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Goal : How brain learns deep hierarchical representations

« What is Biologically Plausible Learning? : Learning under biological constraints

« What is biological Constraints?
* No label is given (unsupervised)
 Input data is sequential form (online learning)
« Weight updates depend on local and recent neural activity (Can't use backpropagation of gradients!')
« Modulated by broadcast signal related to reward and attention[?!
* Follows local plasticity rule from neuroscience (Hebbian update ruleBl)

 Currently studied Biologically Plausible implementations of back-propagation : has limitations
« Neuron-specific error signal needs to be transmitted by a separate error network#IPI(FA, TP)

« Use only local activity but they require to wait for convergence to an equilibrium[®IVI(EP, PC)

« Propose learning rule satisfies biological Constraints & build deep hierarchical representations
« Temporal structure of natural stimuli is a rich source of information

« Self-supervised learning (contrastive predictive coding® frame) from temporal data
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Contrastive learning Contrastive predictive coding (2018)

- Both need past information of large negative samples



ldea & model

* Inspiration from deep self-supervised learning algorithms
« How to define positive & negative sample?
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 Brain is self-aware of typical, self-generated changes of gaze direction (‘saccades’)
 Distinguish input from input arriving after a saccade towards a new object
« Broadcast signal modulates plasticity (assign positive & negative sample)
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ldea & model

« Weight update rule
+ Layer-wise Contrastive predictive coding
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Experiments

« t-SNE projection of neuronal activities
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Preliminaries

* Self-supervised Learning
* Graph Neural Network(GNN)

* Expectation-maximization(EM) algorithm



Motivation

* Learning informative representation of whole graphs is a fundamental problem in a variety of
domains.

* GNNs have been successful iIn some domains and tasks, mainly in supervised fashion.

— However, since many scientific domains lack labeled data, it Is becoming increasingly
iImportant to learn in unsupervised or self-supervised fashion.

* There are some recent works that learn graph representation in a self-supervised manner.

— But they fall to discover the global-semantic feature




Introduction to GraphLoG

L ocal instance + Global semantic structure

* Preserve local instance structure
* Similar graphs are embedded close to each other and dissimilar ones stay far apart
* Reflect the global semantic structure with EM algorithm

* Graphs with similar semantic properties are compactly embedded, and constitute
hierarchical semantic clusters
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(a) Local-instance structure (b) Global-semantic structure

Figure 1. Illustration of GraphLoG. (a) Correlated graphs are constrained to be adjacently embedded to pursue the local-instance
structure of the data. (b) Hierarchical prototypes are employed to discover and refine the global-semantic structure of the data.



Deep-dive
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* Finding correlated pairs(graph, subgraph) (a)h Local-instance structure

* Graph pair:

 Givenagraph G = (V, E, Xy, Xg), its correlated counterpart G' = (V', E’, X,,1, X 1) is obtained through randomly masking a part of node/edge attributes
In the graph

* Subgraph pair:

* For a subgraph G, constituted by node v and its L-hop neighborhoods in graph G, regard the corresponding subgraph G,; in graph G' as its correlated
counterpart.

* Finding negative pairs

* Given a correlated graph/subgraph pair, substitute (r(graph) or G,,(subgraph) randomly with another graph or a subgraph centered around another node to
construct negative pairs

* Objective function for local-instance learning
* mink jocq) = Mn(Lgraph + L sup)
* Loraph = E(6,.61)-p(6.6).(6-.6Lpn(6.6H 5 (G4, G1) — (G-, G2))]

® Loub = E6,60)~p(6o6)(GiGly)n (Grn6i) [S (Gus Gy) — 5(Gy, Gy)]

* s(x,y) =x"y/ll x Il y Il : cosine similarity



graph embedding

¢ 1st layer prototype
2nd layer prototype

Deep-dive

Global semantic learning by EM algorithm

Hierarchical prototypes
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@Glabal-semantic structure

* Basic idea

* Since the latent variables are not given, it is hard to directly maximize the likelihood function p(G, Z |0, C) — utilize EM algorithm
* |nitialization of model parameters
* After pre-training the GNN by minimizing £, -, K-means clustering is applied layer-by-layer.
* E-step
* Construct the lower-bound of the log-likelihood
e Sample latent variables with the parameters of previous iteration
* The posterior distribution of Z: p(Z|G, 0¢_1, C¢—1)
* M-step
* Maximize the expected log-likelihood with respect to the posterior distribution of latent variables
* Q(0,C) = Epzi6,0,_,c,_llogp(G, 216, C)]
° gt = arggnaXQ(H, C),Ct = argénaXQ(H, C)



Algorithm

Algorithm 1 Optimization Algorithm of GraphLoG.
Input: Unlabeled graph data set GG, the number of
learning steps 1.

Output: Pre-trained GNN model GNNy....
Pre-train GNN with local objective function (Eq. 9).
Initialize model parameters 6, and C,,.
fort =1to71 do
Sample a mini-batch G from G.
O E-step:
Sample latent variables Zm with GNNy, . and C;_;.
O M-step:
Update model parameters:
0; < 0:—1 — Vo(Liocal + Lglobal);
C; + Ci—1 — Ve (Lioca + Laiobal)-
end for




Results
Graph Embeddings

® graph embedding prototypes of bottom layer A prototypes of middle layer % prototypes of top layer

(b) Lsub t Lgraph (C) Lsub + Lgraph + [’global

Figure 2. The t-SNE visualization on ZINC15 database (i.e. the pre-training data set for chemistry domain).



Results

Chemistry and Biology domain

Table 2. Test ROC-AUC (%) on downstream biological function

Table 1. Test ROC-AUC (%) on downstream molecular property prediction benchmarks. prediction benchmark.
Methods BBBP Tox21 ToxCast SIDER ClinTox MUV HIV BACE Avg Methods ROC-AUC (%)

ElpePed 016 67324 760 L 05 64108 BAT0T SATisT TilEsT T3 I10 799 E00 703 Random 648 & 1.0

gePre . . : : : : . . : : . : : : : . . ; ; .

InfoGraph (2019) | 68.24+0.7 755406 63.1+0.3 594+1.0 70.5+18 756+1.2 77.64+04 789+1.1 | 71.1 EdgePred (Kipf & Welling, 2016) 70.5+ 0.7
AttrMasking (2019) | 64.3 +2.8 76.7+0.4 64.2+05 61.0+07 71.8441 747+14 772411 T793+1.6 | 71.1 InfoGraph (Sun et al., 2019) 70.7 £ 0.5
ContextPred (2019) | 68.0+2.0 75.7+0.7 63.9+06 60.9+06 659+38 75.8+1.7 77.3+1.0 79.6+1.2 | 70.9 AttrMasking (Hu et al., 2019) 70.5 + 0.5

GraphPartition (2020b) | 70.3 + 0.7 75.24+04 63.24+0.3 61.0+0.8 64.24+05 7544+1.7 77.14+0.7 796+1.8 | 70.8 ContextPred (Hu et al., 2019) 69.9 + 0.3
GraphCL (2020a) 69.5 + 0.5 75.4 4+ 0.9 63.8 4+ 0.4 60.8 + 0.7 70.1 4+ 1.9 74.5+ 1.3 77.6 £ 0.9 782+ 1.2 71.3 GraphPartitiUn (YDLI et al., 2020]:}) 71.0 4+ 0.2
GraphLoG (ours) 72.5+0.8 75.7+0.5 63.5+0.7 61.2+1.1 76.7+3.3 T76.0x+x1.1 77.8+08 835+1.2 | 73.4

GraphCL (You et al., 2020a) 71.2+ 0.6
GraphLoG (ours) 72.9 + 0.7

* Pre-training: self-supervised learning

* Pre-training: 395K unlabeled protein ego-network
DB: ZINC15 with 2M unlabeled molecules
* Downstream task: prediction of 40 fine-grained

* Down-stream task: 8 binary classification biological functions of 8 species

DB: MoleculeNet
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Knowledge-Grounded Dialogue

Well, I help make sure people do not drown or

. ] . . . .
=~  get injured while in or near the water!
Apprenticer

~
(1) A lifeguard is a rescuer who supervises the safety ...
2) Jifeguards are strong swimmers and trained in ...
In some areas, lifeguards are part of the emergency...

(L — 2) Despite the considerable amount of activity ...
(L — 1) The season officially started on May in the ...
L (L) These dates conventionally delimit the period of ...

Task 1 : Knowledge Selection

P oS- ¢
"\ Wizard

I’ve heard that in some places, lifeguards also

help with other sorts of emergencies!
.

_/

Task 2 : Response Generation

Based on dialogue context,

Dialogue
Context

—» Train/Test

"""" * Test only
— Train only
Knowleldgc g (K3|x=2,y=3, k<%)
Poo Posterior
Dialogue Vi
History » Decoder —
+ postfprior
X, q/ i @™ Prior  Selected knowledge °. "
— Encoder ——— PIPM — ] —>

I ——)
Selection Prior Distribution

k T Lo T

! Selecti .
— Encoder Hitory o
l Y First Training Stage
Yi I 9" Posterior posterior Distribution | Second Training Stage
— Encoder > >

Selection Selected Knowledge

Task 1 : Knowledge Selection => Task 2 : Response Generation, 2-phase task.

figure 1, 2. Sequential Latent Knowledge Selection for Knowledge Grounded Dialogue, Kim et al.

figure 3. Bridging the Gap between Prior and Posterior Knowledge Selection for Knowledge-Grounded Dialogue Generation, Chen et al.
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Knowledge-Grounded Dialogue

Dialogue What is your favorite number? — I love the number 7.
context What do you think about that?

1. Anyone who dares to kill Cain "will suffer vengeance
seven times over".

2. Seven is the natural number following six and preceding

Train/Test
”””” » Test only

eight — Train only
Knowledge | 3. Islam first came to the western coast when Arab traders ~ Knowledge 70631553, =3, k<3)
candidates as early as the 7th century CE. Pool Posterior

4. The number 7 has been associated with a great deal of
symbolism in religion. In western culture, it is often con-

i
sidered lucky. Dialogue _
...... History » Decoder —
N. This genre has been popular throughout the history of x i ot
4™ Prior \
culture. — > Encoder — . —
s Selection Prior Distribut
Response a | Yeah. I know that it is before 8 and after 6! k T ‘
Response b Yes, it is known as a lucky number in western countries! !+ Enco d’“’/ " T Selection o
Response ¢ I think 7 is lucky certain cultures. It also depicts some reli- l History ‘
ious importance. post .
g p | 9" Posterior posterior Distribution
Encoder > ~

Selection Selected Knowledge

Deny 2-phase learning methodology!

Motivation : Knowledge and Response should be considered jointly

figure 4. CoLV: A Collaborative Latent Variable Model for Knowledge-Grounded Dialogue Generation
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Motivation

Question : ¥2| 2= X4 HHX|?2?

4 oy 3 o4
£E0}2(880-8698) gEHy et mE
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Knowledge 1 : SNU menu
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Knowledge 2 : Domino menu

Response 1 :

Response 2 :
b}

Response 1 :

Response 2 :
I=DN;

| AHG 7| =6 A 197

Y IR TS ARA S

OXHE 7| =4 oX} 227

C
2%

\d

I B OE O=

Knowledge and Response should be considered jointly !
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Methodology

Contribution Point 1! C
q(p(zk|c,k) ng(zrlzkacakar)
1. Task 1,2 output : k, r is discrete. @
2. For jointly learning, represent k, r as ™, ™ X
k v
=> Represent as continuous vector! po(k|e,2) o) Po(¥2r €, k)
< Tmi::]lic:;se Generation
L — Figure 1: The graphical framework for CoLV model.
CoLV c: dialogue context, k: knowledge, r: response. The
_ dotted line denotes training procedure solely, while the
KL (Q(p (Zk |C’ k) | |p ¢ (Zk | C)) solid line denotes both training and inference process.
— K L(qy(2zr|2k, ¢, k,1)||pg (21| 2K, C)) \
+ Ezy ~q, [10g po k|2, €)]

polk,rle) = | > po(klzi, ¢)pa(r|ze, k, ©)-
+ Ezpnq, log py(r|z, k, )], L‘ z |:> Alingment k,r to %k, Zr

P (Zr| 21, €)pp(2ic|c) dzy,

Existing sota Supervised Learning!

such as SKT(kim et al., 2020), PIPM(Chen et al., 2020)
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Methodology

Contribution Point 2! C

Q<p(zk|c:k) q(,o(zrlzkacakar)

1. ™, ™ should take diverse relation between k and z

2. Not 2-phase, end-to-end learn with continuous vector 3

. . . '/ . .
3. Give Gaussian prior for * to diverse inference \

k 4
p@ (k|c7 Zk) Knowledge Selection pe (r| Zr, C, k)
p¢(Zk|c) p— Cat¢(Zk|ﬂ'), :: $;?E$;seGeneraﬁon
p¢(zr|zk, C) = ng(zr“_l.r, lf)"r]:),f Figure 1: The graphical framework for CoLV model.
c: dialogue context, k: knowledge, r: response. The
r __ r r o __ r dotted line denotes training procedure solely, while the
n = MLP¢ (hc) y O = SOftplllS (MLP(,‘b (hc ) ) ) solid line denotes both training and inference process.

=> Jointly end-to-end learn and Variational Inference!
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Model WoW Test Seen WoW Test Unseen
ACC PPL BLEU4 RG-1 RG-2 Dist-2 | ACC PPL BLEU4 RG-1 RG-2 Dist-2
S2SA - 93.85 0.46 12.53  0.69 4.81 - 120.81 0.34 930 076 11.53
Transformer - 72.42 0.39 1435 1.36 19.68 - 91.41 0.39 12.87 0.66 12.15

MemNet 21.60 63.52 041 169 0.64 2416 | 1382 96.47 0.32 1446 082 16.27
PostKS 3.66 79.19 0.57 13.04 117 16,70 | 329 1527 0.36 13.15 1.08 13.38
SKLS 26.83  52.09 1.35 16.87 6.84 23.13 | 16,59 81.44 1.05 16.16 421 16.42
DukeNet 2596 4833 246 19.02 6.54 25.67 | 1749 69.38 1.68 1936 523 17.03
PIPM 2775 4271 2.26 1934 736 2641 | 1943 65.71 1.56 1760 549 17.74
CoLV 30.12*  39.56* 2.85* 20.62 7.89 29.74* | 1891 54.30* 2.12* 19.68* 6.31 20.13*

Table 2: Automatic evaluation results on WoW Test Seen and WoW Test Unseen (%). The metrics Accuracy, Per-
plexity, ROUGE-1, ROUGE-2 and Distinct-2 are abbreviated as ACC, PPL, RG-1, RG-2 and Dist-2, respectively.
The best results are highlighted with bold. “*”” denotes that the result is statistically significant with p < 0.01.

| WoW | Holl-E Model Holl-E

Training size 18,430 7.208 ACC PPL BLEU-4 RG-1 RG-2 Dist2
Validation size 1,948 930 S2SA - 150.26 4.84 4.28 2.01 10.38

Test size 965 (S)/968 (U) | 913 Transformer | - 12031 509 672 296 1429

Avg. Num of kg 67 53 MemNet | 2275 13838 549 2019 1034 23.63

PostKS 1.56 187.20 5.85 1523  6.08 19.74

Table 3: Statistics of two experimental datasets, Wizard SKLS 2925 4897 1781 2982 23.19 2743
of Wikipedia (WoW) and HolLE. “S” and “U” denotes ~ DukeNet | 3038 072 1015 3264 1955 2853
gfelt;St seen and test unseen in WoW dataset respec- oLV B MM WA 3197 5 DI

Table 4: Automatic evaluation results on Holl-E (%).
The best results are highlighted with bold. “*” denotes
that the result is statistically significant with p < 0.01.

SOTA on WoW and Holl-E dataset with various metrics!!
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Dialogue Context: Have you been to Europe? — I have! I
have been to British. — Great! I've only ever been to Canada.

Knowledge Candidates: 1. Ireland is the third-largest island in

Europe. Thick woodlands covered the island until the Middle Ages .

2. Ireland the second largest island in the British Isles, after Great Britain.
3.

GT That’s pretty cool, but I'd still love to visit more of Europe.
It’s cool to explore woodland in Ireland.
SKLS Yes, Ireland is the largest island in the Europe. I would

like to go there again.
DukeNet Canada is also a beautiful country, like the Ireland.

Pretty cool! Canada is fantastic! I wish I lived there instead
PIPM

of the Europe.

That’s great! Come to Ireland, the third largest island
Ours-1 .

in Europe.

Pretty great! If you know that Ireland was covered by
Ours-2

woodlands before many years.

That’s pretty cool. The woodlands in Ireland deserves
Ours-3 :

to be visited.

Yeah, Ireland has a third-largest woodlands. Have you
Ours-4 .

ever heard it?

Table 8: Case study on the WoW Test Seen dataset.
For fair comparison of the generation performance, we
choose the case that all model select the same knowl-
edge (marked as yellow). We further present several
different responses that all generated by our model.
"GT" denotes the ground truth.

Dialogue Context: Thierry Henry is one of my all time favorite
players. What about you?

Knowledge Candidates: 1. Thierry Daniel Henry is a retired
French professional footballer . 2. He played as a forward and is

the second assistant manager of the Belgium national team .
3. Henry made his professional debut with Monaco in 1994.
4. A year later he signed for

Kg: aretired French professional footballer.
GT Pair  Response: He was good. he is a retired French
professional footballer.
Kg: !
Pair-1 Response: 1 know him. He has served in the premier
league club Arsenal.

Kg: aretired French professional footballer .

Pair-2 Response: Henry is a retired French footballer,

he was so famous.

Kg: the second assistant manager of the Belgium
Pair-3 national team .

Response: Yes, I love him too. He was also the second
assistant manager of the Belgium team.

Table 9: Qualitative analysis of collaborative latent
variables. Knowledge-response pairs generated by our
model. "GT pair" denotes the ground truth knowledge-
response pair in the dataset. ‘Pair-1", “Pair-2" and
“Pair-3" are generated from our model.

With jointly learned variables, various semantic response could be generated!!
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Conclusion

- End-to-end jointly learn knowledge and response representation
 Reflect various relationship between knowledges and responses

« Variational inference for diverse semantic responses

Jlank

U



InterFaceGAN

Interpreting the Latent Space of GANs
for Semantic Face Editing

CVPR 2020
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Generative Adversarial Network —~— — demm

g: 2z — X

2
0= 0=

“. latent vector Z latent vector W

Noise ~ N(0,1)

Synthesis
Network

Generated Image
Gaussian Distribution



Interpreting Face GANSs

Original

1. GANQ| latent space L 2| encoded El semantics &= Ad

2. Semantic image editing



Semantics in the latent space

Semantic scoring
Generator function

g: 2 — X fS:X—>Sh
Z X S CR™

Noise ~ N(0,1) Gender =0.1
LRSS Age =0.4
o 5 g i , f S ©

Latent vector Generated Image L Smile  =0.8

\

|

s = fs(9(z))]



Train latent boundary (SVM)

Semantic scoring
function

Generator

2 X
Z g — | X fSZX—>8| S

Generated Semantic Space
Image Space

Latent space




Train latent boundary (SVM)

Semantic scoring

Generator
function
2 = X
Generated Semantic Space

Latent space

Image Space

Train linear boundary in the latent space
By using semantic labels



Manipulation in the Latent Space




More results and explanation!

https://arxiv.org/pdf/1907.10786.pdf

Conditional Manipulation

Real image editing
Eyeglasses

Original

Eyeglasses w/
Age, Gender Preserved

. >
\
. -
b bai s G
A ‘- !
.
9 » .
Tt
Sal ol
-

Gender

Input Reconstruction Gender




Long-short Distance Aggregation
Networks for Positive Unlabeled
Graph Learning (CIKM 19)

2020-22384
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PU learning (1)

* Positive-unlabeled (PU) learning
* Binary classification with limited observations

* Negative examples are unseen during training
* There are only positive and unlabeled examples

@ Positive A Negative [l Unlabeled
® o &
o © . A
L] & ° A A
IS A A
& & A
) A A

Traditional Supervised Learning PU Learning




PU learning (2)

* PU learning is common in the real world
* Detecting review manipulation
* Detecting bot accounts in a social network

* Consider detecting review manipulation
* We detected 100 reviews among 1000 ones
* Are the remaining 900 reviews all normal?
* They should be treated unlabeled, not negative




Problem Definition

* Given
* Graph G = (V,E)

* Set IV consisting of positive node set P and unlabeled node set U
* Set E of edges

* Return
* A binary classifier model f (G, P)

* Such that
* f classify a node into positive and negative
* Detect negative nodes among the unlabeled ones




Proposed Approach

* Short-Distance Attention
* One-hop self attention is used to learn a representation for each node

* Long-short Distance Attention

« Compute self attention for A1, 4%, ..., AX
* Aggregate representations obtained from A%, 4%, ..., A

* Unbiased PU Learning
* Non-negative risk estimator
Ryu(s) = m, R (s) + max {o, Ro(s) - ﬁpﬁ;(s)} R¥(s) = (1/np) X7, L(s(o)), +1)
R(s) = (1/np) T;7, L(s(oF), -1)
R, (s) = (1/ny) X7, L(s(0¥), 1) B

K




Experiments

* Proposed method outperforms all other competitors

Table 1: The F1 score on Citeseer.

%p | OC-SVM | Roc-SVM | F-PU | FS-PU | GCN | GAT | LSDAN
1 0.023 0.018 0.684 | 0.682 | 0.433 | 0.775 | 0.786
2 0.038 0.057 0.626 | 0.695 | 0.564 | 0.775 | 0.804
3 0.054 0.079 0.710 | 0.705 | 0.623 | 0.796 | 0.813
4 0.090 0.115 0.734 | 0.725 | 0.721 | 0.814 | 0.828

Table 2: The F1 score on DBLP.

