Hidden Markov Models

Wha Sook Jeon

Mobile Computing & Communications Lab.

HMM Basics

- A hidden Markov model is a doubly stochastic process
 - An underlying Markov process
 - not observable
 - can only be observed through another observation process
 - An observation process that produced a sequence of observations
- A hidden Markov model is usually defined as five-tuples (S, Ω , *P*, Φ, Π)
 - $S = \{s_1, s_2, \dots, s_N\}$ is a state space of the underlying process
 - $-\Omega = \{o_1, o_2, \cdots, o_M\}$ is a set of possible observations
 - $P = [p_{ij}]$ where p_{ij} is the state transition probability from s_i to s_j
 - Φ = $[\phi_j(o_k)]$ where $\phi_j(o_k)$ is the probability that o_k is produced in state s_i
 - $\Pi = [\pi_i]$ is the initial state distribution
- Parameter of an HMM: $\lambda = (P, \Phi, \Pi)$

HMM Assumptions

- q_t, o_t : the hidden state and the observation at time t
- Markov assumption

-
$$P(q_{t+1} = j | q_t = i, q_{t-1} = l, \dots, q_0 = n) = P(q_{t+1} = j | q_t = i)$$

Time-homogeneous assumption

$$- p_{ij} = P(q_{t+1} = j | q_t = i) = P(q_{m+1} = j | q_m = i)$$

Observation independence assumption

$$= P(o_1, o_2, \dots o_T \mid q_1, q_2, \dots q_T, \lambda) = \prod_{t=1}^T P(o_t \mid q_t, \lambda)$$

Joint Probability distribution

$$P(Q, O) = \prod_{t=1}^{T} P(q_t | q_{t-1}) P(o_t | q_t)$$

Fundamental Problems in HMM

- Evaluation problem (likelihood computation)
 - Given $\lambda = (P, \Phi, \Pi)$ and an observation sequence $O = (o_1, o_2, \dots, o_T)$ how do we efficiently compute $P(O | \lambda)$?

Decoding problem

- Given $\lambda = (P, \Phi, \Pi)$, what is the most likely sequence of hidden states that could have generated a given observation sequence?
- $Q^* = \arg\max_{Q} P(Q, O \mid \lambda)$

Learning problem

- Given an observation sequence, find the parameters of the HMM that maximize the probability of a given observation sequence
- $\lambda^* = \arg\max_{\lambda} P(O \mid \lambda)$

Solution Methods

- Evaluation problem
 - Forward algorithm
 - Backward algorithm
- Decoding problem
 - Viterbi algorithm
- Learning problem
 - Baum-Welch algorithm (Backward-Forward algorithm)

Evaluation Problem (1)

$$P(O \mid \lambda) = \sum_{Q} P(O \mid Q, \lambda) P(Q \mid \lambda)$$
where $P(O \mid Q, \lambda) = \prod_{t=1}^{T} P(o_t \mid q_t) = \phi_{q_1}(o_1) \phi_{q_2}(o_2) \cdots \phi_{q_T}(o_T)$

$$P(Q \mid \lambda) = \pi_{q_1} p_{q_1 q_2} p_{q_2 q_3} \cdots p_{q_{T-1} q_T}$$

$$P(O \mid \lambda) = \sum_{q_1 \cdots q_T} \pi_{q_1} \phi_{q_1}(o_1) p_{q_1 q_2} \phi_{q_2}(o_2) p_{q_2 q_3} \cdots p_{q_{T-1} q_T} \phi_{q_T}(o_T)$$

Forward Algorithm

$$\begin{split} \alpha_t(i) &= P(o_1, o_2, \cdots, o_t, q_t = i) \\ &= P(o_t \mid o_1, o_2, \cdots, o_{t-1}, q_t = i) P(o_1, o_2, \cdots, o_{t-1}, q_t = i) \\ &= P(o_t \mid q_t = i) P(o_1, o_2, \cdots, o_{t-1}, q_t = i) \\ &= \phi_i(o_t) \sum_{j \in S} P(q_t = i \mid q_{_{t-1}} = j) P(o_1, o_2, \cdots, o_{t-1}, q_{t-1} = j) \\ &= \phi_i(o_t) \sum_{i=1}^N p_{ji} \alpha_{t-1}(j) \end{split}$$

