		<i>m</i> -1	m		M
0	1	1	• • •	1	1	• • •	1
1	$F_1(1)$	$g_2(1)$	•	$g_{m-1}(1)$	$g_m(1)$		
:	•	•		•			
<i>n</i> -1	$F_1(n-1)$	$g_2(n-1)$	•••	$g_{m-1}(n-1)$	$g_m(n-1)_{\mathbf{x} \ V_m S_n}$	n.	
n	$F_1(n)$	$g_2(n)$	• • •	$g_{m-1}(n)$	$+ g_m(n)$		
:	•	•					
N	$F_1(N)$	$g_2(N)$					

Closed Queuing Networks (13)

Performance measure

- Throughput of device $M: X_M$

•
$$X_M = \sum_{k=1}^N P_M(k) \frac{1}{s_M(k)}$$

 $\checkmark P_M(k)$: Probability that there are k jobs in the device M

$$P_{M}(k) = \sum_{(n_{1}, n_{2}, \dots, n_{M-1}) \in S(M-1, N-k)} P(n_{1}, \dots, n_{M-1}, k)$$

$$= \sum_{(n_{1}, n_{2}, \dots, n_{M-1}) \in S(M-1, N-k)} \frac{1}{G} F_{1}(n_{1}) \dots F_{M-1}(n_{M-1}) F_{M}(k)$$

$$= \frac{1}{G} F_{M}(k) g_{M-1}(N-k)$$

$$\Rightarrow X_{M} = \sum_{k=1}^{N} \frac{1}{G} F_{M}(k) g_{M-1}(N-k) \frac{1}{s_{M}(k)}$$

$$= \sum_{k=1}^{N} \frac{1}{G} V_{M} s_{M}(k) F_{M}(k-1) g_{M-1}(N-k) \frac{1}{s_{M}(k)}$$

$$= \frac{1}{G} V_{M} \sum_{k=1}^{N} F_{M}(k-1) g_{M-1}(N-k) = \frac{1}{G} V_{M} g_{M}(N-1)$$

$$\sum_{m=0}^{N-1} F_{M}(m) g_{M-1}(N-1-m)$$

Closed Queuing Networks (14)

Since
$$\frac{X_i}{X_j} = \frac{V_i}{V_j}$$
 for any devices i , j

- System throughput : X_0

$$X_0 = \frac{X_M}{V_M} = \frac{g_M(N-1)}{G}$$

Throughput of any device i

$$X_i = V_i X_0$$

System response time: T

By Little's Law,
$$T = \frac{N}{X_0}$$