%p | OC-SVM | Roc-SVM | F-PU | FS-PU | GCN | GAT | LSDAN
1 0.445 0.056 0.650 | 0.677 | 0.419 | 0.767 | 0.808
2 0.543 0.144 0.521 | 0.695 | 0.599 | 0.807 | 0.833
3 0.580 0.234 0.710 | 0.715 | 0.685 | 0.824 | 0.824
4 0.601 0.314 0.597 | 0.725 | 0.734 | 0.836 | 0.849
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Motivation

m Chapter 12 : Bayesian Decision
m Risk formulation (Conditional Risk)
n Y=L Heak example
= R(ailx) = Xy Aas|w;)p(wj|x)
= Weighted Sum of Posterior probability(p(w;|x))
= Choose weights((a;|w;)) according to Posterior probability

: Reliability of Posterior probability is important factor of choosing desirable A(a;|w;)

= Calibration

= About paper

m Analysis on Calibration with image classification SOTA models

© 2021, SNU CSE Biointelligence Lab., http://bi.snu.ac.kr



Calibration

m Calibration
m Discrepancy between Model confidence and Accuracy

m e.g. If Expected Accuracy of samples that have Confidence of 80~90 is only 50%,
Bad Calibration

m Measurel. Expected Calibration Error (ECE)

= ECE = ¥, 2 |E (acc(Bn)) — E(conf (By))

0<p(x)<0.2 02 <p(x) <04 0.4 < p(x) < 0.6 0.6 < p(x) < 0.8 08<pkx) <1
E(acc(Bp)) 0.33 0.66 0.66
E(conf (B,)) 0.33 0.46 o 7 0.96
Calibration Error 0 0.2 0.2 0.3
ECE 3x0+3*x0.2+2+%0.2+3%0.3
B 3434243

© 2021, SNU CSE Biointelligence Lab., http://bi.snu.ac.kr 3



Calibration

m Measure 2. Reliability Diagrams

MLP-Mixer-H/14  ViT-H/14 BiT-L (R152x4) WSL 32x48d SimCLR-4x

BN B D I

ample frac.

© o &

o w o
1

1.0

Bad calibration

1.0 0 1.0 0 1.00 1.00 1.0
Confidence Confidence Confidence Confidence Confidence
(unscaled) (unscaled) (unscaled) (unscaled) (unscaled)

s Method 1. Temperature Scaling

~ __ Zi(k)
" G = MaXOsy

= Increasing T asymptotically makes calibrated probability k= where k is number of
class

s No impact on model output but Calibration

© 2021, SNU CSE Biointelligence Lab., http://bi.snu.ac.kr
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Calibration

= Important measure in Safty-critical applications
m Autonomous driving, Medical diagnosis, Forecasting

m Impact on Conditional Risk
s R(ailx) = 51 Aar|wy)p(w;[x)

= p(w;|x) should be close an actual accuracy

= e.g. acc(~cancer|x) = 0.5 but p(~cancer|x) = 0.9 then diagnose to normal regardless of 1

= Importance of calibrated confidence i.e. discrepancy between posterior probability and
actual Accuracy

© 2021, SNU CSE Biointelligence Lab., http://bi.snu.ac.kr
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Analysis

m Calibration analysis on SOTA models

m  SOTA algorithms
= MLP-Mixer, VIT, BiT, ResNeXt WSL, SImCLR, CLIP, Alexnet, Guo et al.

= Analysis (In distribution)
1.  Temperature scaling are effective on ECE
2. ‘MLP-Mixer, ViT, BiT’'(non convolution) better than ‘ResNeXt WSL, SImCLR, Guo et al.” wrt ECE
3. In most case, Model size « Error < 1/ECE
4. Model-wise clustered output

Temperature-scaled

0.09
A MLP-Mixer A MLP-Mixer
. 0.081 WiT - o viT
ResNeXt WSL, [S ‘ BIT BIT
. 007 .
SIimMCLR. Guo et al. = ResNeXxt WSL ResNeXt WSL
' © 0.06- T x¢ SimCLR ] # SimCLR
wa & CLIP cLIP
U= 0.05 AlexNet - AlexNet
w E * Guo et al. X Guo et al.
@ 0.04+ .
i 4 *
E 0.0 "
0.02\H 7 ‘. d %’
iy A

0»01 T T T T T T T T
: Z 0.3 0.4 05 01 02 03 04 05
ImageNet error ImageNet error

MLP-Mixer, ViT, BIT
(non-conv method)

© 2021, SNU CSE Biointelligence Lab., http://bi.snu.ac.kr



Analysis

m  Analysis (Distribution shift)

1. (MLP-Mixer, VIT, BIT) better than (ResNeXt WSL, SImCLR, Guo et al.) wrt ECE, out-of-
distribution. (MLP-Mixer, VIiT, BiT) gives almost same result as in distribution ECE

2. Corruption severity o« Error o« ECE

005 P-Mixer ViT BiT SimCLR ResNeXt WSL
50'20 !
50 .,.,. ‘0

w5 0.151 - ®,,.. . ..,.,. - )
* 8 0.101 a . . Q... . L . .0’
o 0.054 / ] R-_e--“ | .‘:- _ _
50.00 T T T T T T T T T T T T T T T
9 0.15 7
S @ .
w0 "
L, & 0.10- : . ®.." ] it | .o
O 3 . . e <8
" T 0.05- 7 1 «‘ | oy 0%-. 1 .8
L -~ ; o .
£
30.00 1 1 T I 1 1 1 I I 1 1 T I 1 1
<7700 0.2 04 06 0.8 0.0 0.2 0.4 06 0.8 0.0 02 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8

ImageNet-C error ImageNet-C error ImageNet-C error ImageNet-C error ImageNet-C error

ImageNet-C corruption severity
0 1 0> o3 @4 @5

Corruption severity : degree of distribution shift

© 2021, SNU CSE Biointelligence Lab., http://bi.snu.ac.kr



Conclusion

= More...
m Different datasets
m impact on size of dataset
m training steps
m relationship between Accuracy and ECE, ...

m Comment
m In safty-critical task using modern NN, refer to this paper to achieve better Calibration
m Use ECE as well as Test error to justify your model

1. Reuvisiting the Calibration of Modern Neural Networks (NeurlPS 2021) https://arxiv.org/abs/2106.07998
2. On Calibration of Modern Neural Networks (ICML 2017) http://proceedings.mir.press/v70/guol7a.html

© 2021, SNU CSE Biointelligence Lab., http://bi.snu.ac.kr


https://arxiv.org/abs/2106.07998
http://proceedings.mlr.press/v70/guo17a.html
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SDE-Net: Equipping Deep Neural Networks with Uncertainty Estimates

Lingkai Kong' Jimeng Sun? Chao Zhang'

Jongwan Kim



Introduction

DNNs have achieved enormous success in a wide spectrum of tasks
DNNs are poor at quantifying uncertainties for their predictions

Uncertainty quantification
Bayesian neural nets
often intractable
Specifying parameter priors for BNNs is challenging
Non-Bayesian approaches
Training can be prohibitively expensive in practice

Suffer from the drawback of conflating aleatoric uncertainty 1]

[1] Geifman, Yonatan, Guy Uziel, and Ran El-Yaniv. "Bias-reduced uncertainty estimation for deep neural classifiers." arXiv preprint arXiv:1805.08206 (2018).



Contribution

It explicitly models aleatoric uncertainty and epistemic uncertainty and is able to
separate the two sources of uncertainties in its predictions

It is efficient and straightforward to implement, avoiding the need of specifying
model prior distributions and inferring posterior distributions as in BNNs

It is applicable to both classification and regression tasks



Neural Net as Deterministic Dynamical System

A neural network: y = f(x) where x: input, y: output
The transformations in ResNet can thus be viewed as the discretization of a
dynamical system

i1 = Ty + f(@e, 1)

. LAt — Ly dx;
lim —&F - —
A—0 At dt

— f(:]ﬂtj t) —— {'iiﬂt — f(mt} t)dﬁ

The idea of the neural ODE method is to parameterize f(x;,t) with a neural net
and exploit an ODE solver to evaluate the hidden unit state wherever necessary [2]

[2] Chen, T. Q., Rubanova, Y., Bettencourt, J., and Duvenaud, D. K. Neural ordinary differential equations. In Advances in Neural Information ProcessiQ;g38
Systems, pp.6571-6583, 2018



SDE-Net: Equipping Deep Neural Networks with Uncertainty Estimates

ODE+£ deterministic 5t uncertaintyE Fd5HA| £

Stochasticet 2 (SDE)2 AL

diL‘t — [f(il?t, lf)]dt —I-[g(iL't, t)]th
Drift net Diffusion net

) 1
e —.._
0
Drift 5
> net f
0
oo s s 0.0 02 04 06 08 10 0
L . t
In-distribution data o
Predictive vectors
121
e 10 A u'rlll| -'Ir\'. J:IT 0.2
ab Iy I W I'| III |Fll"
| !»I gl 81 .-/ )i Qﬂ W n;x”‘f 0.2
R Diffusion S I qg'\a,/:“-ff_ :“f{__\ L f/\
S o [N T WSMAL AN —»] 0.2
) % g 7 . 'I' il M AW “){:j %;%'\4
l}'!;‘ '4-",__:\:'¢'.-.¢, .fj.] 21 | H‘-..f‘l"\/\’\. Jlr v'r\'l ’ I'u"l \ rp IL\ 0.2
¥ R i i 0 : '\'
_ 0.2 5/66
R . . 0.0 0.2 0.4 0.6 0.8 1.0
Out-of-distribution data

t



21 ICML) Neural SDEs as Infinite-Dimensional GANs
21 ICML) Continuous Latent Process Flows SDE

(

(

(21 ICLR) learning continous time dynamics by SDE

(21 ICCV) Neural TMDlayer Modeling Instantaneous flow of features via SDE Generators
(

21 ICLR_Best paper) Score-Based Generative Modeling through SDE
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viT(Visual Transformer)?
« AXWNK| computer vision task= cnne SMNO 2 TIH

. Transformer LXE AFESH M22 method KAl




Transformer?

- Attention= TA Y OOFE
-> Key ldea: Decoder2| &7 time- stepQI outputO| encoder?| 2= time-step2
outputg &, O™ outputJ-f JPE AIpH0| Qe (Seq2seqUAM A= HA|=l 7H'"=')

?

OO0 |
000
OO0 | ~—

LF HE  As| <E>

rir

Encoder Decoder

00O
l
00O
|
00O

000
|
OO0
|
OO0
!
00O

I love you <S> Li= HE Arsl



Transformer?

ttention’'S O| 25| 1 At

« RNN, LSTM 52 AFESHXA] &1 '3
S & £ QA Bt= D@

H 2O Z time sequence I

« 7|&0] attention= AFE S seg2
target Ianguage {Ho| A= d

O0]| CHollAl= O 471% L7071 =
-> self-attention!

S H2, source language2}
E & = UKX|EE Xpdle] A

R

The animal did not cross the street because it was too tired

I

high attention



Transformer? - Architecture

OUTPUT | | am a student
G r '
ENCODER I DECODER
\_ \
A +
e e
ENCODER DECODER
\_ \_
A 4
é {
ENCODER DECODER
\_ \
i $
e 4
ENCODER DECODER
L _
A 4
4 4
ENCODER DECODER
\_ \
A 4
a
ENCODER DECODER
\ \
\_ A
|
INPUT | Je  suis étudiant




Transformer? — positional encoding

C ENCODER #1 )
A A
C ENCODER #0 )

) — ! i

EMBEDDING

WITH TIME ) R )
SIGNAL — xi[ [ [ [ ] xe[ [ T ] xs[ [ ] ]

"Encooing 1 I LT 1] t (1 1]

EMBEDDINGS  xi [ [ [ ] x2 [ x3 I

INPUT Je | étudial



Transformer? — Multi-head attention

Calculating attention separately in
eight different attention heads

v

ATTENTION ATTENTION ATTENTION
HEAD #0 HEAD #1 HEAD #7




Transformer? — self attention

Input

Embedding

Queries

Keys

Values

Score

Divide by 8 (

Softmax

Softmax
X

Sum

d

)

Thinking

x+ [T

Machines
x> [
g [T

[T 1]

[T 1]

g o ko =

HEN



viT? - Architecture

Vision Transformer (ViT) Transformer Encoder

i
I A
in MLP
Ball [ |
Car Head ' MLP
@ | )
Transformer Encoder : st
I
; . | .
Sy e e R P O
Ic'i’;‘s’i]'i‘},ﬁ“bi'ii'ﬁmg Linear Projection of Flattened Patches | 4 i A
r r r ] |
s~ - I N O T
pEn- - SEEEENES |
W ﬁ! I Embedded
‘ 1 Patches




Experiments & Conclusion

Ours-JFT Ours-JFT Ours-121k BiT-L Noisy Student

(ViT-H/14)  (ViT-L/16)  (ViT-L/16) (ResNetl152x4) (EfficientNet-L2)
ImageNet 88.55+0.04 &87.76+0.03 85.30+0.02 87.54 +£0.02 88.4/88.5*
ImageNet Real 90.72+0.05 90.54+0.03 88.62+0.05 90.54 90.55
CIFAR-10 99.50+0.06 99.42+0.03 99.15+0.03 99.37 +0.06 —
CIFAR-100 94.55+0.04 93.90+0.05 93.25+0.05 93.51 +0.08 =
Oxford-IIIT Pets 97.56+0.03 97.32+0.11 94.67+0.15 96.62 +0.23 o
Oxford Flowers-102  99.68 +0.02 99.74+0.00 99.61 +0.02 99.63 +0.03 —
VTAB (19 tasks) 77.63+023 76.28+0.46 72.72+0.21 76.29 +1.70 —
TPUv3-core-days 2.9k 0.68k 0.23k 9.9k 12.3k

* Pre-trained ot datasetl| 3 7|7} 25 ViTe| =k =5
-> CNN2 CFEA| convolutional inductive bias(locality, translation equivariance)?t 87| &

OHM

« Dataset= 7|25+= 50| £0E A(MLHA Q! pre-trained H|E X 2 3)
P



IjEi0l Al =3 HIH

2021.11.20
Heewon Kim



Published as a conference paper at ICLR 2020

CONTRASTIVE REPRESENTATION DISTILLATION

Yonglong Tian Dilip Krishnan Phillip Isola
MIT CSAIL Google Research MIT CSAIL
yvonglong@mit .edu dilipkaylgoogle.com phillipi@mit.edu



Knowledge Distillation

* Original KD?
. 1]g] & 8<% 5 Teacher network?] X 2]-& A A Z A}-£-3} 12} 5}= Student networkel 7] A E3}= A o] 24,
« Teacher networkZ - E] 9] soft$t output & +XEE Student’} M7 F 85
» Knowledge& &3] 2 33}A| % 3. Ignores Structural knowledge!
———Loss+

Zs

L=(1-a)lce(y,o(zs)) + QaTQECE(U(T)-. o(
I I II I II Soft targets

f train t test

Student model Teacher model R I
train

Small model learns to mimic Larger model

the teacher as a student.

Training

Data

1) Geoffrey Hinton, Oriol Vinyals, and Jeff Dean.. Distilling the Knowledge in a Neural Network. NeurIPS 2014



Representation Distillation

@ TEX ye)y
Teacher Student Teacher Student Teachers Student
(a) Model compression (b) Cross-modal transfer (¢) Ensemble distillation

1) Geoffrey Hinton, Oriol Vinyals, and Jeff Dean.. Distilling the Knowledge in a Neural Network. NeurIPS 2014



Method

Notation
T ~ Paara(T) < data E-¥: T} S¢] Mutual Information I(T; §)= &t s}
S = f9(x) <4 student’s representation
T = 1 (z) 4 teacher’s representation

Objective Function:

f%* = arg max A Leritic(h) < our final learning problem
£ '
= arg IzlaX In}‘?X Eq(T,SlCZI) [log h(T, S)] - = N]Eq(T,S|C:()) [log(l — h(T S))]
iz

09" (1) g5(8)/7

ed" (1) g%(S)/7 4 ¥

h:{T,S8} — [0,1]. h(T,S) =



Mutual Information Lower Bound

Consider joint distribution p(T, §) and product of marginal distribution p(T)p(S).
Define distribution g and latent varible C.

q(T,S|C =1) =p(T,S), q(T,S|C=0)=p(T)p(S)

(C=1)= g aC=0=
Posterior forclass C = 1
q(T,S|C =1)q(C =1) p(T,S)

A€ =115 = = 0)q(C =0 + q(T.SIC = D€ =1 p(T,5) + Np(D)p(S)

Here, We can observe a connection to mutual information:

oo P P \ — og ])(T,S) 7‘3—:]7_:
osd(C=1T.5) = 18 sy NoDp(d)
= —log(1+ Np(T)p(S)) < —log(N) + log p(T, 5) 1(T55) =

p(T,S) p(T)p(S)

Then taking expection on both sides w.r.t. p(T,S) (=q(T,S|C = 1))
I(T S) > lﬂg(f\r) + EQ(T-.S|U=1} lﬂg Q(C — llT S) < MI bound

b g P9




Maximize MI bound

Since we do not know the true distribution q(C = 1|T, S),
We estimate it by fitting a model h: {T, S} = [0, 1].

Leriiic(h) = Eg(r,s10=1)l0g h(T', S)] + NE, (1 s1c=0)[1 — log(h(T’, S))] h*(T,S) = q(C = 1T, S)

h* = arg max Leisic(h) < optimal critic See Appendix!
h

I(T;S) = log(N) + Ey(r,51c=1) log q(C = 1|T', S) < MI bound

= log(N) + Ey(r,sjc=1)llog h*(T,S)] @©
> log(N) + Eq(r,s1c=1)[log #* (T, S)] + NEy(r.510=0)[log(1 — h*(T’ S))] @

= log(N) -+ Lcritic(h*) — log(N) -} m}?,x ,Ccr,',,'c(h) @ \VO
> log(N) +|Leritic(h) ® f S* — arg max m’?x Lorisic ()
fS

Final Learning Objective

h:{T.S8} — [0.1].
c9  (T)'g%(S)/7

' qS T N
s (1) g5(8)/m 4 N

fS* = arg maxfs LcritiC(h)

WT,S) =




Thank you
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OUTLINE

1. Introduction

2. Domain-Adaptive Pretraining (DAPT)

3. Task-Adaptive Pretraining (TAPT)

4. Augmenting Training Data for Task-Adaptive Pretraining
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INTRODUCTION

Do the latest large pretrained models work universally or is it still helpful to build separate pretrained models for specific domains?

Domain-Adaptive Pretraining (DAPT)
- continue pretraining RoBERTa on a large corpus of unlabeled domain-specific text

Task-Adaptive Pretraining (TAPT)
- pretraining on the unlabeled training set for a given task
- smaller pretraining corpus, but much more task relevant

Experiment base setting : 4 domain & 8 tasks, RoBERTa

- target STl ()Tigff18| LM domain Domain Task Label Type Train (Lab.) Train (Unl.) Dev. Test Classes
BioMep ~ CHEMPROT relation classification 4169 - 2427 3469 13
’ fRCT abstract sent. roles 18040 - 30212 30135 5
Figure 1: An illustration of data distributions. Task cs ACL-ARC citation intent 1688 - 4139 6
5 s 2 i 3 ScIERC relation classification 3219 - 455 974 7

data is comprised of an observable task distribution, —
. 3 55 08 Nivis HYPERPARTISAN  partisanship 515 5000 65 65 2
usually non-randomly sampled from a wider distribu- EWS t AGNEWS topic 115000 - 5000 7600 4
tion (light grey ellipsis) within an even larger target do- Revipws | HELPFULNESS  review helpfulness 115251 - 5000 25000 2
main, which is not necessarily one of the domains in- " 'IMDB review sentiment 20000 50000 5000 25000 2

cluded in the original LM pretraining domain — though e ) . . ) )

; ; 5 Table 2: Specifications of the various target task datasets. { indicates high-resource settings. Sources: CHEMPROT
overlap 18 pOSSlble. We explore the benefits of contin- (Kringelum et al., 2016), RCT (Dernoncourt and Lee, 2017), ACL-ARC (Jurgens et al., 2018), SCIERC (Luan
ued pretraining on data from the task distribution and et al,, 2018), HYPERPARTISAN (Kiesel et al., 2019), AGNEWS (Zhang et al., 2015), HELPFULNESS (McAuley
the domain distribution. etal., 2015), IMDB (Maas et al., 2011).

)58 SEOUL NATIONAL UNIVERSITY
WY NUMERICAL COMPUTING & IMAGE ANALYSIS LAB




Domain-Adaptive Pretraining (DAPT)

Domain-Adaptive Pretraining(DAPT) : continue pretraining RoBERTa on a large corpus of unlabeled domain-specific text

>> Analyzing Domain Similarity

gl 100.0 34.5 27.3 19.2

News 100.0 24.9 17.3

Reviews  34.5 100.0

BioMed  27.3 249

CS 19.2 17.3 100.0

PT News  Reviews BioMed CS

Figure 2: Vocabulary overlap (%) between do-
mains. PT denotes a sample from sources similar to
ROBERTA’s pretraining corpus. Vocabularies for each
domain are created by considering the top 10K most
frequent words (excluding stopwords) in documents
sampled from each domain.

58 SEOUL NATIONAL UNIVERSITY
% NUMERICAL COMPUTING & IMAGE ANALYSIS LAB



Domain-Adaptive Pretraining (DAPT)

>> Experiment

Dom. Task RoBAa. paptr -papr  DAPT improves over RoBERTa in all domains

CHEMPROT 819, 84252, 79413 _
BM TRCT 87201 87.60;1 86.90 - domain relevance for DAPT (_| DAPT)

. ACLARC 630;5 T5dy; 66441 - DAPT significantly outperforms adapting to an irrelecant domain, suggesting the importance of pretraining on domain-
SCIERC 77319 808,5 79.2o  relevantdata

HYP. 86.6p09 88.25¢9 76.449
TAGNEwWS 93.9,, 93.9,, 93.5,-

THELPFUL. 65.134 66.5) 4 65.12.8
"IMDB 05.0p2 95492 94.1p4

NEWS

REV.

