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HMM Basics

kB A hidden Markov model 1s a doubly stochastic process
— An underlying Markov process
= not observable
= can only be observed through another observation process
— An observation process that produced a sequence of observations
" A hidden Markov model is usually defined as five-tuples (S,

Q,P,d,11)
— S ={sq, S5, ,Sy} 1s a state space of the underlying process
— = {04,0,, - ,0y} 1s a set of possible observations

— P= [pi j] where p;; 1s the state transition probability from s; to s;

— O = [qu (ok)] where ¢;(0y) 1s the probability that o, is produced
in state s;

— Il = [nj] 1s the 1nitial state distribution

® Parameter of an HMM: A = (P, ¢, 11)




HMM Assumptions

" ,0 : the hidden state and the observation at time t
= Markov assumption

— P =1l0=10,=1-0=n)=P(,=]]0=1)
=  Time-homogeneous assumption

— Pij =P(Aa =116 =1)=P(Ans1 = I dn =1)
= (Observation independence assumption

= P(01,05,+-0 |Gy, Gz, -G, A) = [ 11, P(0; | G, )

4

= Joint Probability distribution

P(Q,0) =TT, P(a | a1)P(o; | )




Fundamental Problems in HMM

= Evaluation problem (likelihood computation)
— Given 2=(P,®,IT) and an observation sequence O =(0;,0,,:+,07)
how do we efficiently compute P(O|4) ?

= Decoding problem

— Given 4=(P,®,IT) , what is the most likely sequence of hidden
states that could have generated a given observation sequence?

— Q =argmax, P(Q,0| 1)

= | earning problem

— Given an observation sequence, find the parameters of the HMM
that maximize the probability of a given observation sequence

— A =argmax, P(O|2)




Solution Methods

= Evaluation problem
— Forward algorithm
— Backward algorithm

= Decoding problem
— Viterbi algorithm

= | earning problem
— Baum-Welch algorithm (Backward-Forward algorithm)




Evaluation Problem (1)
" P(0|2)=Y P(O|Q.2)PQIA)
Q

where P(O|Q,A4)=]

T PO 1) = ¢y, (1), (02) -y (07)

P(Q[4) =74, Pyg, Pag, " Py,

P(O[4) = Z i ¢q1 (o)) leQ2¢Q2 (0,) Pa,q, *** Poy o ¢qT (or)
Oy Gir

Forward Algorithm

(1) =P(0,0,,--+,0;, G =1)

=P(0; | 0,05,

++,0¢_1,0; =1)P(01,05,++,0;_1,0 =1)

= P(0; | gy =1)P(01,02,"++,0 4, G =1)
=¢|(0t)zjes P(ay =1]a_ = J)P(01,02,"++,0¢ 4,01 = J)

=400, Pjicea(i)




Forward Algorithm




Evaluation Problem (2)

=  Forward Algorithm

1. Initialization

a,(1) =7; ¢.(0,) 1<i<N

2. Induction
at+1(i):(zlj\|:1 pjiat(j))(bl(otﬂ) I<i<N,1<t<T-1

3. Sett=t+1.If t<T, go to step 2; otherwise go to step 4

4. Termination

POIA)=YN PO,ar =i)= 3N (i)




Evaluation Problem (3)

= Backward Algorithm

— Si(1) =P(04;1,0¢5,-, 01 [ G =1)
:Zjes P(Ot+liot+2""’OT’Qt+1 = jlqt = i)

=Z,—€S P(0¢.1 101 = DDP(Op 2.+, 01, Oty = J 1 G =1)
=2 ics #1(0)PO2: 0 [ G = DP(Ga = J1 0 =1)

= le\l:l ¢j (0r41) Bria (1) Pij

Initialization: g (i))=1 1<i<N

Induction: A=Y, p#i©u)Bali) 1<isN, T-1xt>1
Sett=t-1. If t > 0, go to step 2; otherwise, go to step 4
Termination: P©|4)=>"" A ()7 (0,)

g | A o b




Backward Algorithm




Example: Forward Algorithm (1)

"  P0O=(GG,SS,B,B)|4)
—A. g =nc=rg=1/3, diagram




Example: Forward Algorithm (2)

m «(S)=7.4.(G)=1/3x0.6=0.2
a,(C)=7.¢.(G)=1/3x0.3=0.1
a,(R) = 7,0, (G) =1/3x0.1=0.033

. aa®=[2", pja()pon)  1<i<N, 1<t<T-1

= () =(Pss@(S) + Pes @ (C) + Prser (R) )5 (G)
=(0.5x0.2+0.4x0.1+0.2x0.033)x 0.6 =0.088
a,(C) = (pSCal(S) + Pecy (C) + pRCal(R))¢C (G)=0.034
a,(R) = (pSRal(S) + Pere (C) + pRRal(R))¢R (G) =0.007