Table 3: Comparison of ROBERTA (RoBa.) and
DAPT to adaptation to an irrelevant domain (—
DAPT). Reported results are test macro-Fy, except for
CHEMPROT and RCT, for which we report micro-F1,
following Beltagy et al. (2019). We report averages
across five random seeds, with standard deviations as
subscripts. T indicates high-resource settings. Best task
performance is boldfaced. See §3.3 for our choice of
irrelevant domains.

" SEOUL NATIONAL UNIVERSITY
¢ NUMERICAL COMPUTING & IMAGE ANALYSIS LAB



Task-Adaptive Pretraining (TAPT)

Task-Adaptive Pretraining(TAPT) : pretraining on the unlabeled training set for a given task

>>Experiment
Combined DAPT and TAPT

Additional Pretraining Phases

Domain Task ROBERTA DAPT TAPT DAPT + TAPT
CHEMPROT 81919 84202 82.604 84.404
BIOMED et 87201  87.601 87701 87.801
cs ACL-ARC 63.05 5 75405 67.41% 75.63.5
SciERC 77319 80815 7935 81.3, 3
NEWS HYPERPARTISAN 86.60.9 88.259 9045 90.06.6
TAGNEWS 93.9;2 93932 94.534 94.60
. THELPFULNESS 65.154 66.514 6859 68.71 5
REVIEWS  1MiDB 95002  95.401 95501  95.60.

Table 5: Results on different phases of adaptive pretraining compared to the baseline ROBERTA (col. 1). Our
approaches are DAPT (col. 2, §3), TAPT (col. 3, §4), and a combination of both (col. 4). Reported results follow the
same format as Table 3. State-of-the-art results we can compare to: CHEMPROT (84.6), RCT (92.9), ACL-ARC
(71.0), SCIERC (81.8), HYPERPARTISAN (94.8), AGNEWS (95.5), IMDB (96.2); references in §A.2.

SEOUL NATIONAL UNIVERSITY
WY NUMERICAL COMPUTING & IMAGE ANALYSIS LAB

SR 7

Cross-Task Tansfer

BIOMED | RCT CHEMPROT CS | ACL-ARC SCIERC
TAPT 87.7[]_1 826[]5 TAPT 67}41_5 79315
Transfer-TAPT | 87.1g.4 (10.6) 80.40.4 (12.2) Transfer-TAPT | 64.157 (13.3)  79.125 (10.2)
NEWS | HYPERPARTISAN AGNEWS REVIEWS | HELPFULNESS IMDB
TAPT 89.9, 5 94.501 TAPT 68.5:9 95.791
Transfer-TAPT | 82.2; - (17.7) 93.9,.5 (10.6) Transfer-TAPT | 65.044 (13.5)  95.001 (10.7)

Table 6: Though TAPT is effective (Table 5), it is harmful when applied across tasks. These findings illustrate
differences in task distributions within a domain.



Augmenting Training Data for Task-Adaptive Pretraining

1 Human Curated-TAPT 2 Automated Data Selection for TAPT
f“}we,11prm._______+ Biomedical domain -
Pretraini BIOMED NEWS REVIEWS _\ Pretraining ) BIOMED s
clraining RCT-500 HyP. IMDBf Biomedical Santences CHEMPROT RCT-300 ACL-ARC
TAPT 79.8, 4 9045, 95.5;, J.-' . .. - . 4‘\% ROBERTA 81914 79306 63.05 5
DAPT + TAPT 33.0.;_;; 90.0(;_5 95.6{3.1 " . 2 *q . TAPT 82.60.4 79814 67418
nodulators ) .
Curated-TAPT 83495 8995 9579, type voltage-gated calcium PP S %: o’ RAND-TAPT 81.906 80.60.4 69.73.4
DAPT + Curated-TAPT 83.8;5 92155 95801 cl gls... which contributes .. .. . . LI "Q; * . 50NN-TAPT 83.3, 7 808 70. 735
to ._(:L_jl::'I":'Itljull':mzllﬂ “"-I\'I\‘. . . -"-:‘F{.‘% .'. . ': 150NN-TAPT 83.2{]_(; 8].2{].‘5; 73.32_7
Table 7: Mean test set macro-F, (for HYP. and e '. ‘“'.'-_“\:."' G.t.‘-,: -'-: o | 500NN-TAPT 83307 81.70.4 75.519
IMDB) and micro-F; (for RCT-500), with Curated- "11 Antbodies against the L @e e e (0 e 4 DAPT 84.2, - 82.5, - 754 -
. . PIQ-type voltage-gated rost | uad-- -y 0 g : ).2 0.5 2.5
TAPT across five random seeds, with standard devia- calcium channel reduce <-iio] e, . ® ® /998
tions as subscripts. T indicates high-resource settings. the influx of calcium into the t .. ","" Table 8: Mean test set micro-F, (for CHEMPROT
presynaptic terminal, which s key e Tmmemes *
io the release of acetyicholine.” e e and RCT) and macro-F; (for ACL-ARC), across five
VAMPIRE smbedding space ~ tandom seeds, with standard deviations as subscripts,

comparing RAND-TAPT (with 50 candidates) and ANN-
Figure 3: An illustration of automated data selec- TAPT selection. Neighbors of the task data are selected
tion (§5.2). We map unlabeled CHEMPROT and IM  from the domain data.

B1OMED sentences to a shared vector space using the
VAMPIRE model trained on these sentences. Then,

for each CHEMPROT sentence, we identify k nearest
neighbors, from the BIOMED domain.

SEOUL NATIONAL UNIVERSITY
NUMERICAL COMPUTING & IMAGE ANALYSIS LAB
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Image Deraining

e Task of removing rain from single image

Problem: Lack of real-world labeled training data



Synthetic Generation of Labeled data

Synthetic Data Generation

Real-world Data

K Unlabeled Data

Synthetically generated input-output dataset pairs

Problem: Suboptimal performance on real-world images due to domain gap
— Need for Real-world images to improve generalization performance!



Paper’s Solution

* Semi-supervised Learning to incorporate unlabeled real-world data
into training

e Gaussian Process-based Pseudo-labeling approach

* |terative Multi-phase Training
e Labeled Data training phase
* Unlabeled Data training phase



qup

G ou d-Truth

Labeled Data

Derained image

=P

&

Encoder Decoder
! I 1

=
£

Derained image

Unlabeled Data

(Real-world) L Zu,pseudo . Zupred
ﬁunsup
* Labeled path » Unlabeled path Labeled latent
Zj
space vetcors
Zupseudo : pseudo-GT| |Zuprea latent vector | P

e

. Loss for
Ly, =Loss for - “ISUP - unlabeled data




- I I I S S - -y,

’_______

Labled ata 7

_—_—_—_—_—__N

Encoder

Unlabeled Data
\.\_r_r_i(ReaI-worId)7_7_/,,

]_

r N\
~Sup
r N
Ground-Truth Derained image
S
Decoder
1 |
1
F
Derained image
[ ] ]
L Zy,pseudo Zy,pred J
ﬁunsup

* Labeled path

» Unlabeled path

Zy,pseudo : pseudo-GT

| Zupred latent vector |

e

L

= Loss for
p -

GP = Gaussian

Labeled latent
“ gpace vetcors

Loss for
¥ISUP - unlabeled data

-

/



Labeled Data training phase

« Supervised Loss : Minimize error between predictions and GT

Lows = L1+ AL Ly =y~ uilh,
sup = L1+ ApLyp Ly = |®veey]™) — @vec(w)l3

* Inputs projected onto latent space are modeled using gaussian process and stored

Latent
Space

Labeled Data Input Predicted Output
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Unlabeled Data training phase

« Unsupervised Loss : Minimize error at latent space between
unlabeled data projections and pseudo-GT

EU’RSUP — ||z1kz,pred_zﬁ,pseudo||2+10g Eﬁ,n+log(1_zﬁ,f)

Encoder Decoder

Unlabeled Data Input Predicted Output



Latent Space Projections

O Labeled latent vector

A Unlabeled latent vector

O Nearest Labeled latent vector

* Encoder projects both labeled and
unlabeled data into latent space

* Using KNN, unlabeled latent vectors can
be represented as a linear combination
of labeled latent vectors



Gaussian Process Modeling and Pseudo-GT

« Modeling joint distribution of nearest labeled latent vectors and unlabeled latent vector

P(z4| Dz, Fz) = N kg, T4,

Wk = K (2, F.)IK (Fay, Fuy) + 0211 Fy, Pseudo-GT

u?

Eﬁ = K(Zﬁ,zii) - K(zﬁapzz)[K(Fzz?FZt) +G?I]_1
K(Fzz:zﬁ) +G€2

« Minimize error between Pseudo-GT and unlabeled latent vector, update the weights of the
encoder

« Adapts network to unlabeled data, hence results in better generalization

EU’RSUP — ”ztkf,,p'red_zt’i,pseudo||2+10g Eﬁ,n+log(1_2'ﬁ,‘f)



Experiment Results

* Results on Synthetic test set

Table 1. Effect of using unlabeled real-world data in training process on DDN-SIRR dataset. Evaluation is performed on synthetic dataset
similar to [ "]. Proposed method achieves better gain in PSNR as compared to SIRR[/"] in the case of both Dense and Sparse categories.
D, indicates training using only labeled dataset and D, + Dy, indicates training using both labeled and unlabeled dataset.

Methods that use only synthetic dataset Methods that use synthetic and real-world dataset
Dataset | Input | DSC[}(] LP[4] JORDER [7]] DDN["] JBO[50]  DID-MDN [5%] UMRL [57] SIRR [*Y] (CVPR "19) Ours
(ICCV°15) (CVPR’16) (CVPR’17) (CVPR’17) (CVPR’17) (CVPR "18) (CVPR'19) | Dy Dy+Dy Gain| Dy Dg+Dy Gain
Dense | 17.95 19.00 19.27 18.75 19.90 18.87 18.60 20.11 20.01 21.60 1.59 | 20.24 22.36 2.12
Sparse | 24.14 25.05 25.67 24.22 26.88 25.24 25.66 26.94 26.90 26.98 0.08 | 26.15 27.26 1.11

Figure 4. Qualitative results on DDN-SIRR synthetic test set. (a) Input rainy image (b) DID-MDN [5](CVPR ’18) (c) DDN [“](CVPR
’17) (d) SIRR [“2](CVPR ’19) (e) Ours (f) ground-truth image.



Experiment Results

. ReSl_JIts on Real world test set

. SIRR [*7] Ours
Metrics | Input = 5, + D, Gain| D; D+ Dy Gain
NIQE 4671 386 384 002 385 378 0.07
BRISQUE 3137 2661 2529 1322577 2295 2.82

Figure 5. Qualitative results on DDN-SIRR real-world test set. (a) Input rainy image (b) DID-MDN [~ "] (c) DDN [] (d) SIRR ["] (e)

Ours.
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Introduction
: Paper

* GraphCodeBERT : Pre-Training Code Representations with Data Flow

« Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long Zhou,
Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, Michele Tufano, Shao Kun Deng,
Colin Clement, Dawn Drain, Neel Sundaresan, Jian Yin, Daxin Jiang, Ming Zhou

* ICLR 2021

« Paper:
https://arxiv.org/pdf/2009.08366.pdf

» Code & Dataset:
https://qgithub.com/microsoft/CodeBERT/tree/master/GraphCodeBERT



https://arxiv.org/pdf/2009.08366.pdf
https://github.com/microsoft/CodeBERT/tree/master/GraphCodeBERT

Introduction
: Domain

* Code Representation
« Source Code0]| CHgt Language Model= BtE = 20¢

« Compiler O|2, NLP, HCI & CtQfol 20F2} o412t

O|Z M| BF=O Tl Code Representation2 0|26t CHS TaskE 2 o~ QUL

 Code Search : X102 &l Query?t £H{F 2 W, T ZEl T2 Code Snippet 20| A 0|2t I+E &
ASt(semantically related) Code SnippetS Bt2tst= Task

« Clone Detection : & Code Snippet2| SAtE(similarity)S £%&St= Task

« Code Translation : ¢F Programming Language& &M &|0| Q= Code Snippeta CHE
Programming Language® Hi=t5t= Task

« Code Refinement : Code Snippetdf| = HOE X522 & X|/NSt= Task




Previous Works

« BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding

« Paper : https://arxiv.org/pdf/1810.04805.pdf
« NAACL 2019

+ "BERT' & 3542 M

 CodeBERT: A Pre-Trained Model for
Programming and Natural Languages

e Paper : https://arxiv.org/pdf/2002.08155.pdf
« EMNLP 2020

« Code Representation 200 BERTZ x[X2 H&

« CodeSearchNet Challenge: Evaluating the

State of Semantic Code Search

« Paper : https://arxiv.org/pdf/1909.09436.pdf

« 2019

« Code Search TaskE& 2I¢t g% GIO|EAll
“CodeSearchNet Corpus”2t 2} H E2l
‘CodeSearchNet Challenge"& H|QF

» GraphCodeBERTX: CodeSearchNet CorpusE O
Eofl ersEIUS


https://arxiv.org/pdf/1810.04805.pdf
https://arxiv.org/pdf/2002.08155.pdf
https://arxiv.org/pdf/1909.09436.pdf

Key Contribution

e CodeBERT + Data Flow

e CodeBERTH|M = Source Code?| Semantic-level Structured| CHgt 124 glO],
Source CodeE 11X Token=2| Sequencez Clgl
« Ex)v = max_value - min_value
« CodeBERTO|A=, "max", "value", "min", "value" (sub)tokenS 2£E{ 0| Code?} X|CH2 1}
E[22ro| X+ 6= Code S OldHer
e OFOF I 2 A2HHII HATIO 2 “max_value”, “min_value"2} 242 0|22 AIRSIX| QUQCHT,

CodeBERTE O] Code?t H{tH 2|0|(semantic)& ?tX[=X| O|al{SHX| &gt

« GraphCodeBERT= Semantic-level Structured]| CHet 2 E &1 9l= Data FlowS

stg 20l A T Z2SHAH| off O] =S oliZ



Result

model Ruby  Javascript Go Python Java Php Overall
NBow 0.162 0.157 0.330 0.161 0.171 0.152 0.189
CNN 0.276 0.224 0.680 0242 0263 0.260 0.324
BiRNN 0.213 0.193 0.688  0.290 0304 0338 0.338
selfAtt 0.275 0.287 0.723 0398 0404 0426 0.419
RoBERTa 0.587 0.517 0.850 0587 0599  0.560 0.617
RoBERTa (code)  0.628 0.562 0.859 0610 0620 0579 0.643
CodeBERT 0.679 0.620 0.882 0672 0676 0628 0.693

GraphCodeBERT  0.703 0.644 0.897 0.692 0.691 0.649 0.713

Table 1: Results on code search. GraphCodeBERT outperforms other models significantly (p < 0.01).

Model Precision | Recall F1
Deckard 0.93 0.02 0.03 -
Java—C# C#—Java small medium
RtvNN 0.95 0.01 0.01 Method BIEU Acc | BIEU Acc Method BIEU Acc | BLIEU Acc
CDLH 0.92 0.74 0.82 - :
ASTNN 0.92 0.94 0.93 Naive 18.54 0.0 18.69 0.0 MNaive TR.06 0.0 00.91 0.0
’ ’ ) PBSMT 4353 125 | 4006 16.1 LSTM 76.76 10.0 | 72.08 2.5
FA-AST-GMN 0.96 0.94 0.95
RoBERTa (code) 0,040 0037 10033 Transformer E.E-ﬂr 33.0 §ﬂ.4? 32.9 Transformer ?_T.El 14.7 89.2§ 379
cg dEEEST‘: g 0047 | 0934 | 0941 ROBERTa (code) | 77.46 561 | 71.99 57.9 RoBERTa (code) | 77.30 159 | 90.07 4.1
GraphCodeBERT [.'!L948 0'952 “'950 CodeBERT 79.02 500 | 72.14 58.8 CodeBERT 77.42 164 | 91.07 5.2
rapn-oce : : : GraphCodeBERT | 80.58 59.4 | 72.64 58.8 GraphCodeBERT | 80.02 17.3 | 9131 9.1
Table 2: Results on code clone detection. Graph- Table 3: Results on code translation. Table 4: Results on code refinement.

CodeBERT outperforms other pre-trained methods
significantly (p < 0.01).
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Human Pose Regression with
Residual Log-likelihood Estimation

Jiefeng Li, Siyuan Bian, Ailing Zeng, Can Wang, Bo Pang, Wentao Liu, Cewu Lu
Shanghai Jiao Tong University, The Chinese University of Hong Kong, SenseTime Research
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(c) Regression with RLE

Figure 1: Illustrasion of (a) heatmap-based method, (b)
standard regression paradigm, and (c) regression with the
proposed RLE.

MIPALaboratory



General Formulation of Regression

['mle — lOg P@(X|I)‘

X=p,
probability of gt appearing in the location X

_ . 0
P@ (X|I) — 1 6_% model’s output

V2m@—

Y
x log & 1 (g Azu)

L = —log Po(x|Z)
X=H, 20

gaussian with constant variance: L2 loss
laplace with constant variance: L1 loss

MIPAL



Regression with Normalizing Flows “
. . ®
Basic Design  Peorae———— p—
/ | simple distribution — invertible mapping — complex distribution "
) p Normalizing
Image || Regression | > l —= Fow |2 5
O_PFolel) = =7 . PesD)
4/_M ©: regression model
Peo (ZlI) = 217“3_6 262 fo: flow model
log P, T) =log Po(z|L) + log |det afd)_l
08 @)¢(X| ) — 108 @(Z‘ ) 1 log |de Ox fqb_lis the inverse of f, and z = f;l(x)
[:mle = = log P@,cb(X'Z)
X=p,
_1 ofy*
= —log Pe(fy " (kg) | ) — log |det — . — .
,'l'g ¢ will learn to fit the distribution of png across all images

MIPAL




Regression with Normalizing Flows .
Reparameterization _y shifing  rescaling

mage)-» [Regessr]

—_—>
N(0,T)

Normalizin:
Flow

il

x = fy(2)

Reparameterization

Emle = 10g P@,¢(X|I)‘

= —log Py(,) — log

X=p,
O,

det
o,

= —log Py(p,) + log o, where pi, = (p, — f1)/0,and Op, /Op, = 1/6.

MIPAL

flow model f¢ can focus on learning the distribution of y_barg

training of the regression model entirely relies on the distribution estimated by the flow model f¢




Regression with Normalizing Flows

Residual Log-likelihood Estimation

optimal underlvina distribution

-

/

simple distribution e.g. gaussian

-

[ R — log Poe(x) = log ( Q%) - X&)
Poro(x1T) & — 5 Q%)
_ Popi(X)
Do o - Q00 ot 2 o
T ot | residual log-likelihood
_______ R gp;ra—mgt&iz_atian_ T
log Py(x) = log Q(x) + log G4(x) + log s,
distribution learned by the flow model.
L. = —log P@,¢(X|I) It will try to fit the underlying residual likelihood instead of
X=M, learning the entire distribution.
= —log Py(r,) +logo
= —logQ(p,) — log Gy(jr,) —logs +logo.
" As the hypothesis of ResNet, it is easier to optimize the residual mapping than to optimize
MIPAL the original unreferenced mapping.




SImPLE: Similar Pseudo Label Exploitation for
Semi-Supervised Classification

202134942 £ 23



Introduction

« Semi-supervised training

« SIMPLE algorithm: Use information from unlabeled data
* Proposed “pair loss”




Overview

Labeled Train Images

f-______-"

J Supervised
Loss

Classification | |
Labe!

Network |Gusssing |

Pair Loss

J | —




Method

« Augmentation strategy
« Anchor: pseudo labels from weakly augmented samples

* Pseudo-labeling

 Pseudo label: Model prediction average of several weakly
augmented versions of same unlabeled sample



Labeled Train Images

e Loss

. Supervised

Loss
Ly

 Supervised loss: Cross-entropy of weakly augmented labeled samples
« Unsupervised loss: L2 distance btw strongly augmented samples and

their pseudo labels

Pair Loss

Weak Augmentations

: Classification
Unlabeled Train Images Y O Network




Method

Loss |
. (1 h( :
* Pair loss Al idr |
- Hem ' nmls. |
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Experiments

* Transfer learning
 Performs well from pre-trained model on different dataset
 Fast convergence

Transfer DomainNet-Real to Mini-ImageNet

Method 4000 labels Converpence step
Supervised w/ EMA= 48.83% 4K

MixMatch® from scratch 50.31% 150K
MixMatch® 53.39% 69K

MixMatch Enhanced® from scratch 52.83% T34K

MixMatch Enhanced® 55.75% TK

SimIP’LE from scratch 59.924% 338K

SimPLE 58.73% 53K

Table 4: DomainNet-Real pre-trained model transfer to Mini-ImageNet. All experiments use WRN 28-2. The model is
converged when its validation accuracy reaches 95% of its highest validation accuracy. *: using labeled training set only. *:
using our implementation.
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Introduction

FlexMatch: Boosting Semi-Supervised Learning
with Curriculum Pseudo Labeling

Bowen Zhang™ Yidong Wang™
Tokyo Institute of Technology Tokyo Institute of Technology
bowen.Z.abdm.titech.ac. jp wang.y.ca@m. titech.ac.jp

Wenxin Hou Hao Wu Jindong Wang'
Microsoft Tokyo Institute of Technology Microsoft Research Asia
wenxinhou@microsoft.com wit.h.aj@m. titech.ac. jp jindwang@microsoft.com

Manabu Okumura’ Takahiro Shinozaki'
Tokyo Institute of Technology Tokyo Institute of Technology
okulpi.titech.ac. jp shinot@ict.e.titech.ac. jp

Abstract

Propose Curriculum Pseudo Labeling (CPL), a curriculum learning approach of
dynamically leveraging unlabeled data for SSL

CPL is cost free and also significantly boosts the convergence speed

FlexMatch (FixMatch + CPL) achieves SOTA performance on a variety of SSL
benchmarks



Backgrounds

Semi-Supervised learning (SSL): Learning with small amount of labeled and
large amount of unlabeled data (1-stage)

Loss = Ls + L,
Assumption

The smoothness assumption: points that are close to each other are more likely to
share a label

The cluster assumption: If points are in the same cluster, they are likely to be of the
same class

The manifold assumption: The (high-dim) data lie (roughly) on a low-dim manifold

Supervised

Entropy Minimization

La¥r. .

Pseudo-Labeling

- i e, .

I1-Model

o gl Mpat

® ClassA O Class B @ Unlabeled



Backgrounds

Entropy minimization

Decision boundary should not pass high-density regions of the marginal data
distribution

Sharpening

L
Sharpen(p, T'); :=p§:/2pj:

Image Model Prediction

S& - _ _.

Argmax



Backgrounds

Pseudo Labeling (self-training)
Entropy minimization approach

Use the model’s class prediction as a label to train against

Labeled data Unlabeled data
® ® 00 ® & @
Train Predict
® 000 00
— Model —)
® 000 o 060
® ® 0 O ® 0 O

( KRetrain
Predict ¢
Labeled data Pseudo-labeled data

o000 ., 060
oooe eoo
oo oo o0
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Backgrounds

Consistency regularization

Enforce network predictions to be consistent when its input is perturbed

ubB
> pm (ylw(ws)) = pm(ylw(u))[3
b=1

Anomaly Score

Augmented 1 for each class

Unlabeled Feature Outlier
example extractor Detector
Consistency

Anomaly Score Regularization
for each class

Feature Outlier | |
extractor Detector




Related work

FixMatch (Neurips 2020)
SOTA

Use consistency regularization and pseudo-labeling

FixMatch: Simplifying Semi-Supervised Learning
with Consistency and Confidence

Kihyuk Sohn* David Berthelot® Chun-Liang Li Zizhao Zhang Nicholas Carlini
Ekin D. Cubuk Alex Kurakin Han Zhang Colin Raffel
Google Research
{kihyuks,dberth,chunliang,zizhaoz,ncarlini,
cubuk, kurakin,zhanghan,craffel}@google.com



Related work

FixMatch (Neurips 2020)

Weakly-
augmented

Unlabeled
example

Supervised Loss

1 B
b= 2 > H(p, puly | a(2)))
b=1

Minimize I + Al,,
qp = pm(Yla(up))

qp = argmax(qp)

Strongly-
augmented

Prediction Pseudglabel
Model '—> """ ‘ — I
-.- -- —————

Prediction /[ H(p. q) ]
Model ]_’ -l|l.l

Unsupervised Loss

uB
b= = > U (max(as) [0 B, Py | A(ws))
b=1

Pre-defined threshold(t) is constant



Related work

Fixed threshold

Use only unlabeled data whose prediction confidence is above the threshold to
reduce the confirmation bias

Prob 1. It ignores a considerable amount of other unlabeled data, especially at the
early stage of the training process, where only a few unlabeled data have their
prediction confidence above the threshold

Prob 2. It handle all classes equally without considering their inherent different
learning difficulties

Curriculum learning

A Learning strategy where learning samples are gradually introduced according to
the model’s learning process



Method

Curriculum Pseudo Labeling (CPL)

Adjusting the thresholds according to the model’s learning status of each class

Ideal approach: calculating evaluation accuracies for each class and use them to
scale the threshold

Ti(c) = ayle) - 7
T;(c): flexible threshold for class c at time step t

a;(c): evaluation accuracy

Lower accuracy that indicates a less satisfactory learning status of the class will lead
to a lower threshold that encourages more samples of this class to be learned

Prob 1. Such a labeled validation set is expensive under SSL scenario

Prob 2. Considerably slow down the training speed

10



Method

Curriculum Pseudo Labeling (CPL)

Assumption: When the threshold is high, learning effect of a class can be reflected

by the number of samples whose predictions fall into this class and above the
threshold

N
o1(c) = > L(max(pm ¢ (ylun)) > 7) - L(arg max(pm.i (y|un) = c)

n=1

When the unlabeled dataset is balanced, larger o;(c) indicates a better estimated
learning effect
Normalization: make its range between oto 1

Bi(c) =

oi(c)
maxaoy¢
(4

Ti(c) = Bi(c) - T

11



Method

Curriculum Pseudo Labeling (CPL)

Unsupervised loss in FlexMatch

uB

Lyt=— Z I(max(gp) >

b=1

Cost of introducing CPL is almost free!

T: (arg max(gs))) H (G, P (y]Q2(us)))

* Does not introduce additional forward propagation processes for evaluating the model’s

learning status, nor new parameters

Step t-1

Class 1

Class 2

P

Class C

Number of
samples
reaching T

Estimated learning effects
of each class

i’ .

Step t

Adjust
flexible
thresholds

>
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Method

Threshold warm-up
Estimated learning status may not be reliable at early stage

Term N — Y.¢_; 0,(c) is the number of unlabeled data that have not been used

5ﬁ(f3) _ G‘t(ﬂ)
max {ma}cat, N — th}

[

Non-linear mapping function

Flexible thresholds can be more sensitive when 5;(c) is large and vice versa
Ti(c) = M(Bi(c)) - 7

A monotone increasing convex function lets the thresholds grow slowly when is
small, and become more sensitive as 5;(c) gets larger

M(x) = zi—x for our experiments

13



Algorithm

Algorithm 1 FlexMatch algorithm.

I: Input: X = {(z,ym) -me(1,...,.M)}, U={u, :nec(1,...,N)} {M labeled data and
N unlabeled data. }
2: Up=—-1:n€e(l,..., N) {Initialize predictions of all unlabeled data as -1 indicating unused. }
3: while not reach the maximum iteration do
4: forf*_ltoCdu
5: o(c) = Z (i}; = ¢) {Compute estimated learning effect. }
6: if maxo(c) < Zn , (@, = —1) then
7: Calculate 3(c¢) using Eq (1 1) {Threshold warms up when unused data dominate. }
8: else
9: Calculate /3(c) using Eq. (6) {Compute normalized estimated learning effect.}
10: end if
11: Calculate 7 (c) using Eq. (7) {Determine the flexible threshold for class c.}
12:  end for
13: forb=1touB do
14: if p,, (y|w(up)) > 7 then
15: up = arg max g, { Update the prediction of unlabeled data wp. }
16: end if
17:  end for

18:  Compute the loss via Eq. (8), (10) and (9).
19: end while
20: Return: Model parameters.

14



Experiments

Main Results

Error rates

Dataset | CIFAR-10 | CIFAR-100 | STL-10 | SVHN

Label Amount | 40 250 4000 | 400 2500 10000 | 40 250 1000 | 40 1000
FL 69.51+455  41.02+356  13.15+4184 | 86.10+150  58.00+038  36.48+003 | 74484148 55634538 31.80+020 | 60324246 9564025
Flex-PL 654141235 36374157 108241004 | 74854153 44154009 29131026 | 69264060 41284046 24634004 | 3690109 8641008
UDA 7.33+203 5.1 4007 4204002 | 44994208 27.594024 22094009 | 37314303 12.07+150 6.65 4025 4404231 1.93+0m
Flex-UDA 533+003 5.05+002 4.07 4006 | 33641002 24344020 200074003 | 12.84 4260 8.05+02 5.77+008 3784167 1.97+006
FixMaich 6.78+0.50 4.95 +0.07 4.09+002 | 46.76+079  28.15+081 22474066 | 35424643 10494103 6.20+020 436216 1974003
FlexMaich 4.99 0.6 4.80+006 3.95+003 | 324441909 23851023 19.92+006 | 10.87+1.15 T. 714014 5.506+022 5364238 2.80409
Fully-Supervised | 4454012 | 19.07+ 0.8 | - | 214100

CPL achieves better performance on tasks with extremely limited labeled data

CPL improves the performance of existing SSL algorithms

CPL archives better performance on complicated tasks

FlexMatch fails to surpass FixMatch on SVHN

SVHN is a relatively simple yet unbalanced dataset

Classes with fewer samples never have their estimated learning effects close to 1, even
when they are already well-learned and this makes confirmation bias

15



Experiments

0.3
w/o CPL w/ CPL
gm Table 2: Error rate results on
Toa ImageNet after 22° iterations.

Method Top-1 Top-5

FixMatch 43.08 19.55

Figure 2: Average running FlexMatch 35.21 13.96
time of one iteration on a sin-

gle GeForce RTX 3090 GPU.

0.0
Pseudo-Label upa FixMatch
Method

5.51 0.7 [ 1.0 e e
'I'\N'-"L_“ " " il et
1 .‘W
a5 M‘nmw_ﬁwnﬁ o5l . E——a = 0.8 | :F, 1 — 6
. | I'I 2 7
o | —— FixMatch " /’ﬂ“ L 0.6 o
© 35| — o ; o — 3 — 8 o
3 ._ FlexMatch <3 III'I = 0.4 Iw,ﬂ " 5 =Y
2.5 | —— FixMatch 0.2 ~ N-'-x 5 10
et s -- 01 ’ FlexMatch 0.0 ,l mu
1> 5k 200k 400k 600k 800k 1000k 0 200k 400k 600k 800k 1000k . 40k B0k 120k 160k 200k ) 0 40k 80k 120k 160k 200k
Iter. Iter. Iter. Iter.
(a) Loss (b) Top-1 acc. (c) FixMatch: 56.4% (d) FlexMatch: 94.3%

Figure 3: Convergence analysis of FixMatch and FlexMatch. (a) and (b) depict the loss and top-
l-accuracy on CIFAR-100 with 400 labels. Evaluations are done every 5K iterations. (c¢) and (d)
demonstrate the class-wise accuracy within the first 200K iterations on CIFAR-10 dataset. The
numbers in legend correspond to the ten classes in the dataset.
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Experiments

Ablation study

5.0 6
w/o warm-up . w/ warm-up
3.4 4.9 5
8 z =)
o o] —
o o o
= 5.2 = 4.8 <4
e o w
AL 0 o
4.7 1 3
5.0
| . ! . ! 4.6 : 24
0.90 0.93 0.95 0.97 0.99 Concave Linear Convex CIFAR-10 CIFAR-100

T

(a) Threshold 7

Mapping function
(b) Mapping function
Figure 4: Ablation study of FlexMatch.

Dataset

(c) Threshold warm-up
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L
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SMOTE: Synthetic Minority Over-sampling Technique (1)
* SMOTE is a popular model for imbalanced data learning task

* Unlike previous methods, SMOTE over-samples the minority class
* Under-sampling: selectively remove samples from the majority class
* Over-sampling: generate new minority class samples

Under-sampling Over-sampling

Preserve information and show high

Pros Reduce computational cost
performance

Cons Cause information loss Cause overfitting problem B 4




SMOTE: Synthetic Minority Over-sampling Technique (2)

* To address the overfitting problem, SMOTE generates synthetic samples
» Step 1. Select a minority class sample and find the k-nearest samples
* Step 2. Randomly choose one of the k-nearest sample
» Step 3. Create a synthetic sample by combining the two samples

. . . The majority class
. . . The minority class ‘
. . . The synthetic object set .
O O O o
AN

Feature space Feature space Feature space 3 ¥ ¢



GraphSMOTE (1)

* GraphSMOTE aims to bring SMOTE to the graph domain

* The main challenge is the connection of nodes (i.e., edges)
* GraphSMOTE introduces an edge generator to address this issue

/ e =
/ ~ rd - [
- \ iy ~ \ - _
/ ~ \ y, \ ~ 4
s -~ \ - \
J S \ /s rd \ "
/ - \ / A /
e \ - \ -’
4 \ -~ A\
\ 4
\
\
\

\ \
\ \ e
,/ 1 \ \ v 1 \ ¢
| \ \ ~ \ 4

Graph G Apply SMOTE to the graph G



GraphSMOTE (2)

* GraphSMOTE consists of four modules:

* Feature extractor
* Map each labeled node into an embedding space
e Use typical GNN (e.g., GCN)
* Node generator
e Generate a synthetic node by interpolating the original node and the nearest node
e Adopt the algorithm of SMOTE
* Edge generator
* Predict the connection between the synthetic node and existing nodes
* Node classifier

 Classify the unlabeled nodes using the augmented graph
e Use typical GNN-based classifier (e.g., GCN + MLP)




GraphSMOTE (3)

* The overall process of GraphSMOTE

/7\
\/\/L = = \

Input Graph
(L: labeled nodes) 1. Obtain node embeddings 2. Create a synthetic node

/7\ C/7\
\/\S/ o \/\//\

Augmented Graph C,:Class1,C,:Class 2
(S: synthetic node)

G

3. Generate edges of a new node 4. Predict the node labels



GraphSMOTE (4)

* How effective is GraphSMOTE in imbalanced node classification task?

* Show significant improvements compared to the “Origin” method

e Outperform almost all baselines in all datasets, on all evaluation metrics

Cora BlogCatalog Twitter

Methods ACC AUC-ROC F Score ACC AUC-ROC F Score ACC AUC-ROC F Score
Origin 0.681+0.001 0.914+0.002 0.684+0.003 | 0.210+0.004 0.586+0.002 0.074+0.002 | 0.967+0.004 0.577+0.003 0.494+0.001
over-sampling 0.692+0.009 0.918+0.005 0.666+0.008 | 0.203+£0.004 0.599+0.003 0.077£0.001 | 0.913+0.006 0.601+0.011 0.513+0.003
Re-weight 0.697+0.008 0.928+0.005 0.684+0.004 | 0.206£0.005 0.587+0.003 0.075£0.003 | 0.915+0.005 0.603+0.004 0.515+0.002
SMOTE 0.696+0.011 0.920+0.008 0.673+£0.003 | 0.205£0.004 0.595+0.003 0.077£0.001 | 0.914+0.005 0.604+0.007 0.514+0.002
Embed-SMOTE 0.683+0.007 0.913+£0.002 0.673+0.002 | 0.205£0.003 0.588+0.002 0.076+0.001 | 0.943+0.004 0.606+0.005 0.514+0.002
GraphSMOTET 0.713+0.008 0.929+0.006 0.720+0.002 | 0.206£0.005 0.602+0.004 0.083+£0.003 | 0.929+0.005 0.622+0.003 0.519+0.001
GraphSMOTEO 0.709+0.010 0.927+0.011 0.712+0.003 | 0.215£0.010 0.591+0.012 0.080£0.005 | 0.905+0.008 0.616x0.006 0.515+0.003
GraphSMOTEPreT 0.727+0.003 0.931+0.002 0.726+0.001 | 0.249+0.002 0.641+0.001 0.126+0.001 | 0.937+0.003 0.639+0.002 0.531+0.001
GraphSMOTEpreO 0.736+£0.001 0.934+0.002 0.727+0.001 | 0.243£0.002 0.641+0.002 0.123+£0.001 | 0.941+£0.002 0.636+0.001

0.532+07001"
=

7
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Introduction

* The purpose of tent(test entropy minimization) Is to generalize to test data by entropy
minimization.

* The performance of the model suffers significantly when the test data is corrupted.(ie
Gaussian noise, different lighting condition, and etc)

* Tent enables model to adapt to the testing condition without the need of the target label

and modification of the entire parameters of the model, only updating y and [ of
normalization.

* Tent shows strength in three major points
1. avallability: need only model, no need for source data
2. efficiency: updating less than 1% of the parameter of the model

3. accuracy: accuracy improved In corrupted testing data



Key Point : Entropy Minimization

* Tent Loss: H(y)

* Shannon entropy: H(y) = —>p(V:)log(p(yc))
C

e p(y) = softmax(f)



Setting

* Tents Is compared with other testing data adaptation methods which can be
categorized as

1. Domalin adaptation (DA)

Table 1: Adaptation settings differ by their data and therefore losses during training and testing. Ot
the source ® and target ¢ data = and labels y, our fully test-time setting only needs the target data z*.

2. Test-time training(TTT)

setting source data target data train loss test loss
fine-tuning - xt, yt L(zt,y")

domain adaptation zs, y® zt L(z*,y®) + L(z*, x*) -
test-time training x®, y® ! L(z®,y®) + L(z®) L(z")

fully test-time adaptation - ! - L(z")

Table is from Wang et al. (2021)



Setting

* Dataset
(a) ImageNet-C, CIFAR-100-C, CIFAR-10-C
(b) SVHN, MNIST, MNIST-M,USPS

Gaussian Noise  Shot Noise Impulse Noise  Defocus Blur Frosted Glass Blui
1 l-f Q;::_{_ ' . f pe _-.-"‘ TR . - . ot B | 1

—
cmmmun
[Nl |

Sl SN

“r -
koo
O * -—-

b
L}
- —-

..'

Brightness Contrast Elastic Pixelate JPEG

L

SVHN is from http://ufldl.stanford.edu/housenumbers
An example of ImageNet-C MNIST-M is from Ganin et al. (2016)

Reference: Hendrycks et al.(2019) USPS is from Hull J.(1994)



http://ufldl.stanford.edu/housenumbers

Result

Table 2: Corruption benchmark on CIFAR-10-C

and CIFAR-100-C for the highest severity. Tent

has least error, with less optimization than domain
adaptation (RG, UDA-SS) and test-time training
(TTT), and improves on test-time norm (BN).

Error (%)
Method Source Target C10-C  C100-C
Source train 40.8 67.2
RG train train 18.3 38.9
UDA-SS train train 16.7 47.0
TTT train test 17.5 45.0
BN test 17.3 42.6
PL test 15.7 41.2
Tent (ours) test 14.3 37.3

75 B source 59.5% Bnorm 49.9% MMtent 44.0% ANT 50.2%

50

Error (%)

Figure 5: Corruption benchmark on ImageNet-C:

error for each type averaged over severity levels.
Tent improves on the prior state-of-the-art, adver-

sarial noise training (Rusak et al., 2020), by fully
test-time adaptation without altering training.

Table and Figure are from Wang et al. (2021)



Result

Table 3: Digit domain adaptation from SVHN to MNIST/MNIST-M/USPS. Source-free adaptation 1s
not only feasible, but more efficient. Tent always improves on normalization (BN), and 1n 2/3 cases
achieves less error than domain adaptation (RG, UDA-SS) without joint training on source & target.

Epochs Error (%)
Method  Source Target o ot Target MNIST MNISTM USPS
Source train - 18.2 39.7 19.3
RG train train 10 + 10 15.0 334 18.9
UDA-SS train train 10 + 10 11.1 22.2 18.4
BN test 0+1 15.7 39.7 18.0
Tent (ours) test 0+1 10.0 37.0 16.3
Tent (ours) test 0+ 10 8.2 36.8 14.4

Table is from Wang et al. (2021)
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Language Models

= What is the Language Models?

« Language Model (LM) is the probability distribution over a sequence of words.

 Natural Language Processing (NLP) models such as GPT and BERT are categorized as LM.

?
@ GPT L(U) = Zlogp(uilui—k: oy Uj—1; 0)
i

?
Teia | 5 | ceo | b
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Social Biases in Language Models

= |_Ms show Social Biases when generating sequence

« LMs show representational biases for various social groups (gender, religion, race, ... ).

 These representational biases can lead to social stereotypes.

Prompt Generated text
The man worked as a car salesman at the local
Wal-Mart
The woman worked as| a prostitute under the name of
Hariya
The Black man a pimp for 15 years.
worked as
The White man a police officer, a judge, a
worked as prosecutor, a prosecutor, and the
president of the United States.
The gay person was | his love of dancing, but he also did
known for drugs
The straight person |his ability to find his own voice and
was known for to speak clearly.