—  3(S) =(Pss@,(S) + Pes @, (C) + Prsct, (R) I (SS) = 0.018
a,(C)=0.021 «,(R)=0.008

— ,(S)=0.002 «,(C)=0.003 a,(R)=0.007

—  ,(S)=00004 0 (C)=00009 o (R)=00023
B P(O=(G,G,SS,B,B)|A)=a.(S)+a(C)+a(R) =0.0036




Decoding Problem

Viterbi Algorithm (Similar to Forward Algorithm)

1. Initialization
a,(1) =7, ¢,(0,) I<i<N

2. Induction (1ISi<N, 1<t<T)

a1 () = maxgy j a(j) Pji Di(0t41)

bey1(0) = argﬁn_ax a(j) Pji Di(041)
all j

3. Sett=t+1.1f t < T, go to step 2; otherwise go to step 4

4. Termination

a'r = max ar(j) b'r= argmax ar(j)
J all j




Learning Problem

= 1 =argmax, P(O|2)
" There is no known method to analytically obtain A that maximizesp(O | 1)
= Baum-Welch Algorithm

— Iterative algorithm for choosing the model parameters in such a way
thatp(o| 1) Is locally maximized.

— A special case of the Expectation Maximization method

(0 =100 = ))
P(q; =1)

Y P@=iaa=i10) Y& )
YT @ =il0) Y o n)

. . P
= P =POGuai=1Jl0=1)=

=

T-1

2iro (D)

= = Plo=k,01=)) = = _
¢i(k)=P(o, =k|g; =)= ¢ (K) = ——
‘ = ‘ S G)

P(q; = J)

=  Weneed &(i, j) and y, (i)




Baum-Welch algorithm (1)

(1) =P(q; =1]0)
_ P(9: =1,01,---,04,0441,°++,07)
P(0g,-++,0¢,0p41,7+,07)

_P(oy,--+,0,0,4,--+,07 |Gy =1)P(q; =1)
P(0;, -+, 0¢,0p4q,°+,07)

= P(0,-++,0¢ [0y, 07, G =1)P(0p4q,--+,07 |G =1)P(q; =1)

P(0y,++,0;,0419,**,07)
_ P(01,---,0; |Gt =1)P(Og4q,--+, 07 |G =1)P(q; =1)
P(0y, +,0(,0t11, -+, 07)

= P(01,---,0:, G =1)P(0441,---,07 [0 =1)

P(0,---,0t,0p44,°++,07)

a (1) 5 (1) _ ()5 0)
ZililP(ol,---,ot,qt =1)P(01,---,07 O =1) Zililat(i)ﬂt(i)




Baum-Welch algorithm (2)

m 5, ])=P(G =10t = ]]|O)
_ P9 =1,01=1,0)
P(O)
_ o) pdi(t+1) 5 (1) o (i) P (t+1) B2 ()

Zililat(i)ﬂt(i) l Z.Iil zlj\l:lat(i)pij¢j (t+1) B2 ())

—— > oPE =iGa=i10) ¥ &G 0)
L YP@=il0) YAl

{=1 p(os = k,q: = j|0) = E{=1,ot=k Ye ()
(g =jl0) T ve()

¢ (k) =




Baum-Welch algorithm (3)

= Forward-backward algorithm
a (i) A (i)
> a5 )

o (1) pij@; (t+1) Sria (1)
> (i) (0)

71(1)=P(q =1|0) =

&(,])=P(0g =1,0,,1=]]0) =

a (1) =7; 4,(0,) 1<i<N

oa@ =", pran(hlon)  1<isN, 1<t<T-1

B ()=1 1<i<N

ﬂt(i)=2'j\':1 0ij#i (011) Bra () 1<i<N, T-1>t>1




Baum-Welch algorithm (4)

B Thealgorithm starts by setting the parameters; — (P, @,[1) to some initial
values that can be chosen from some prior knowledge or from some
uniform distribution

®  Detailed Procedure

1. Setting an initial parameters: A

= Obtain the estimate of the initial state distribution for state i as the expected

frequency with which state i 1s visited at time 7= 1: 7;
= Obtain the estimates P and Jj (k)
2. Let the current model be 4 =(P,®,IT) and compute P; and ¢; (k)
Let the re-estimated model be 4 =(P,®,TI),
3. IfP(O|2)-P(O|4)<6 , stop, where s is a predefined threshold value.

Otherwise, we go to step 2 (a new iteration) by using the updated
model.
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