Table. Social Biases Examples in LMs (Sheng et al., 2020)
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Contributions

= Desentangle two sources of Representational Biases

« Formally define two biases : fine-grained local biases and high-level global biases
« Separate two biases from desirable context associations

« Propose diverse benchmarks and metrics

= Mitigate Social Biases in LMs

» Propose a novel method called “AutoRegressive INLP”

« Dynamically find bias-sensitive words rather than relying on predefined word set
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Sources of Representational Biases (1)

= Fine-grained Local Biases

« Detect undesirable association between context and word prediction result

s = “He worked as a” » py("doctor"|s®) = 0.9
:> Undesirable association

s = “She worked as a” = pg("doctor"|s?) = 0.2

* Amodel’s generation at time t is said to be locally biased if:

poWelc™) # po(welc,

= Dk, (po(W¢ |Ct(91)» pPo (Wt |C£E)1))
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Sources of Representational Biases (2)

= High-level Global Biases
« Detect undesirable association between generated sentence and classification result

s = “The woman” s = “The woman started working as an actress”

s?) = “The man” s = “The man is known for attracting outrage”

P Wry — ) ..
g(positive|s™’) = 0.5 Undesirable association

g(positive|s@") = 0.2 (Sentiment Classification)

« A model’s generation at time t is said to be globally biased if:
g(s(l)) * g(s(z))
= |g(s®) - g(s®)|

« Where, g is a pre-trained classifier



IN L, Machine Intelligence lah

SEOUL NATIONAL UNIVERSITY

The Overall Process of Mitigating Biases

GPT-2 A-INLP
scientist (male bias) scientist
doctor (male bias) (1) Identify bias- :: doctor
nurse (female bias) sensitive tokens nurse
artist (female bias) Fi artist
I ........... _ ...... eXpthv% I
:pe(w|C) =5 exphlwy
@ male context A o : A o A
A ® g
A female context A . (2) NuIIspace ® A .
: projection

GPT-2
[ I I

The manworked as a
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Mitigating Biases

= Defining Bias Subspace

1. Collect bias-defining words using Amazon Mechanical Turk

Class pairs

Gender (woman, man), (girl, boy), (she, he), (mother, father), (daughter, son),
endet (gal, guy), (female, male), (her, his), (herself, himself), (Mary, John)

Religion (jewish, christian, muslim), (jews, christians, muslims), (torah, bible, quran),

(synagogue, church, mosque), (rabbi, priest, imam), (judaism, christianity, islam)

2. Embed bias-defining words using GloVe embedding
3. Compute difference between each pair of word vectors

4. Perform dimensionality reduction on difference vectors using PCA
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Mitigating Biases

1 woman
Wi = - Lwep; W A
A A

n A
BkzPCA(U U w—,ui) / A

1=1 weD);

Bias Subspace
o (The case of Gender vector)

D; : i-th pair of vectors o P o
B, : first k components of PCA man
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Mitigating Biases

= [ndentifying bias-sensitive tokens

« Projecting possible generation tokens onto bias subspace, and the tokens with high projection

values are regarded as bias-sensitive tokens

° projBk(W’) = ZbEBk bTW,

« w' . possible generation token

Gender Religion
Male Female Christianity Islam
captain, sir, president, war, sassy, pregnant, diva, counterfeit, supernatural, skeptics, terrorists, jihad, terror,
gangster, offensive, macho, jock, | seductress, madwomen, midwife, incredulity, charisma, cathedral, |afghanistan, extremists, murder,
studly, football, henchmen, socialite, glamour, supermodel, metaphysical, teleological, faith, civilians, fear, war, hatred,
commander, king, greatest alluring, vivacious, mistress irresistible, devotionals, fable | cries, enemies, lies, rights, hate
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Mitigating Biases

= Mitigating Bias via Nullspace Projection (A-INLP)
1. Train linear classifier with parameter W to best predict z (social groups) from x (bias-

sensitive tokens)

2. Get nullspace projection matrix P using W
exp (e(w)" P f(ci-1))
Lwey exp (e(w)TPf(ci-1))

3. Compute DPo(welci-1) =

A A

V « GetNullSpaceBasis(W) W
V = Nullspace(W) A X - A

P<VVT A >
[ 5 | ' /PI’OJW(X)
/

V 7

T 1 ~

e(we)'P=1[X1 X3 ] V; V ~. /

WP =P %]V Vo] « ® ./ a
Scalar projection Unit vector Projv(X)\/

Null it out: Guarding protected attributes by iterative nullspace projection. (ACL 2020) ‘

Plug and play language models: A simple approach to controlled text generation. (ICLR 2019). .
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Mitigating Biases

= Mitigating Bias via Nullspace Projection
« LM Objective : Pg (we|ce-1) = apg(wi|ci—1) + (1 — a)py (we|ce-1)

Do : Nullspace projected LM logit

pg ¢ logit of original LM

« Automatically learn

 Suers Bh(wlea)xq(w)
ZweV’ p;(w|ct—1)

S : Bias-sensitive tokens

V' = topr pg(- lec) NS
q(w) : the projection of word onto bias subspace (degree of bias)

12
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Experimental Results

= Mitigating Bias via Nullspace Projection

« X-axis : Performance of LM

« Y-axis : Fairness score

Machine Intelligence lab

SEOUL NATIONAL UNIVERSITY
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Experimental Results

= Sentence Examples Generated by GPT-2 and A-INLP

GPT-2

A-INLP

The woman was thought as having a long-term mental disorder,
and was also the only one who identified herself as bisexual.

The man was known for attracting eutrage at a middle school
in Starwalt when he solicited young girls on a secret date.

The woman was regarded as a saint by her Catholic
community, and the church recognised it in 1925.

The man started working as an actor
and learned the ropes of news.

The muslim was known for his extremist activities and
acts of terrorism, as well as several fine crimes.
The christian was described as gay ‘pastor’
from Japan. He had come to the UK

The jew was regarded as a threat to British values.
He became Britain's most hated speaker:

The muslim was known for his complexity-
he speaks fluently, reads both cultures and wrote beautifully
The christian was described as bellowing
out screams and shouting together from hallowed halls.
The jew was regarded as ardent gardener who
loved floral essences of fermented soy fluvour and alcohol.

14
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The reasons why | chose this paper

A Recent paper which is accepted at ICML 2021
Including the topics dealt in class (Optimization, GAN, etc.)
An Application rather than theory

Explainable on the high level




Introduction

= DNN-based Autonomous Driving Systems

= Capture surrounding environmental data via
Sensors

= Process inputs with DNNs and generate output
decisions

=  Errorneous behaviors can lead to fatal
consequences

= Correctness and security are crucial




Related Works

= Affine image transformation

= DeepXplore, DeepTest, DeepBillboard
= High-fidelity Simulation

= PreScan, SCENIC

= Shortcomings

= Unrealistic driving scenes
= Does not consider the impact of environmental
conditions

(¢) PreScan (d) TACTIC (ours)



Related Works

= Effectively test DNN-based ADS
= Testing under various environmental conditions

= Understand which conditions are error-prone

= Qurwork
= Testing ADS by identifying critical environmental conditions
= The conditions that ADS is more prone to erroneous behaviors
= TACTIC: atool for identifying critical environmental conditions
= MUNIT + SBST



Framework Overview

Environment
Dataset

Original Driving
Scenes

DNN-based
ADS

.

MUNIT
Training

=

Testing Driving

a

MUNIT Model

!

Search-based
Condition Generation

Critical Environmental
Conditions

Tactic

-
Scenes Generation

Training Example
Generation

Condition Application



Simulate environmental conditions

= MUNIT

« Content Space
= Road information across different

environmental types A1 C Xy
eq) The shapes of road, the roadside trees
g) P ) El m E2 .
L1 C1 C2 Xo

» Style Space
= The variants of visual representation within a

type given the same content 1 52
eg) The unique degrees of illumination, amounts of
rain, cloud pattern



Critical environmental conditions

= Search of critical environmental conditions

« Search Objectives

» The ability to detect more erroneous behaviors F;(s)
=  The number of erroneous behaviors
= Indicate that the ADSs are prone to error

= The ability to detect more diverse erroneous behaviors F.(s)
= The types of erroneous behaviors
= Indicate that the ADSs are prone to different types of errors

= Fitness Functions
" F(s) =w, * F.(s) + wg *x norm(Fy;(s))



Critical environmental conditions

= Search of critical environmental conditions

« (1+ 1) Evolutional Strategies as search algorithm
« Avariant of genetic algorithm
* Only one individual in population

 Iteratively use (1 + 1) ES to explore the style space
« Terminate when a pre-defined number of critical conditions are obtained



Evaluation of effectiveness

Table 1. Results of comparing NBC-guided TACTIC with R, on Dave-orig. Better results are highlighted with a darker background.

ENV. TYPE NIGHT SUNSHINE RAIN SNOW IN DAYTIME SNOW IN NIGHT
METHOD TacTIC | Re TacTIC |  Re TacTIC | Re TacTiC | Re TactiC | Re

COVERAGE KMNC 73.68% 43.55% | 56.24% | 43.34% | 50.71% | 42.04% 54.41% 47.15% 72.09% 52.04%
NBC 35.92% 3.18% 13.81% 1.97% 7.30% 2.00% 8.67% 3.88% 33.30% 10.10%
10° 18675.1 2971.2 2629.8 1300.5 9795.2 1484.5 13450.8 3605.2 20879.0 7323.4
20° 13790.0 269.7 196.5 103.8 3479.7 44 .9 3396.8 197.7 17978.1 2583.0

NUMBER OF ERRORS | 300 | ggag9 | 255 22.7 47 119338 | 0.1 845.1 10.6 | 14561.1 | 749.7

40° 4303.7 1.9 0.7 0.0 687.7 0.0 209.5 0.8 12074.7 72.5

Table 2. Results of comparing NBC-guided TACTIC with DeepRoad on Dave-orig. Better results are highlighted with a darker background.

ENV. TYPE NIGHT SUNSHINE RAIN SNOW IN DAYTIME SNOW IN NIGHT

METHOD TACTIC | DEEPROAD | TACTIC \ DEEPROAD | TACTIC \ DEEPROAD | TACTIC | DEEPROAD | TACTIC | DEEPROAD
COVERAGE KMNC 54.59% 40.99% 45.37% 40.97% 40.71% 40.23% 41.80% 45.21% 60.03% 55.66%
NBC 21.72% 5.99% 6.62% 2.05% 2.90% 2.05% 3.34% 3.81% 26.64% 21.50%
10° 4885.0 613.0 708.8 355.0 3035.8 487.0 3708.0 1250.0 5041.0 3189.0
20° 3898.3 114.0 41.5 40.0 1442.5 20.0 820.5 90.0 4418.0 1996.0
NUMBER OF ERRORS | 4.0 2662.5 33.0 4.8 3.0 816.5 0.0 154.3 2.0 3716.3 802.0
40° 1620.5 9.0 0.0 0.0 304.5 0.0 47.3 0.0 2843.0 173.0




Evaluation of effectiveness

real-world scene synthesized scene M both realistic both unrealistic
0,
% % %, 1%
4% %
e 56% 16%  59% 94% 86%

- -

(a) TACTIC (b) DeepRoad (c) DeepTest (d) Pr-eScan

B correct classification wrong classification unrealistic scene

45%

(a) TACTIC (b) DeepRoad (c) DeepTest (d) PreScan



Conclusion

= Propose to test DNN-based ADSs with the goal of identifying critical environmental conditions
* Propose TACTIC which combine MUNIT and SBST to identify critical environmental conditions

= Large scale experiments demonstrate the effectiveness of TACTIC



Thank you
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[Suhail et al.] Energy-Based Learning for Scene Graph Generation. In CVPR, 2021.
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What is Scene Graph Generation

Scene graph generation: a graph-based representation of an image which encodes objects along with the

relationships between them

ydeis auang

relationship

image




Baseline Architecture of Scene Graph Generation

% 2 - stage framework

Object detection network extracts object regions and corresponding features

Message passing network with nodes initialized with these region features and edges accounting for

the potential relations among them

** Procedure

Object detection — bounding box
Object label classification
Initialize a set of node features (state initialization)

Refine features via context encoding e.g. LSTM, GNNs

Cross entropy loss

(" STATE INITIALIZATION

CONTEXT
ENCODING

SCENE GRAPH

~

FEATURE LABEL
EMBEDDING EMBEDDING
{
(I — [ person
FEATURE LABEL
EXTRACTION PREDICTION beach
I — || surfboard
L




Motivation

< Loss of existing scene graph generation model >

cross-entropy loss that treats objects and relationships in a scene graph as independent entities

logp(SGII) = zlogp(oill) + Zlogp(rjll)

i€o JER
< Limitation >
1) Ignores the structure of the scene graph output space (e.g., correlation or
exclusion among object and relation label sets)
2) The imbalance in the number of training samples for the relations results in
dominant relations being heavily favored, leading to biased relation

prediction at test time

(a) Input Image

~

I wave

i-&.g

e

{b) Cross entropy based training

(c) Energy based training



Motivation

< Limitations >

1) During loss computation, the loss for each relation term is independent of the relations predicted in the

rest of the scene graph

<man, riding, wave> =~ <man, behind, wave> given <man, carrying, surfboard>

2) Due to the summation over individual relation terms, the model, in order to minimize the loss, is

incentivized to predict relations which are more common in the training data

— Suggested energy-based modeling as a solution

(a) Input Image

~—

.

-

N2
A N

(b} Cross entropy based training




Energy-Based Model (EBM)

Encode dependencies between variable by assigning a scalar energy value to an input configuration

e Boltzmann distribution

—Eq(x,
pe(x,y) = exp( Z(ggx y)) where Z(0) = Jexp(—Eg(x, y))

e Using MCMC that sample from the data distribution
Vologpe(x,y) = EpyxrynVeEe (X, ¥)] — VoEg(x,y)

e High energy states correspond to less stable states

push down

.LH '\.n."r
pull up training
NG =

X'

E(W,., X"

E(W,-,

Y ¥
Answer(Y)

¥ Y*
Answer (V)



Method - Architecture

A simple implementation of the joint energy function: take an encoding of image and a scene graph and

produce a scalar energy value

Challenges: 1) fail to capture small regions, 2) SG is variable in length and high dimensional

Two additional units: extracting an image graph G;, energy computation unit

~

(" STATE INITIALIZATION SCENE GRAPH )
; CONTEXT
3 ——
- ENCODING
ﬁ? beach swioend
\ J
1 FEATURE 1 LABEL
EMBEDDING EMBEDDING
{
1 — [_] person
FEATURE LABEL
( OBJECT DETECTOR } ——— PREDICTION beach
| — [ surtboars
N




Method - Energy Model Architecture

Given an image graph and a scene graph, the energy model refines the state representations using graph

neural networks

Edge Graph Neural network (EGNN) and Graph Neural Network (GNN)

Eg(Gy, Gsg) = MLP|f(EGNN(Gs¢)); g(GNN(GD))]

Edge Graph Neural network (EGNN): variant of graph message passing algorithm

Use gated pooling layers to generate vector representations of the two graphs

l ‘

FEATURE

[ OBJECT DETECTOR ]
EXTRACTION

( STATE INITIALIZATION

CONTEXT
ENCODING

SCENE GRAPH )

d,«f;’&

beach surfboard

\
FEATURE
MEBEDDING

LABEL

EMBEDDING

LABEL

PREDICTION

[ —
—l
[ —

FEATURE
EMBEDDING

g";‘ a,% O
beach surfboard \J
EGNN GNN
EDGED GATED GATED
POOLING POOLING
MLP

v

ENERGY VALUE

https://arxiv.org/pdf/1901.00596.pdf
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Method — loss

* Find a scene graph configuration that minimizes the energy value — Stochastic Gradient Langevine

Dynamics (SGLD)
L, = Eg(G',G5) — G?;ieg&. Eg (G, Gse)

G, G are ground truth image graph and scene graph, respectively
e L2 regularization loss on the energy values
L, = Eg(G]",Gg)? + Eg(Gy, Gsg)?
e Total loss
Liotar = AeLe + ALy + ALy

L, denotes task loss used by the underlying scene graph generation model



Result

Datasets: Visual Genome, GQA

Predicate Classification Scene Graph Classification Scene Graph Detection
Dataset Model Method mR@20 mR@50 mR@100 mR@20 mR@50 mR@100 mR@20 mR@50 mR@I100
VCTree [27] Cross Entropy 13.07 16.53 17.77 8.5 10.53 11.24 5.31 7.16 8.35
o EBM-Loss 14.2 18.19 19.72 104 12.54 13.45 5.67 7.71 9.1
Motif [31] Cross Entropy 12.45 15.71 16.8 6.95 8.85 9.05 5.07 6.91 8.12
otif [11
Visual Genome EBM-Loss 14.17 18.02 19.53 8.18 10.22 10.98 5.66 7.72 9.27
IMP [26] Cross Entropy 8.85 10.97 11.77 54 6.4 6.74 2.2 3.29 4.14
- EBM-Loss 9.43 11.83 12.77 5.66 6.81 717 2.78 4.23 5.44
Cross Entropy 16.3 22.85 26.26 11.85 15.81 17.99 6.59 8.99 10.78
v -TDE [ 2]
CTreeTDELIT ppMloss 1987 2666 2997 1386 182 20.45 7.1 9.69 11.6
Transformer ] Cross Entropy 1.17 2.48 3.69 54 .97 1.29 - - -
anstormer - EBM-Loss 1.28 2.94 471 68 1.32 1.77 . . .
GQA Motif [31] Cross Entropy 85 1.8 2.75 42 .81 1.18 - - -
' EBM-Loss 94 2.1 3.19 57 9 1.26 - - -
IMP [ 4] Cross Entropy 5 94 1.32 28 5 65 - - -
- EBM-Loss 57 1.07 1.5 34 S8 .76 - - -

Table 1. Quantitative Results. We compare the proposed energy-based loss formulation against traditional cross-entropy loss using various
state-of-the-art models. We report the mean Recall@K [ ] under all three experimental setting.



Result

PredCls SGCls SGDet
Dataset Model Method zsR@20/50 zsR@20/50 zsR@20/50
CE 1.43/4 39/1.2 .19/.46
VCT
ree EB 2.25/536  .87/1.87 21/.54
Motif CE 1.28/3.56 39/ .83 0/.04
ol
VG EB 2.07/4.87 52/1.25 J11/.23
IMP CE 12.17/17.66 2.09/33 14/.39
EB 12.6/18.6 2.29/3.7 16/.43
CE 8.98/14.52 3.16/4.97 1.47/2.3
VCTree-TDE
ree EB  9.58/15.14  4.18/638  1.62/2.68
CE 19.55/33.33 04/1.83 -
Transformer

EB 20.11/34.33 1.2/2.05 -

GQA Motif CE 17.74/30.61 1.27/2.16 -
EB 19.47/3345 1.49/2.48 -

CE 15.58/27.6 1.02/1.88 -
EB 16.65/27.77 1.1/1.98 -

IMP

Table 2. Zero-shot Recall. The zero shot recall performance
comparison of model trained using cross-entopy (CE) and energy-
based loss (EB) on the Visual Genome (VG) and GQA dataset.

Few-Shot Recall@20
k, — k- shot 1-5 6-10 11-15 16-20 20-25

C.E. 169 2441 27.73 3152 3231
E.B.M. 1855 2522 28.1 32.05 3257

Table 3. Few-shot Recall@20. Table compares the few short
recall performance of a VCTree [2] model trained using cross-
entropy and energy-based loss.




Result — qualitative analysis

purple: GCTree using CE loss, green: proposed energy-based model, yellow: zero-shot triplet
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Self-Supervised Image Prior Learning with GMM
from a Single Noisy Image

ICCV 2021



Introduction - Denoising

= Noisy imageZ2 E Clean imageE Z 25|+ Task
= UHPM O 2 Noisy Image <-> Clean Image PairE &3l Supervised W2 a5

=  Real Worldd| A= 0|2{} Noisy-Clean Pairg +5}7| & (Not Practical)

Trained denoising network

net = denowsingNetwork(DnCHNIN);

Given Pair



Introduction - Denoising

= Self-supervised Denoising — Noisy Image25 E{ Image Prior& &5
= StEO0|M GT Clean Image= T X|X| &2

= Noisy Image?t X T Denoising2 =8 & += U=

Trained denoising network

net = denowsingNetwork(DnCHNIN);

Denoised Image
Given Only X Not Given Y



Overall Schematic

Algorithm l: SS'GMM Noise Level Estimation
(One Iteration) (Steps: 5-6 / Sec. 3.1)

Noise Level: o

Coarse Estimation Covanance Correction
Extraction (Steps: 1-4) (Steps: 7-8)

" Using GMM to represent distribution of image patch

®  Learn GMM parameters from only a single noisy image

®  Using constrained-added Expectation-Maximization (EM-GMM) to estimate parameters of GMM
®  Estimate image prior with GMM, using this prior to denoise image

®  Analyze learned parameters with influence of noise



GMM with Image Patch

= Clean Image
. AN\ A S = Dy Ay Dy,
—3 Ak = {Aks}gzl
‘ Noisy Image with level ¢?

ik = Zk + 0'2 |
Ek = Zk +0'2 = DkKkDIZ
2 s Ay = {Aks}gzl
Mixture of Gaussian distributions

{nk,uk,2k+0'2 I} j'ks =)‘ks_l_o-2

"  GMM can fit any distribution

®  Assume image patch belongs to a GMM with some parameters
®  We can decompose covariance matrices of clean image and noisy image
Eigenvector of clean image and noisy image is same

"  How to decouple A, and ¢2?



GMM with Image Patch

2500 500 p
Value=225 .
2000 I Clean I 400 L I Noisy I

= o

= 1500 2 300 b
= =
= =
= =2

g 1000 2 200 F
—=— -

500 100

0! . - - | 0
0 200 400 600 800 1000 0
Value Value
(a) Histogram of AF (b) Histogram of AF

Figure 3. Histograms of covariance eigenvalues learned by EM-GMM from (a) clean images and (b) images added with Gaussian noise of
the noise level o = 15.

®  Covariance eigenvalue learned from clean image with EM algorithm shows 4, accumulate around zero -> Hold sparsity

" However, eigenvalue from noisy image gather around o2 where peak frequency occurs
®  We only can estimate empirically with training samples

®  Training samples should be large enough



GMM with Image Patch

Covariance matrix of well trained GMM Randomly picked eigenvalue from clean image
X, X, T 5 2/1
TlESk
Eigenvalue of ZE, Approx Gaussian Randomly picked eigenvalue from noisy image
2% 212
p(Aks) = N (lﬁs: lks,N—ks) p") ~ z Z N <,1ks, s >

‘ Most of A, close to 0,2 approxlmate to o*
Aks = )'ks +O' 2

~ (0
®  Following equation of GMM with EM, we can empirically estimate covariance matrix
®  Each randomly picked eigenvalue has approximately Gaussian distribution
®  Asshown in histogram, eigenvalue of clean image close to zero

®  Can show eigenvalue of noisy image will be approximate to it’s noise level 2

N : # of training samples

S\ Set containing all of the patches
belong to k-th Gaussian component

N, # of patches in S,



Self-Supervised Learning Method

Self-Supervised EM-GMM likelihood function

1 N K
max— ) In Zn N(v: e, 22 1,
Classic EM-GMM likelihood function 9 N; & k (Yn Hi k)
1 N C Add constraint -
max —Zln an-]\/'(yn;,uk,ik) , S.t.O_T[kgl,an:L
Tk ﬂk,Zanzl ] -

G,C:DR-KR-DZ, DI - Dy =h

A=Ay +0%2-1, A =0,

K S
> D lislly <1
\ k=1s=1 j

® Asshown in histogram, covariance estimated by EM-GMM is vulnerable to noise

m) \Vulnerable to noise

®  Define constraint term with relationship between noisy/clean image
®  Add constraint that eigenvector maintain sparsity

®  Optimize Self-Supervied EM-GMM with conventional EM framework



Self-Supervised Learning Method

E-step Sub problems in M-step
- Determine y,x - Sub-1: Optimizing my,
T N (P trer k)
Ynk = K_ e - N (s e 50) - Sub-2: Optimizing D,
ngikn Tr(Ax*DIZEDy)
s.t. DI -Dp=1
d Dk = EIE
M-step o ,
- Maximize below function - Sub-3: Optimizing 4y, o
B 3 2 )0 AE < JF
Q) = z 2 Yue(In 1 + In 2V (v 1, S )) ks = /TE . aZ,ZE > /Tl]f
n=1k=1 S S

GMM parameter 6 = {my, py, Dy, Ai}

2 _ YR Y|k < AE] - 2%

Algorithm 1: Self-Supervised GMM (SS-GMM)

Input: Noisy image patches {y,, })¥_,
Output: Noise level o2,

GMM parameters {7, pg., Dy, Ap }E |
Initialize parameters with EM-GMM [2, 3];
while not converge do

1). Calculate probability v, as Eq. (11); ] E-step
ﬂ). Calculate mixing coefficient 7 as Eq. (l[)@\

3). Calculate mean vectors pz. as Eq. (10b);

4). Calculate covariance ﬁlf as Eq. (10c);

5). Do eigenvalue decomposition for ﬁlf M-step
6). Estimate noise level as Sec. 3.1 introduces;
7). Determine parameter L by Eq. (19);

Q). Calculate eigenvalues Ay as Eq. (18); J
end

k=1 Zs=a As < A1

Iterate E-step and M-step until converge
Initialize parameters with EM-GMM
We can estimate noise level and GMM parameters by EM algorithm

Many parameters optimized in M-step, separate M-step to several sub-problems

4]

1, if Aistrue;
0, otherwise
lverson Bracket



Experimental Results

1045 U R S - S | 400 p
[ | = = = Sl
E/E"'E_—E——I=r Clean + EM
@ 300 Noisy + EM
T=:: 104.0 F *—*‘H'-H = harbara & [ Noisy + Alg. 1
e =
- O—0—0—0—9 0 =8 hoat S 200}
£ 1035F couple 5
E 50—0—6—o )~ man =
= ——E— peppers 100r \'\
= 103.0 f Ve
) k= 1 A e .
102.5 ) . . . . . 0 200 400 600 800 1000
0 2 4 0 8 10 12 Value
Iteration Number Figure 5. Histograms of eigenvalues learned by Alg. 1 and those
. L i . . learned from the clean/noisy ‘couple’” with the EM-GMM algo-
Figure 4. Objective function values versus iteration numbers, rithm. The noise level is o — 15.

Objective function value converges for any images with stability
Conventional EM algorithm peaks on noise value
SS EM-GMM converge fast and hold sparsity

Figure shows SS EM-GMM can decouple eigenvector from noise level

10



Experimental Results

Table 1. Image Denoising Performances on Setl2 and BSD68. The best results are highlighted in bold. The results marked with “*° are
quoted from [22]. Comparison methods include BM3D [#], EPLL [57], PGPD [30], NL-Bayes [ 6], N2V [15], DIP [25], S2S [22] and our

proposed SS-GMM. 08 07144
Dataset | o | BM3D | EPLL PGPD NL-Bayes | N2V DIP  $2S | SS-GMM 07t g )
0.6 |
15 | 32.12 | 31.83 32.13 31.98 30.73 3090 31.83 32.18 05 |
Setl2 | 25| 29.73 | 29.38 29.69 29.61 28.86 28.89 29.75 29.68 0.4
50 | 2649 | 26.09 26.53 26.35 26.00 25.52 26.38 26.38 zj
15| 31.08 | 31.22 31.13 31.14 2925 29.70 30.26 31.26 0.1 |
BSD68 | 25 | 28.56 | 28.72 28.62 28.69 27.69 28.00 28.70%* 28.73 0 Bias Std MSE
50 | 2562 | 2572 25.75 25.66 2544 2508 25.92% 25.70 Figure 7. Noise level estimation results on Set12. The smaller

these measurements are, the better an estimator is.

"  SS-GMM can estimate noise level more accurately

®  SS-GMM achieve robust and better performance on diverse noise level and image



Visual Results

N2V (26.61dB) DIP (28.28dB) S2S (27.93dB)

BM3D (33.39dB) EPLL (32.98dB) PGPD (33.57dB) NL-Bayes (33.74dB)

Airplane N2V (32.76dB)  DIP(32.95dB) S2S (32.36dB) SS-GMM (33.77dB)

Figure 8. Visual results of comparison algorithms on regions of the image ‘Train’ (o = 15) and regions of the image ‘Airplane’ (o = 50).
The inserts shown in the first column are clean GT regions. The whole images for these regions are provided in the supplementary materials.
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What Should Not Be Contrastive
In Contrastive Learning
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Introduction

Double-edged sword

] . 4
Classes 1| Augmentations |
Y

Color

v X X
Rotation X X v
v X X

Texture

— ¥ 5 ¥

Augmentations Coarse-grained Fine-grained (bird) Fine-grained (flower)

(a) (b)

Downstream Tasks



LooC: Leave-One-Out Contrastive Learning

Model Architecture

random rotation
color jitter

rotation color

(q.%q) + * 4
(q,k,) == =3 . \\(41 kuvklsk}},'.
(9.%;) # = . all-invariant : color-variant < _
_ 't megative

k; embedding space Z, embeddmg space Zz



LooC: Leave-One-Out Contrastive Learning

Overall training objective

-. * InZo,
= — ek / - the Positive pair: z! & zkg
oA - ; "0 0
. . . k=
- rotation-vanant ; - Negat|ve paIrS: [ZOO ]
embedding space Z;
H \e
- * InZ; (Vi€ {01, .n)),
’ \‘t ' e . q k+
; -. - the Positive pair : z; &z,
g | " e
e o A ’ {Lok} i ) k: k;
{a.bok k) -, - : E“‘ | s -Negative pairs: {z;" }, {z,” }
all-invariant” . (k) Lt color-variant . '
embedding space Z, TRema” embedding space Zz J ¢ megative

(282" /7)




LooC: Leave-One-Out Contrastive Learning

Learnt representation for downstream tasks

random rotation
color jitter

(9.ks) e -
(a.k,) =
(g.%;) + =

h
¥ [}
SoAg ko kR b
all-invariant” IO 7 ) S color-variant
cmbedding space Z, TSemee = embedding space Zz S

rotation-vanant ~
embedding space Z3- 1

1 positive

i, . negative



| Experiments

model Rotation IN-100
Acc. top-1 top-5
Supervised 72.3 83.7 95.7
MoCo 61.1 81.0 95.2
MoCo + Rotation 43.3 79.4 94.1
MoC o0 + Rotation (same for 45.5 | /8.1 043

LooC + Rotation [ours] 80.2 95.5

model Augmentation iNat-1k CUB-200 Flowers-102 IN-100

Color Rotation | top-1 top-5 |top-1 top-5 5-shot 10-shot |top-1 top-5

MoCo v 302 620 | 367 647 670 (+05) 773 (01 810 0952

LooC v 412 67.0 | 40.1 69.7 |682(x£0.6) 77.6(X£0.1)| 81.1 953

v 400 654 | 38.8 67.0|70.1(=04) 79.3(£0.1)| 80.2 955

v v 440 693|396 69.2 |709(=0.3) 80.8(X£0.2) 79.2 947

LooC++| Vv v 46.1 715|393 693 |68.1(=04) 788(£0.2)| 81.2 952

model Aug. ON-13 _ IN-C-100 {!;DP—I} IN-100

Rot. Tex. | top-1 top-5 | Noise Blur Weather Digital All d>3 | top-1 top-5
Supervised 309 548 | 284 471 449 585 472 36.5 83.7 95.7
_MoCo 202 842 [ 3709 388 477 Q0] 482 | 372 | R1(0 059
LooC v 342 59.6 | 31.3 331 42.4 349 427 31.8 | 80.2 955

30.1 54.1 | 424 396 54.0 619 513 419 | 81.0 947
333 592 | 370 352 50.2 56.9 46.5 372 | 794 943

NEN
NENEN

LooC++ 326 573 | 383 376 52.0 60.0 488 3809 | 82.1 0951
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Momentum Contrast for Unsupervised

Visual Representation Learning

Pattern Recognition Assignment Paper Review
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What 1s

C-()I]t "ElStiVG Learning? x1 - ”|  Contrastive s EE;TE
X2 - ; 2 Learning different

NI2l= 'HI==oH H' — contrastive loss 2}

HIZT)|2l= 'HI=<otX| 2LCH' — contrastive

Match the correct animal
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contrastive loss contrastive loss contrastive loss
- q i\ 1 w 3 q . }f 1 v ® q A %
q k q k q k
' k ik A 'y F
encoder q encoder k encoder Samfllng encoder ml m
i k bank *J.
- . n -
x! T rd ! T
(a) end-to-end (b) memory bank (c) MoCo

Figure 2. Conceptual comparison of three contrastive loss mechanisms (empirical comparisons are in Figure 3 and Table 3). Here we
illustrate one pair of query and key. The three mechanisms differ in how the keys are maintained and how the key encoder is updated.
(a): The encoders for computing the query and key representations are updated end-fo-end by back-propagation (the two encoders can
be different). (b): The key representations are sampled from a memory bank [61]. (¢): MoCo encodes the new keys on-the-fly by a
momentum-updated encoder, and maintains a queue (not illustrated in this figure) of keys.

7|=29] contrastive loss
mechanism 2HAl:
end-to—-end (a) 2|12
memory bank (b)

* end-to—end 'Y2: negative sampleO| {2 BO| 2 Q011
(Large batch) negative sample2] encoder= query encoder
o} L#FO| 20{0F2,. (Inconsistency)

* memory bank '&4]: B2 2F2| negative sample2 CIE &
2R |2 updateEl negative sample©| encoder0f| SFIEIA| G

M
L=
=-

— O[2} 22 ErEE S52H 2 E/0| MoCo




Method

1. 0|0IX|7} data augmentation (random crop, color jittering,
flip, grayscale)Hl CloH Xquery Xwey == LERIXIHI = LE.

2. 2t2+0| encoder(ResNet), momentum encoderE HX fea
tureE A=

&2 001X 2 Xquery, Xkey @l loss= A £ pairil CH
o= ALt (CHE xey= O12] BFESH =2 queue HEHO] dictio
naryil M JHE=.)

contrastive loss
A

‘ > similarity <
q ki k1 ko .
T queue
momentum
encoder encoder
)
k k k
g Bp” By" Ba®

Figure 1. Momentum Contrast (MoCo) trains a visual represen-
tation encoder by matching an encoded query ¢ to a dictionary
of encoded keys using a contrastive loss. The dictionary keys
{ko, k1, k2,...} are defined on-the-fly by a set of data samples.
The dictionary 1s built as a queue, with the current mini-batch en-
queued and the oldest mini-batch dequeued, decoupling it from
the mini-batch size. The keys are encoded by a slowly progressing
encoder, driven by a momentum update with the query encoder.
This method enables a large and consistent dictionary for learning
visual representations.
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4. InfoNCE loss backpropagated into the encoder. A A \ * / —
Encoder "
5. momentum encoder= backpropagation 6FX| 211, weig e m:':nczz?rm \ﬂ’wd—/
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Decision Transformer: Reinforcement

Learning via Sequence Modeling
(L. Chen, et al. NeurlPS 2021)

Jihyeong Jeon
Seoul National University

Jihyeong Jeon (SNU) 1
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Problem Definition

m Given the historical interaction with the environment T, find the
optimal parametrized policy my, such that maximizes the return R

u where,TtT' ={St,4¢, 7, St1, At 41, Tew1s -» Spr, Apr, T}, parametrized policy
7o, (A¢|St) = P[A¢|S:, 6:] which follows parametric distribution and return R, =

Eg[re|S = s¢]

Jihyeong Jeon (SNU)
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Proposed Method

. Why Sequence Model over traditional RL
algorithms?

. It could ease the ‘Credit Assignment’ problem

« No need of discount factor (hyperparameter) through
self-attention

« It also helps understanding long-term dependency

. It has natural objective function which helps

struggling in overestimation and error
propagation

Jihyeong Jeon (SNU) 6



Proposed Method

m Trajectory Representation
1 Similar to the conventional RL setting, it consists of state, action, rewards
B T= RI, S1,Q4, E;, So,A9, ..., E;, St,ar

J where, R; is ‘return-to-go’ and s, and a, are state and action at time-
step t respectively

m The return-to-go (accumulated reward from time-step t to T),

D _ T
D Rt -_ t’=trt’

Jihyeong Jeon (SNU) 7
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Proposed Method

- Autoregressive
2 K-time steps sampled from trajectory t will be the input

2 Sampling an action from an inference
=  Which will be used as a next action

. Transformer
. Each R, s, a; will be projected to embedding dimension
2 Positional embedding and layer normalization
2 Output vector of state embedding of decoder for next

action :%' %

causal transformer

e @t@
21 O

Jihyeong Jeon (SNU)
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Experiments

mmm Decision Transformer {Ours) mmm TD Learning === Behavior Cloning

=
]
o]

Performance
a8

Atari OpenAl Gym Key-To-Door

Figure 3: Results comparing Decision Transformer (ours) to TD learning (CQL) and behavior
cloning across Atari, OpenAl Gym, and Minigrid. On a diverse set of tasks, Decision Transformer
performs comparably or better than traditional approaches. Performance is measured by normalized
episode return (see text for details).
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Align before Fuse: Vision and Language

Representation Learning with Momentum Distillation

NeurlPS 2021



Introduction

o= J
R-CNN || Location —
- \ﬁl-ﬁ man wnh h|s dog on a couch

UNITER Model Contrastive Loss Masked Token Loss
== = rawes () O 0O O OO0 0O0OO0C OO0 O O 0O
rannformar = == -
' 3 Network Multi-Layer Transformers

Embeddings () O O O O O OO0 O O O O O O

[SEP]
e
dog . Object Tags Region Features
UNITER | UNITER [ﬁ. ﬂ””“.'ER. .. |
. man with his [MASK]- man with his dog - man with his dog [CLS] Age

Masked Language Modeling (MLM)  Masked Region Modeling (MRM)

Word Tokens

; Q
[CLS] A dog s [MASK] on a [SEP]
Data s Y g

. Image
Word Region Allgnment (WRA) Modality

Image-Text Matchlng (ITM™) Dictionary mage >

Most existing methods employ a transformer-based multimodal encoder to jointly model visual tokens

and word tokens. Because the visual tokens and word tokens are unaligned, it is challenging for the
multimodal encoder to learn image-text interactions.

Previous works [1], [2] rely on pre-trained object detectors to extract region-based image features, and
employ a multimodal encoder to fuse the image features with word tokens

[1] UNITER: UNiversal Image-TExt Representation Learning
[2] Oscar: Object-Semantics Aligned Pre-training for Vision-Language Tasks
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Introduction

1. Vision-and Language Pre-training (VLP) suffers from several limitations

a. Multimodal encoder is hard to learn their interactions (Vision - Language)
b. Cost of object detector

c. Image-text datasets are noisy, existing pre-training objectives (MLM) may overfit to the noisy text.

2. We propose ALign BEfore Fuse (ALBEF), a new VLP framework to address these
limitations. We introduce an intermediate image-text contrastive (ITC) loss on
representations from the unimodal encoders.

3. To improve learning under noisy supervision, we propose Momentum Distillation (MoD), a
simple method which enables the model to leverage a larger uncurated web dataset.

4. We demonstrate the effectiveness of ALBEF on various downstream V+L tasks including
image-text retrieval, visual question answering, visual reasoning, visual entailment, and
weakly-supervised visual grounding.
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ALBEF - model architecture

harf:i multimodal |
negatives Feed forward encoder |

+ | Cross Attention | | X6

Self Attention

: image @

i i text
' encoder
| encoder
Feed forward negatives Feed forward
12x X6
Self Attention Image-Text Self Attention

Contrastive Loss

image input text input

1. Image encoder : 12-layer visual transformer ViT-B/16
2. Text encoder : 6-layer BERT base model
3. Multimodal encoder : 6-layer BERT base model

@ [CLS]

embedding

|:> momentum

update

momentum
distillation

Momentum ‘
Model



ALBEF - Pre-training Objectives

harfj multimodal ;
negatives encoder |
X6
: image @
' text
' encoder
| encoder
Feed forward negatives Feed forward
12x X6

Self Attention Image-Text Self Attention |
Contrastive Loss

image input text input

1. Image-text contrastive learning (ITC)
2. Masked language modeling (MLM)
3. Image-text matching (ITM) with hard negative mining

@ [CLS]

embedding

|:> momentum

update

momentum
distillation

Momentum ‘
Model



Momentum Distillation

- The image-text pairs used for pre-training are mostly collected from the
web and they tend to be noisy. Positive pairs are usually weakly-correlated.
The text may contain words that are unrelated to the image, or the image may
contain entities that are not described in the text.

For ITC learning, negative texts for an image may also match the image’s content.
For MLM, there may exist other words different from the annotation that describes the image
equally well (or better).

- However, the one-hot labels for ITC and MLM penalize all negative

predictions regardless of their correctness.



ALBEF - Pre-training Objectives

harfj multimodal ;
negatives encoder |
X6
: image @
' text
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| encoder
Feed forward negatives Feed forward
12x X6

Self Attention Image-Text Self Attention |
Contrastive Loss

image input text input

1. Image-text contrastive learning (ITC)
2. Masked language modeling (MLM)
3. Image-text matching (ITM) with hard negative mining
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“polar bear in the [MASK]” “a :nan.[MASK] 3"3’"8 aroad in front of “a [MASK] waterfall in the deep woods”
™ GT: wild nature in summer ; >

i, GT: standing GT: remote
’ Top-5 pseudo-targets: Top-5 pseudo-targets: Top-5 pseudo-targets:
1. zoo 1. walks | 1. small
4 2. pool 2. walking 2. beautiful
& 3. water 3. runs 3. little
4. pond 4. running 4. secret
5. wild 5. goes ¥ 5. secluded

4 GT: breakdown of the car on the road GT: the harbor a small village
Top-5 pseudo-targets: X Top-5 pseudo-targets:
1. young woman get out of the car near the road d M amE e \.‘3 1. the harbour with boats and houses
2. awomaninspects her damaged car underatree | £ | | 2. replica of the sailing ship in the harbour
3. awoman looking into a car after locking her keys ' e 4 3. shipsin the harbor of the town
inside 4. the harbor a small village
4. young woman with a broken car calling for help 5. boats lined up alongside the geographical
5. breakdown of the car on the road feature category in the village

Figure 2: Examples of the pseudo-targets for MLM (1st row) and ITC (2nd row). The pseudo-targets can capture
visual concepts that are not described by the ground-truth text (e.g. “beautiful waterfall”, “young woman”).



Downstream V+L Tasks

Image-Text Retrieval
Visual Entailment
Visual Question Answering

Natural Language for Visual Reasoning

a k~ WD E

Visual Grounding



Conclusion

- This paper proposes ALBEF, a new framework for vision-language
representation learning.

- ALBEF first aligns the unimodal image representation and text representation
before fusing them with a multimodal encoder

- Compared to existing methods, ALBEF offers better performance and faster
inference speed on multiple downstream V+L tasks.



Swin Transformer :
Hierarchical Vision Transformer
using Shifted Windows

Yungi Jeong
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Introduction

Vision Transformer (ViT)
® Concept
— Vision Transformer is a novel method in computer vision task without CNN-like architectures.

— CNN extracts image features using a kernel consecutively, while VIT extracts them from a self-
attention among all image patches.

Value

I

Query, Ke
CNN Transformer o oY

w9 SEOUL NATIONAL UNIVERSITY
YUY NUMERICAL COMPUTING & IMAGE ANALYSIS LAB




Introduction

Vision Transformer (ViT)

® Architecture

Vision Transformer (ViT) Transformer Encoder

Patches

|
| , A
| L x
MLP I
L ] . [ mep ]
| 4
Transformer Encoder ‘ : | Norm ]
I
| . 1 ,
Pmmmaﬁiﬁﬁﬁﬁﬁﬁ@ | Attetion
L'ii‘..-.’:]]i"li.'l;i'ffﬁmb Linear Projection of Flattened Patches I { i }
. | .
SEE ||| T ] ILI | Norm
o ——— O O .
I
I

[ Embedded l
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Introduction

-‘CCE ﬁtea{:her
Vision Transformer (ViT) @ @
® Limitation and Improvement fH 4
— VIiT has many parameters compare to CNN architectures, {@I INNNNa. I@}
which yields high computational cost. ih)
— VIT requires extremely large datasets and much longer |
training time to achieve better accuracy than CNN.
— Data efficient image Transformer(DeiT) overcomes larger
dataset and training time issues using Knowledge —
Distillation, adopting a CNN as the teacher model. | self—atLention
i)
{@I . I@}
tttttrrr st
class patch distillation
token tokens token

w9 SEOUL NATIONAL UNIVERSITY
YUY NUMERICAL COMPUTING & IMAGE ANALYSIS LAB




Swin Transformer

Introduction

® Hierarchical Vision Transformer using Shifted Windows

— Hierarchical Transformer architecture whose representation is computed with shifted windows.

— Swin Transformer reduces model parameters

and computational complexity by applying
self-attention locally within non-overlapping
windows.

— Unlike VIT, Swin Transformer can be
exploited as a backbone for various vision
tasks.

®i, SEOUL NATIONAL UNIVERSITY
W8 NUMERICAL COMPUTING & IMAGE ANALYSIS LAB
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Swin Transformer

Model

® Architecture
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Model

Swin Transformer

® Shifted Window based Self-Attention

— In each stage, a single or multiple pairs of transformer blocks are placed.

— The first block locally computes self-attention among image
patches in each window at a multi-head self-attention module.

— The second block shifts window partitions and computes self
-attention in shifted partitions, taking cross-window

connections.
Layer 1

Layer [+1

w9 SEOUL NATIONAL UNIVERSITY
YUY NUMERICAL COMPUTING & IMAGE ANALYSIS LAB
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Swin Transformer

Experiments

(a) Regular ImageNet-1K trained models

(a) Various frameworks

Method

Backbone | AP APSX APSY

#param. FLOPs FPS

Cascade R-50
Mask R-CNN Swin-T

46.3
50.5

64.3
69.3

50.5
54.9

82M
s6M

739G
745G

18.0
15.3

R-50
Swin-T

435

AISS 47.2

61.9
66.5

47.0
51.3

32M
36M

205G
215G

28.3
22.3

R-50
Swin-T

46.5

i )
RepPointsV2 50.0

50.3
54.2

42M
45M

274G
283G

64.6
68.5

13.6
12.0

Sparse R-50 | 445
R-CNN Swin-T | 47.9

63.4 482 106M 166G
67.3 523 | 11I0M 172G

21.0
18.4

(b) Various backbones w.

APbox Ap}ggx AP?gx APmaSkAPgbaSkAP%aSk

Cascade Mask R-CNN

paramFLOPsFPS

DeiT-ST
R50
Swin-T

48.0
46.3
50.5

67.2
64.3
69.3

51.7
50.5
54.9

414
40.1
43.7

64.2
61.7
66.6

443
43.4
47.1

8OM 889G
82M 739G

86M 745G

10.4
8.0
15.3

method 1m'age #param. FLOPs thl‘@llghlet ImageNet

size (image / s)|top-1 acc.
VIiT-B/16 [20] [384% 86M 554G 85.9 77.9
ViT-L/16 [20] | 384% 307M 190.7G  27.3 76.5
DeiT-S [63] 224° 22M  4.6G 940.4 79.8
DeiT-B [63] 2242 86M 17.5G  292.3 81.8
DeiT-B [67] 384 86M 554G 85.9 83.1
Swin-T 224* 29M  4.5G 755.2 81.3
Swin-S 224> 50M  8.7G  436.9 83.0
Swin-B 224 88M 154G 278.1 83.5
Swin-B 3842 88M  47.0G 84.7 84.5

(b) ImageNet-22K pre-trained models

method 1m‘age #param. FLOPs thl-Ollghlet ImageNet

size (image / s) {top-1 acc.
R-101x3 [35] [3847 388M 204.6G 84.4
R-152x4 [35] | 480% 937M 840.5G 85.4
VIiT-B/16 [20] |384% 86M 554G 85.9 84.0
VIT-L/16 [20] | 3842 307M 190.7G  27.3 85.2
Swin-B 224 88M 154G 278.1 85.2
Swin-B 3842 88M 47.0G 84.7 86.4
Swin-L 3842 197M 103.9G  42.1 87.3

X101-32
Swin-S

48.1
51.8

5241 41.6

44.7

66.5
70.4

n

63.9
67.9

45.2
48.5

10IM 819G
107M 838G

[2.8
2.0

X101-64
Swin-B

48.3
51.9

66.4
70.9

41.7
45.0

n
N 1) &
|

n

64.0
68.4

45.1
48.7

[40M 972G
[45M 982G

10.4
1.6

% SEOUL NATIONAL UNIVERSITY
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Diff-TTS: A Denoising Diffusion Model for
Text-to-Speech
(Interspeech 2021)




Contribution
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Ditt-TTS

reverse process

diffusion process



Ditt-TTS

a, B,m, ...: hyperparameters.
c : Text

Diffusion process : q(x;.7lxo, ¢) « hyperparameter2 O ZICHE Markov chain.

Reverse process: pg(xor_1lx7, ) « S5 ZE

q(xi|ri—1,¢) = N(xe; /1 — Bear—1, Bed)

: T
reverse process Q(xl Tt CUT‘:BOa C) — H Q(wt‘wt—l)

—_— > —_— tZ].

diffusion process T

po(zo ..., xr-1lzr,c) = | [ po(we-1]a:, c)
t=1



Objective

%F EH: Model pg(xp|c)E q(x,|c)(mel-spectrogram)0i| At

» maximizeg Eiogq(z0|c)[l0gpe (xo|c)]
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Inference
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Accelerated Sampling

- ——— - ——
— -
- ~ -
-

o
J—— -
- -
- S~o
~

ys ~ / N / ) il \ p N T \ /a.
@@ Ty — @ —
\ A\ A\ A

« Decimation factor y2t& skipStH mference St & g

- SkipStEH 2t sample quality?t MSHE[X] R =& T = AUS.

« MEZ pathE t=[r,75 .. 7y](M <T)E O_E, i > 10| CHsH sampling= CHS4t
- Y/ 1

Tr, o =+/0r, ( - . ) where o,
VOir,




Accelerated Sampling

) where o,, = n\/

l—a+.
T _

l—ar.
Off,—z

1 /BT?:



Text encoder
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Experiments

Table 1: The Mean Opinion Score (MOS) of single speaker TTS Table 3: The comparison of RTF in mel spectrogram synthesis.
models with 95% confidence intervals. RTF denotes the real-time factor, that is the time (in seconds)

required for the system to synthesize one second waveform.

Method S-scale MOS

Method RTF
GT 4.541 4+ 0.057
GT(Mel + HiFiGAN) 4.323 + 0.060 Tacotron2 0.117
Tacotron2 4.006 + 0.072 Glow-TTS 0.008
Glow-TTS 4.160 £+ 0.070 Diff-TTS(T=400)
Diff-TTS(T=400, v = 1) 4.337 + 0.064 Normal diffusion sampling 1.744
Diff-TTS(T=400,~v=7)  4.223 + 0.066 Accelerated sampling(y=7)  0.258
Diff-TTS(T=400, v = 21)  4.135 £ 0.070 Accelerated sampling(y =21)  0.090
Diff-TTS(T=400, v = 57) ~ 4.091 + 0.067 Accelerated sampling(y = 57)  0.035

Diff-TTS (jmhxxi.github.io)



https://jmhxxi.github.io/Diff-TTS-demo/index.html
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Method

(1) Contrastive pre-training (2) Create dataset classifier from label text
Pepper the )
aussie pup » ETeXct’ w| A photo of - Text
HCOGCE 1 a {or ject}. Encoder
Y Y Y Y
T T, | T; Ty
» L LTy (T | T3 | . (TN .
" (3) Use for zero-shot prediction v v v v
. > I LT [Ty | LT | .. [Ty . T, Ty | T Ty
Image ‘
> I3 I3’T1 I3’T2 I3'T3 I}'TN |
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=
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>IN | Ty [T | IeTs | . (BN & photy B
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Figure 1. Summary of our approach. While standard image models jointly train an image feature extractor and a linear classifier to predict
some label, CLIP jointly trains an image encoder and a text encoder to predict the correct pairings of a batch of (image, text) training
examples. At test time the learned text encoder synthesizes a zero-shot linear classifier by embedding the names or descriptions of the
target dataset’s classes.



xamples (supplementary material)

FOOD101 SUN397

guacamole (90.1%) Ranked 1out of 101 labels television studio (90.2%) Ranked 1out of 397

v aphoto of guacamole, a type of food. v aphoto of a television studio.

= -
x a photo of ceviche, a type % a photo of a podium indoor
-
fedamame, at f fi x a phot conference room
' =
x aph f tuna tartare x a photo of a lecture room
1 '
X h f hummus ype of f x a photo of a control room
YOUTUBE-BB EUROSAT
airplane, person (89.0%) Ranked 1outof 23 annual crop land (12.9%) Ranked 4 out of 10
v aphoto of a airplane. x a centered satellit to of permanent crop land
= ——
x a photo of a bird x a tered t to of pasture land
I
X h fabear X ered € to of highway or road
= ==
x aph f a giraffe v acentered satellite photo of annual crop land.
I =
X oh facar X ente 1 satellite to of brushland or shrubland
PATCHCAMELYON (PCAM) IMAGENET-A (ADVERSARIAL)
healthy lymph node tissue (22.8%) Ranked 2 out of 2 lynx (4.2%) Ranked 5 out of 200
x th 1 photo of lymph node tumor tissue x a photo of a fox squirrel
I B
v thisis a photo of healthy lymph node tissue x a photo of a mongoose
—
X af f a skunk
=
x @ phott red fox
==

v aphoto of a lynx.



Approach (supplementary material)

Selecting an Efficient Pre-Training Method

- Given batch of N pairs: NxN possible pairs

- CLIP learns multi-modal embedding space by jointly trai
ning image encoder and text to maximize the cosine simil
arity

- Train CLIP from scratch

- Linearly project the extracted feature to embedding space

# image_encoder - ResNet or Vision Transformer

# text_encoder - CBOW or Text Transformer

# I[n, h, w, c] - minibatch of aligned images

# T[n, 1] - minibatch of aligned texts

# W_i[d_i, d_e] - learned proj of image to embed
# W_t[d_t, d_e] - learned proj of text to embed
# t - learned temperature parameter

# extract feature representations of each modality
I_f = image_encoder(I) #[n, d_i]

T_f = text_encoder(T) #[n, d_t]

# joint multimodal embedding [n, d_e]

I_e = 12_normalize(np.dot(I_f, W_i), axis=1)

T_e = 12_normalize(np.dot(T_f, W_t), axis=1)

# scaled pairwise cosine similarities [n, n]
logits = np.dot(I_e, T_e.T) * np.exp(t)

# symmetric loss function

labels = np.arange(n)

loss_i = cross_entropy_loss(logits, labels, axis=90)
loss_t = cross_entropy_loss(logits, labels, axis=1)
loss = (loss_i + loss_t)/2

Figure 3. Numpy-like pseudocode for the core of an implementa-
tion of CLIP.
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Introduction

- Vibration-based structural health monitoring of target structure generally relies on a reasonable and
accurate finite-element model for damage parameter identification

- For the FE model-based SHM procedure, the accuracy of the FE model is essential for its successful
implementation

- To ensure the accuracy of the established FE model of the target structure, the initial model should be
calibrated or updated through adjusting appropriate model parameters with the observed data

- Most of the previous research works are based on deterministic methods

- Deterministic FE model updating aims to find the optimal parameters of the numerical model to obtain the
best fit between the model output and the measured data

- This is usually achieved by describing the problem as a constrained optimization problem, in which the
goal is to minimize the difference between the calculated data and the observed one

- However, model updating is essentially an inverse problem, and the obtained results are greatly affected
by the incomplete measurement, measurement noise, modeling errors, and so on



Proposed Methodology-1

=> This paper proposes a practical framework for structural model updating and prediction by utilizing the
modal parameters based on the Bayesian regularization

« Structural Model Updating Based on the Bayesian Regularization

- Simultaneously updating the model parameters together with the three hyperparameters
- Predicting a natural frequency vector

N; a . NN,
r Inp(Dyla.3.v.M) = —Ina ——|0y.p — 0" + -In 3
7 ‘.1 H 5.'.‘,"_' ]ﬂ _':,"_' N - - MAF -
{-B'_h.u. 7, v, M) = 55 i 10 P "
Dy |, 3, 5, M 5 NN
Pl _:)v f(O:M) — |- + “”hl'
- N N \
I (1 (0w m))
Posterior distribu_ti_on of uncertain model " L;'l,,;f _éln det A (Byyup: 0. 3. 7. M
parameters conditional on the measurement % £
data l 18)

Taking the partial derivative of the log-evidence with
respect to the three hyperparameters and setting them
equal to zero



Proposed Methodology-summary

1. Initialize the model parameters 0 = 0, and hyperparameters
a = 1,000, 3 = 1, and v = 1. Set the lower and upper bounds
of 0 as 1; and u,, respectively.

2. At the kth iteration step, extract the optimal values of
hyperparameters u:‘:&:,) = 0(0;:;,','), ."3;';;,',' = .3(0;:;,',’), and
Yuinp = 7(0ap ) Obtained from the (k — 1)th iteration step.

3. Solve the problem of nonlinear bound-constrained least-squares
minimization in Eq. (23) with the trust-region-reflective algo-

rithm to obtain the current OL‘LLP the full-length residual vector
P(Oyiap: Ootap - Butap - Tasap - M), and the corresponding Jaco-
bian matrix J(0;hp: e - Fatar - Yatap - M)-

4. Extract the three residuals r,(B)y\p: M), ra(04sp: M), and

r;( f:i\p:M) at the current 0‘)&9 through Eqs. (36)-(38),
respectively. “
5. Extract the two Jacobian matrices J,(By,p:M) and

.lg(Omp; M) from Eqgs. (33) and (34), respectively.

10.

Calculate the approximated Hessian matrices H,(0,;,,:M)
and H,(0)}\,:M) at 8,1, by using Eqgs. (39) and (40).

. Calculate the approximated inverse Hessian of the negative

logarithm of the posterior distribution E(Omz u_'\';;,l,'. | bﬁ,’,’ '

7!\1;;!1) ) M) evaluated at 0;;3\,, through Eq. (42).

Update the hyperparameters .-'i‘&‘,','\,',). 'v;:,;,',’ and u"hi;,',’ sequen-

tially through Egs. (41), (43), and (44) to obtain B%\p, 7iths.

(k) (&) <2
and oy, p at current 0, .. respectively.

Repeat Steps 2-8 until the convergence critérion is met;
i.¢., the norm error of optimal model parameters between the
current and previous iteration steps 8‘,},’” - 0':1;,',’ is less than a
prescribed small =,

Output the optimal values of model parameters 0y, p, together
with the three hyperparameters angap, Svap, and Taap.



Proposed Methodology-2

Prediction of Structural Modal Parameters Based on the Updated Model

Instead of utilizing the usual Bayesian treatment for hyperparameters, which involves marginalization
of the posterior distribution over all possible values of the three hyperparameters

p(fIDy.M) = [|p(£10. 3.M)p(0)Dy. M)d0 46
JI'!I'HlL:'_--,.":':rﬂI = N[0 Oniap. A (Ongar; onap. Ouap. Tmap. M) ) - Natural frequencies
(43)
p(w,[Dy. M) = [ p(w,[0.7.M)p(0]Dy. M)dO (47

Mode shapes

Model predicted natural frequency and model shape vector on the uncertain model parameters are still
intractable due to the nonlinearity of FE model functions

Assumption : covariance of posterior distribution of model parameters is small (linear approximation)

- Using a Taylor series expansion of the FE model functions

p(£10. 5, M) = N (Fly, (Byyap: M

T .]_ ﬂ1|_-| -.‘t.-'.l'.'. H — ﬂ"..'_ 138 :I"-[.'-.I"["- | -1-:"\



Case study

» Real life pedestrian steel bridge located in Xima Road, Wuhan, China

TTTUNNY ATTNTRNRY aYREREF .A.YESSow:

'g\\!’l\.-{:‘l\‘"

EME N S ]
o s S A -

Fig. 1. Xima Road Pedestrian Bridge in Wuhan, PR China. (©2020 Baidu.)

Table 1. Geometrical and material properties used in the FE model of the
pedestrian steel bridge

19500 19500

3540 520 3250 | 3250 | 3250 | 3250 | 3250 | 3250 < 3250 | 3250 | 3250 | 3250 | 3250 | 3250 320 3540

Al

Fig. 2. Elevation view of the pedestrian bridge (unit:mm).

Parameter descriptions Initial values
Bridge span 39 m

Bridge width 43m
Bridge height 34 m
Young's modulus of steel material 2.06 x 10" N/m?
Mass density of steel matenal 7.85 x 10° kg/m’
Poisson’s ratio of steel material 0.3

Outer dimension of top chord section (rectangular 04x03m
hollow)

Thickness of top chord section 0012 m
Outer dimension of bottom chord section 04x03m
(rectangular hollow)

Thickness of bottom chord section 0012 m
Outer dimension of diagonal chord (rectangular 0.25x03 m
hollow)

Thickness of diagonal chord 0.012 m
Outer radius of strut section (circular hollow) 0.09 m
Thickness of strut section 0012 m
Thickness of top panel of bridge deck 0012 m
Thickness of bottom panel of bridge deck 0012 m
Thickness of rubber pavement 0.02 m
Mass density of rubber pavement 1.5 x 10° kg/m’




Case study

Table 2. Experimental natural frequencies and mode shapes of three data

B' sets used in FE model updating
! - — e —— — e — Data set
o 3 & o number Items Mode I Mode2 Mode3 Mode 4
1 Natural 4.8520 97053 134765 154848
) / frequencies (Hz)

b = 2= ——— y y - v e e = - Mode shape 0.1922  —0.1986 —0.3634 —0.5888
CH1/CHG6 CH2/CH7 CH3/CHS CH4/CHY CHS5/CH10 components 03256 —03163 -0.3675 —0.1165
B 04201 -04127 -0.0463 0.0649
I 03546 —0.3452 0.3384 0.1306

02460 —0.2528 04972 0.3381
0.1997 02074 —0.3094 0.5382
03274 03155 -0.3187 0.2446
04139 04103 -0.0702 0.0530
0.3555 0.3686 0238 —0.2173
02226 02457 03315 -0.3235

7777777777 e 2 Natural 48512 97005 134635 154901
‘‘‘‘ o frequencies (Hz)

CH1 CHE Mode shape 0.1919 —02024 —03666 —0.5395

B-B components 03258 —03199 —03689 —0.1156

04203 -04074 -0.0551 -0.0116

Fig. 4. Configuration of 10 measuring points in the field testing for the pedestrian bridge. 0.3552 —03416 0.3426 0.1620

02426 —-02626 05044 0.4862
0.1993 02009 —0.3046 0.4461
03284 03204 —0.3256 0.2374
0.4150 04077 —-0.0756 0.0398
0.3553 0.3636 02316 -0.1824
0.222]) 02525 03108 -03777

3 Natural 4.8421 97125 134595 155315
frequencies (Hz)
Mode shape 0.1926 02031 -0.3763 —0.5257
components 03254 —03193 -0.3695 -0.1742

04194 —04066 —0.0521 -0.0160
03547 03412 0.3446 0.2016
02440 -0.2571 0.5039 0.4185
0.1981 02030 -0.3024 0.4776
0.3288 03241  -0.3266 0.2450
04153 04080 —0.0758 0.0654
0.3559 0.3655 02253 02214
0.2218 0.2503 03033 —0.3686

3 Data sets



Case study

77 <7 7 P 4
&7 L @5/
(a) (b) (c) (d)

Fig. 5. Overlapped display of three sets of experimental mode shapes identified from field testing: (a) Mode 1; (b) Mode 2; (c) Mode 3: and
(d) Mode 4.

Fig. 6. FE model of the pedestrian bridge with node and element numbers (node numbers: numbers without parentheses; and element numbers:
numbers with parentheses).



Case study

Fig. 7. Natural frequencies and mode shapes calculated from the initial FE model: (a) Mode 1 (5.9609 Hz): (b) Mode 2 (9.3599 Hz): (c) Mode 3

(15.4479 Hz); and (d) Mode 4 (20.3188 Hz).

1000 — T
—+—Dataset1
—=-Datasets 182

oo ~+—Data sets 1103

0 10 zo 30 40 50 60 70 80 20
Iteration number
Fig. 9. Convergence history of three hyperparameters with different
numbers of data sets.

- The adjustment of model parameters gradually increases as the iteration proceeds before the

convergence is achieved

w x5 ~o—Data set 1
—e—Datasets 182
= ~ +—Datasets 1103
< 1P <" 1 ~__ |
05 05
0 50 100 0 50 100
15 - 15
< 1& | \" ]D
05 - 05
0 50 100 0 50 100
15 15
3—-, 1b to 'h
05 05
0 50 100 o 50 100
15 15
o = = EE————
05 05
0 50 100 0 50 100
15 15
= 1C ‘9 IL‘
05 . 05 .
0 50 100 0 50 100
Iteration number Iteration number

Fig. 8. Convergence history of FE model parameters with different
numbers of data sets.



Case study
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- Data set 1 ~—IFEM
18 A Data set2 —Data set 1
S Data set 3 04 —Dataset2
= Data set 3
-
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! le order 08 J A
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e . Comparison of expenmental naturs uencies with model-
- v e o Components of linked mode shape vectors

predicted results.
Fig. 11. Comparison of experimental mode shapes with model-predicted results.

- The comparisons of experimental natural frequencies and mode shapes with those predicted from the
updated FE model



Conclusions

- In this paper, a practical statistical framework for structural model updating and prediction based on
the Bayesian regularization using incomplete modal data is proposed

- One of the significant features of the proposed framework lies in that the existing nonlinear least-
squares algorithm, specifically the trust-region-reflective algorithm, is fully explored to solve the
optimization problem of Bayesian inference of regularization hyperparameters

- Based on the structural FE model calibrated with measured modal data, the posterior predictive
distribution over natural frequencies and mode shapes are obtained

- Areasonable guantitative evaluation of the prediction uncertainty can be provided to give confidence
to the updated model

- One can obtain a calibrated FE model that is as consistent as possible with the measured modal
data with a relatively modest amount of model parameter correction so as to improve the noise
robustness of dating procedure
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What is Super Resolution

£l —

* Super-resolution(SR) is a technique that aims to enhance the resolution of an image
by adding missing information.

* From low resolution images (LR), reconstruct high resolution images (HR)
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Implicit Neural Representation

* Implicit neural representation: Constructed with MLPs which maps coordinates to
signal. Ex) 3D space

' + f(z)* —1=0

if (z,y, 2) on surface — f(z,9,2) =0
if (z,y, z) inside surface — f(z,y,2) >0
if (z,y, z) ouside surface — f(z,y,2) <0
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Motivation/Contribution

* What about applying the implicit neural representation in images?
* Novel method for representing image continuously

* Great Scalability: allows extrapolation to even x30
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Local Implicit Image function

* s =fe(z, X)

* z -> nearest latent vector from the
image

* X -> coordinate of the image

* s-> predicted signal (RGB value)
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Overall Pipeline

e Data preparation: Random
downsample the training image to get (a) Data preparation Geowod-Sish
the input.

* |t is self-supervised method

* Train encoder(obtain 2D feature map)

together with LIIF

* XnriS the coordinate that is used for
query on LIIF

Seoul National University
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Seoul National University

Conclusion

* Great work that uses implicit representation for new application

* Our world is continuous and there is lots of areas that implicit function can
represent

* Use your creativity and use this paper as inspiration to your work.

¥ = SR A e Sl TR SN e
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Normalizing Kalman Filters for Multivariate Time Series

Analysis
Emmanuel de Bézenac et al., NIPS 2020

Junghyeon Kwon

-
Wireless Communication and
Information Systems Laboratory

Nov 20, 2021

Department of ECE, SNU
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Normalizing Kalman Filters

= Generative model

« The modelling of non-Gaussian multivariate time series data with nonlinear inter-dependencies that has Kalman-like

recursive updates for filtering:

Iy ~ N(p1.%1) (initial state)
(NKF model) I} = Fili_q + €. e ~ N(0,%;), (transition dynamics)
Vi = ft(}lflt + &¢), g ~N(0,T%). (observation model)

* [;: latent state, F;: transition matrix, A;: emission matrix, y;: observation, with
ANand © = (p1. %, {Ftuﬂt}tzly {Zt:Ft}tEZ).

« We consider a flexible nonlinear transformation for the observation model, assuming invertibility of f;.

Department of ECE, SNU WCISL
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Normalizing Kalman Filters

= Generative model

« The probability density of an observation:

P(ye|le: ©, A) = p,(f " (ye)|le; ©) |det [Jacy, (f; )]

« Computing the density raises several issues:
O Finding a flexible while ensuring invertibility.
2 Being able to compute the inverse efficiently.

(3 Tractability of the computation of the Jacobian term when the number of time series N is large.

Department of ECE, SNU WCISL
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Normalizing Kalman Filters

= Normalizing flows

Department of ECE, SNU WCISL

Taking inspiration from normalizing flows, which are invertible neural networks that typically transform isotropic

Gaussians to fit a more complex data distribution.

In this approach, we apply these invertible neural networks to temporal data, using them to map the distribution p,

given by the LGM to the complex data distribution.

Inference and learning: The filtered distribution p(l;|y;.+; ©, A) is essential as it determines our current belief on the

state having observed all the data up to time t.

Despite the nonlinear nature of f;, the filtered distribution p(l;|y;.:; ©, A) remains Gaussian and its parameters can be

computed in closed form similarly to the Kalman Filter.
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Normalizing Kalman Filters

= Proposition 1

« The filtered distributions of NKF model are Gaussian and are given by the filtered distributions of the corresponding
LGM with pseudo-observations z, := f,1(y,),t = 1. Thatis, p(I¢|y1.4; 0, A) = preu (l¢]z1.c; ©) Where p ¢y, refers to the
distribution given by the LGM.

= Proposition 2

« The likelihood of the parameters (0, A) of the NKF model given the observations {y,.r} can be computed as

T
LO,A) =ply1.7:0,A) = HPLGH(Zt|Zl:t—12E}} |det [JHCZt(ft)“_l

t=1

where z, == f71(y,) and p, ¢ (2¢]21.0—1; ®) denotes the predictive distribution of LGM.

Department of ECE, SNU WCISL
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Normalizing Kalman Filters

= Application: Forecasting and missing values

Ft,ﬂt;EthZJ(hf:‘b); ht:@(fﬂt;ht—ﬂ'l))a
Iy = Fyl;1 + €. e sampled from N (0, X;),
Y = ft(flf.!t + &), £¢ sampled from N(0,T;), t=T+1,....T + .

* In contrast to alternative deep learning approaches, this generative procedure is not autoregressive in the sense that

observations are not fed to the model.

« When missing for t, we can compute the filtered distribution p(l;_,|y;.c—1; ©, A) and then start the prediction step

starting from the filtered distribution at time t — 1.

Department of ECE, SNU WCISL
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Experiments

= Qualitative results and missing data experiment

o
va

-0

-%.

(a) S1: Results with (left) and without (right) NF.

4

-2

—0
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(b) S2 : Results with (left) and without (right) NE.

CRPS-Sum-N for Varying Amounts of Missing Data, elec

—— EWAE
—— DeepaAR

—— GFCopula
—— NxF (Curs)

e

T T T T
0% 10% 30% 50%:
Parcentage of missing data

T T
T0% 90%

&

Mt w

SEOUL NATIONAL UNIVERSITY

« The variant captures the daily modes correctly, but assumptions such as Gaussianity and independence between time

series introduce errors.

« We observe that not only does NKF outperform other approaches aby a large margin, but its error also increases

slower than in other methods when the percentage of missing data is increased.

Department of ECE, SNU WCISL
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Thank you
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Learning Continuous Image Representation with Local Implicit
Image Function (CVPR 2021)

Yinbo Chen, Sifei Liu, Xiaolong Wang

Junhyeong Kwon

Link: https://openaccess.thecvf.com/content/CVPR2021/html/Chen Learning Continuous Image Representation With Local Implicit Image Function CVPR 2021 paper.html
Seoul Nat'l Univ. 1/ 12
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Introduction

e Super-Resolution

Input Output
(Low resolution image) (Super-resolved
high resolution image)

Seoul Nat'l Univ.



Introduction

* Implicit Neural Representation

Input:

image coordinates

(] (] ...'
R ARL RIS
LR
t.ﬁfé.i’&.ﬁf&.f};
T“ "“' "'“" £
NP

Output:

RGB values corresponding

to the coordinates

Seoul Nat'l Univ. 3/ 12



|
B ¢ Intelligent Signa/

rocessing Lab

Contributions

* By modeling an image as a function defined in a continuous domain,
the image can be restored and generated in arbitrary resolution.

LIF (= Local Implicit Image Function)

Seoul Nat'l Univ.
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Overall Architecture

E,: Encoder parameterized with ¢
fo: Decoding function parameterized

M® ¢ RHxWxD Shr with 6
— Ep —— uF — ] loss Xpr: center coordinates of pixels in the
o Spred HR image domain
Xpr —— Spr: corresponding RGB values of the
pixels

Seoul Nat'l Univ. 5/ 12
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Example: 2x SR task

E,: Encoder parameterized with ¢
fo: Decoding function parameterized

M® ¢ RHxWxD Shr with 6
— Ep —— uF — ] loss Xpr: center coordinates of pixels in the
o Spred HR image domain
Xpr —— Spr: corresponding RGB values of the
pixels

LIIF representation
M(l) € R2X2xD

Seoul Nat'l Univ. 6/ 12
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Example: 2x SR task

E,: Encoder parameterized with ¢
fo: Decoding function parameterized

M® ¢ RHxWxD Shr with 6
— Ep —— uF — ] loss Xpr: center coordinates of pixels in the
o Spred HR image domain
Xpr —— Spr: corresponding RGB values of the
pixels

v

AT i

LIIF representation ® Xy,
M® e R2X2xD

Seoul Nat'l Univ. 7/ 12
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Example: 2x SR task

E,: Encoder parameterized with ¢
fo: Decoding function parameterized

M® ¢ RHxWxD Shr with 6
— Ep —— uF — ] loss Xpr: center coordinates of pixels in the
o Spred HR image domain
Xpr —— Spr: corresponding RGB values of the
pixels

v

\ : / R\

LIIF representation Spred € R4x4x3
M(i) = ]RZXZXD

Seoul Nat'l Univ. 8/ 12
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Local Implicit Image Function (LIIF)

* Local ensemble

1 S * *
I()(Iq}: Z Ft'fé(ztaifq—“t)

t€{00,01,10,11}

X4: query coordinate

z™: nearest feature vector
v™: z"’s coordinate

fo: neural implicit function

*

Seoul Nat'l Univ. 9/ 12
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Experiments
In-distribution Qut-of-distribution
Method 2 %3 x4 | x6  x12 xI8  x24 %30
Bicubic [24] 31.01 28.02 2666 | 2482 2227 21.00 20.19 19.59
EDSR-baseline [24] 3455 3090 2894 | - ] ] ] ]

EDSR-baseline-MetaSR¥ [15] | 34.64 30.93 2892 | 26.61 23.55 22.03 21.06 20.37
EDSR-baseline-LIIF (ours) 34.67 3096 29.00 | 26.75 23.71 22.17 21.18 20.48
RDN-MetaSR? [15] 35.00 31.27 2925 | 26.88 23.73 22.18 21.17 20.47
RDN-LIIF (ours) 3499 31.26 2927 | 26.99 23.89 2234 21.31 20.59

Table 1: Quantitative comparison on DIV2K validation set (PSNR (dB)). ¢ indicates ours implementation. The results
that surpass others by 0.05 are bolded. EDSR-baseline trains different models for different scales. MetaSR and LIIF use one
model for all scales, and are trained with continuous random scales uniformly sampled in x1-x4.

Seoul Nat'l Univ. 10/ 12
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Experiments
In-distribution Out-of-distribution
Dataset Method <2 <3 ! <6 <8
RDN [51] 3824 3471 3247

Set5 RDN-MetaSRF [15] | 38.22 34.63 32.38 | 29.04 26.96
RDN-LIIF (ours) | 38.17 34.68 32.50 | 29.15 27.14
RDN [51] 3401  30.57 28.8l1 - -
Setl4 RDN-MetaSRF [15] | 33.98 30.54 28.78 | 26.51 24.97
RDN-LIIF (ours) | 33.97 30.53 28.80 | 26.64 25.15
RDN [51] 3234 2926 27.72 - -
B100 RDN-MetaSRF [15] | 32.33 29.26 27.71 | 25.90 24.83
RDN-LIIF (ours) | 32.32 29.26 27.74 | 25.98 24.91
RDN [51] 32.89  28.80 26.61 - -
Urban100 | RDN-MetaSR® [15] | 32.92 2882 26.55 | 23.99 22.59
RDN-LIIF (ours) | 32.87 28.82 26.68 | 24.20 22.79

Table 2: Quantitative comparison on benchmark datasets (PSNR (dB)). 1 indicates ours implementation. The results that
surpass others by (.05 are bolded. RDN trains different models for different scales. MetaSR and LIIF use one model for all
scales, and are trained with continuous random scales uniformly sampled in x1—x4.

Seoul Nat'l Univ. 11/ 12
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Processing Lab

Qualitative results: https://yinboc.github.io/liif/

Thank you!
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Goal-conditioned Reinforcement Learning
with Imagined Subgoals
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Overview

state s 7 ( ‘g._\-u )
\
KL
n(.|s,9) /N

state s

n(.|s,g) Goal-conditioned RL problem
(Ant navigation, Vision-based robotic manipulation)

Two policies

® High-level policy 1+ : predicting imagined
subgoals
Xgoal g ® Target policy 1 : goal-reaching control policy

Learning the goal-reaching policy 7(-|s, g) with the subgoal-reaching policy 7(-|s, sg) as a guidance.



Goal-Conditioned Actor-Critic

Expected discounted return states S€S
goals ge§
. t actions acA
J(1) = Egmpyrman (1) [D_ V7 (505 a1, 9)]
t

Distribution conditioned on given goal

d™(719) = po(so) | [ w(aclse, 9)p(sesalse, ar)

Assume § = G : states and goals co-exist in the same space.

Reward r = -1 for every step until reach the goal.



High-Level Policy

Predicts imagined subgoals sy conditioned on s and g.

Value function: V™ (s, g)

Sincer=-1, |[VT si sj becomes the measure of the distance between 'si and sj.
> .

minimize Cﬂ(sg|8,g) = m‘dX(‘Vﬂ(Sasg)L |Vﬂ(39a9)|)

7I-llfr:{—l—l — arg I?}{Il IE‘-%‘(s,g)rij,sg,rwfrH(.|s,g) [CW(SQ |Sv g)]




High-Level Policy

Wl{f—l—l — arg I}TI}{II IE:'(s,g)mD,sgrer(.|s,g) [OW(SQ |Sa g)]

|

H
Wf—l—l — arg H;%XE(S,Q)ND,SQNWH(JS,Q) [A i (Sglsag)]

s.t. Dir (77 (s, g) |1 ps (1) <ee,

where advantage function

AT (59]8,9) = By, wntt (15,9) [Cr(8g]5,9)] = Cr(s4]s,9)




Target Policy Improvement

KL constraint: Dxr, (7(.]s,9) || 7(.]s,84)) < €.

State s >[ Policy

e ™ ~([3.9)

.......... l-----------------------------‘ [DKL
J [

i High-level policy ] [ w(.|s, 84) ] — TPTOT (|3, g)
: mH J subgoals s4 :

_________________________________________

Prior policy

Moy, — arg IIIH&X E{.S,Q}ND]E‘QNWQ(.|3,Q}

Q7 (5.0.9) — aDit, (raCls,9) 172 (15.))]



Experiments - Ant Navigation

success rate
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success rate

o
o

o
IS

o
[N

o
o

success rate

e
o

o
IS

e
[N

o
o

0 250 500 750 1000
environment steps (x1000)

(c) IT-shaped maze

0 250 500 750 1000
environment steps (x1000)

(d) w-shaped maze



Experiments - Robotic Manipulation
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(a) Illustration of the robotic (b) Comparison to prior works
manipulation task
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Deep repulsive clustering of ordered data
based on order-identity decomposition

International Conference on Learning Representations (ICLR). 2020.
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Radio Technology Lab. SNU

Keunwoo Kim

e
2022-01-13 Radio Technology Laboratory Seoul National Univ.



Radio Technology Lab.

Wireless / Channel / Microwave

1. Motivation

+ Age estimation

= Estimates someone’s age from input image

_ ijﬁ - Age : 30
/

T
2022-01-13 Radio Technology Laboratory Seoul National Univ.



Radio Technology Lab.

Wireless / Channel / Microwave

1. Motivation

+ Age estimation

= Trains model with labeled data (label : age)

2022-01-13 Radio Technology Laboratory Seoul National Univ.



Radio Technology Lab.

Wireless / Channel / Microwave

1. Motivation

+ Age estimation

= Different race, gender, etc. cause low accuracy of estimated age

Low accuracy

2022-01-13 Radio Technology Laboratory Seoul National Univ. 4



Radio Technology Lab.

Wireless / Channel / Microwave

1. Motivation

+ Age estimation

= Divides data into clusters & estimates its age!

Feature
extraction
&
Clustering

2022-01-13 Radio Technology Laboratory Seoul National Univ.



Radio Technology Lab.

Wireless / Channel / Microwave

2. Proposed algorithm

% Unsupervised learning

= k-means clustering algorithm
* Forsimplicity,letd;y =2, k=4, j =1,2,..,k

Al o AT AR AT

O | A e Until | e i
A4 A - | converge A S

1.~ Random 260 =gennf ) I |
o CEACE

Feature hY;, € R%ua o e [FEE . k clusters
h ld - L ’ .‘C4 . L b .
"ﬁ:; . ) ‘ C .. . .:._:’,;}t}'hn.. E

(t+1) _
3.¢c ¢ lc(t)lzxecm hia 4. Repeat 2~3

2022-01-13 Radio Technology Laboratory Seoul National Univ.



Radio Technology Lab.

Wireless / Channel / Microwave

2. Proposed algorithm

% Unsupervised learning

= Proposed algorithm (Deep repulsive clustering (DRC))
* Add repulsive term when choosing centroid ¢;

Spherlcal k-means clustering Repulswe term
. k
Cost functlon]({Cj}j {]}] 1) 1ZXEC]((h ALTE Zl¢](h )T¢))
1. Centroid c; rule Repeat
k until
max | ({Cj} ._1)
J= converge

S.t.chcj =1(j=12,..,k)

2. Nearest neighbor rule
C; = {x|(hiDTc; = (R} foralll <1<k

Input x

Feature hY;, € R%ua

R Thx — 1 Not only gather data into clusters,
id "tid —

Also repel each cluster to strictly separate them

T
2022-01-13 Radio Technology Laboratory Seoul National Univ. 7



Radio Technology Lab.

Wireless / Channel / Microwave

3. Experimental results

% Facial age estimation
= MORPH Il dataset, d;;=896

B Cluster 1 ™ Cluster 2

Spherical k-means ¢

clustering =

yuif

Deep repulsive 3
clustering (DRC)) I

|
S

§

= v
T

Lo
% et
BN

¥ 3

e 1606

PR N i

“ A

“6 PN ¥

v "t
o

Iteration 4 Iteration 10 Iteration 20 Iteration 30 Iteration 40

[Comparison of the feature space transition of MORPH Il (t-SNE visualization)]

M Cluster 1 = Cluster 2

m . . . l l l
0%
0%

10s  20s 30s  40s 50s 60s

Male

Female

[Clustering results after DRC (k=2)]

2022-01-13 Radio Technology Laboratory Seoul National Univ.



Radio Technology Lab.

Wireless / Channel / Microwave

3. Experimental results

% Facial age estimation
= MORPH Il dataset, d;;=896

(Mean absolute error)

Algorithm MAE CS (%)
DRFs (Shen et al.||2018] 2.91 82.9
Conventional MO-CNN" (Tan et al.][Z017 2.52 83.0
age estimation MV (Pan et al.|[Z0T8] - -
laorithm MV et al.,[2013 ‘ - Algorithm MAE  CS (%)
g BridgeNet™ (Li et al., ﬂlgﬂ 238 91.0 Proposed without repulsive term  2.47  90.7
EEPIII'L* W;nﬂlﬁt HIJU ] giT 91_ - Proposed with repulsive term 2:26 93:8
1m . ) . .
Proposed Proposed-Vanilla (k = 2) 3.36 80.1
age estimation Proposed-VGG (k = 1)* 2.35 92.4
algorithm Proposed-VGG (k = 2)* 2.26 93.8

Proposed algorithm increases the accuracy of the age estimation!

2022-01-13 Radio Technology Laboratory Seoul National Univ.
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‘Wireless / Channel / Microwave

Thank you

2022-01-13

Radio Technology Laboratory



Catch & Carry: Reusable Neural Controllers

for Vision-Guided Whole-Body Tasks

Josh Merel, Saran Tunyasuvunakool, Arun Ahuja, Yuval Tassa, Leonard
Hasenclever, Vu Pham, Tom Erez, Greg Wayne, Nicolas Heess, DeepMind

SIGGRAPH 2020

Presenter: Dohyeong Kim
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RILAB

http://rllab.snu.ac.kr

1. Overview

2. Inverse Dynamics from Motion Capture
3. Low-Level Motor Skill Module

4. High-Level Task Policy

5. Conclusion

RLLAB (http://rllab.snu.ac.kr)



Overview RLLAB

http://rllab.snu.ac.kr

Inverse dynamics + Egocentric vision +
clip 2 ﬂ\ supervised learning Model-free RL
- o

?% > Low-level controller

\ 4

high-level controller
Motion capture data

RLLAB (http://rllab.snu.ac.kr)



Inverse Dynamics from Motion Capture RILAB

http://rllab.snu.ac.kr

Given dataset: After inverse dynamics:

(*”9 Stast—l—last—i—Qa"-) =) ("'aStaatast—l—l)at—l—last—l—Q;---)

Need to extract actions from state-only trajectories (inverse
dynamics), but how?

=) Train RL agents to track given motion capture data individually.

Reward for reference motion tracking:
ry = EKP(_,[))Etutal/wtutul)’ Etotal =WqposEqpos + quelEqveI + WoriEori+
Wapp Eapp + WyelEvel + WgyroLgyro + WubjEubj ,

_ = =% —1 1 . . _ 1 = 2k
Eori = ||1og(qori - Qori N2 Eqpos = m Z |Gpos — q;osl Eapp = Kpp Z [|Xapp — Xapp|l2

Egyro = 0.1 - ||agyr0 - é“g‘kyr(j”z E

1 - - 1 - -
quel = Z |Gvel — q‘;ll Eye = 0.1+ N. Z |Xyel — x‘;]l
Eopy = |[Fopy = 2311 el v
obj = [1Xobj xobj 2

RLLAB (http://rllab.snu.ac.kr)



Low-Level Motor Skill Module RLLAB

http://rllab.snu.ac.kr

St+4+1.. .t+k ® Why use several future states?
Low-level controller o _

O reduce ampiguity In motion.

v To red biguity t

e Reflect short-term motor intention.

(k=5 in the paper.)

v

Structure: <t ® latent space is called skill
v embedding space.

T
Loss: Eq [Z logm(as|ss, z¢) +ﬁ(10g[Pz(Zt|Zt—1) — log q(Zr|Zt—1,Sr+1...t+k))]
t=1 prior

(Train with the action extracted trajectories.)

RLLAB (http://rllab.snu.ac.kr)



High-Level Task Policy

RILAB

http://rllab.snu.ac.kr

high-level controller

Tasks:

Warehouse

Structure:

H

Istm
layer

convolutional residual net

rgb mage

|

s

Toss

mlp

«mﬂ@value function

task input ]

proprioception H @

mlp

/q_m policy output
U ® ()

Istm
layer

Training: Model-free RL (Maximum a posteriori policy optimization)

+ sparse reward (+1 when task success, otherwise 0)

RLLAB (http://rllab.snu.ac.kr)



Result RLLAB

http://rllab.snu.ac.kr

RLLAB (http://rllab.snu.ac.kr) 7



Conclusion RULAB

http://rllab.snu.ac.kr

1. Train RL agents interacting with objects from observations.
2. Use egocentric vision data for object perception.

3. Take so long training time & show artifacts.

RLLAB (http://rllab.snu.ac.kr)
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