Forward Algorithm

Evaluation Problem (2)

- Forward Algorithm
 - 1. Initialization

$$\alpha_1(i) = \pi_i \ \phi_i(o_1) \qquad 1 \le i \le N$$

2. Induction

$$\alpha_{t+1}(i) = \left(\sum_{j=1}^{N} p_{ji}\alpha_{t}(j)\right)\phi_{i}(o_{t+1})$$
 $1 \le i \le N, 1 \le t \le T-1$

- 3. Set t = t+1. If t < T, go to step 2; otherwise go to step 4
- 4. Termination

$$P(O | \lambda) = \sum_{i=1}^{N} P(O, q_T = i) = \sum_{i=1}^{N} \alpha_T(i)$$

Evaluation Problem (3)

Backward Algorithm

$$\begin{split} & - \beta_{t}(i) = P(o_{t+1}, o_{t+2}, \cdots, o_{T} \mid q_{t} = i) \\ & = \sum_{j \in S} P(o_{t+1}, o_{t+2}, \cdots, o_{T}, q_{t+1} = j \mid q_{t} = i) \\ & = \sum_{j \in S} P(o_{t+1} \mid q_{t+1} = j) P(o_{t+2}, \cdots, o_{T}, q_{t+1} = j \mid q_{t} = i) \\ & = \sum_{j \in S} \phi_{j}(o_{t+1}) P(o_{t+2}, \cdots, o_{T} \mid q_{t+1} = j) P(q_{t+1} = j \mid q_{t} = i) \\ & = \sum_{j \in S}^{N} \phi_{j}(o_{t+1}) \beta_{t+1}(j) p_{ij} \end{split}$$

- 1. Initialization: $\beta_T(i) = 1$ $1 \le i \le N$
- 2. Induction: $\beta_t(i) = \sum_{i=1}^{N} p_{ij}\phi_j(o_{t+1})\beta_{t+1}(j)$ $1 \le i \le N$, $T-1 \ge t \ge 1$
- 3. Set t = t-1. If t > 0, go to step 2; otherwise, go to step 4
- 4. Termination: $P(O \mid \lambda) = \sum_{i=1}^{N} \beta_1(i) \pi_i \phi_i(o_1)$

Backward Algorithm

Example: Forward Algorithm (1)

$$P(O = (G, G, SS, B, B) | \lambda)$$

$$-\lambda: \quad \pi_S = \pi_C = \pi_R = 1/3, \text{ diagram}$$

Example: Forward Algorithm (2)

- $\alpha_1(S) = \pi_S \phi_S(G) = 1/3 \times 0.6 = 0.2$ $\alpha_1(C) = \pi_C \phi_C(G) = 1/3 \times 0.3 = 0.1$ $\alpha_1(R) = \pi_R \phi_R(G) = 1/3 \times 0.1 = 0.033$

$$\alpha_{2}(S) = (p_{SS}\alpha_{1}(S) + p_{CS}\alpha_{1}(C) + p_{RS}\alpha_{1}(R))\phi_{S}(G)$$

$$= (0.5 \times 0.2 + 0.4 \times 0.1 + 0.2 \times 0.033) \times 0.6 = 0.088$$

$$\alpha_{2}(C) = (p_{SC}\alpha_{1}(S) + p_{CC}\alpha_{1}(C) + p_{RC}\alpha_{1}(R))\phi_{C}(G) = 0.034$$

$$\alpha_{2}(R) = (p_{SR}\alpha_{1}(S) + p_{CR}\alpha_{1}(C) + p_{RR}\alpha_{1}(R))\phi_{R}(G) = 0.007$$

- $\alpha_3(S) = (p_{SS}\alpha_2(S) + p_{CS}\alpha_2(C) + p_{RS}\alpha_2(R))\phi_S(SS) = 0.018$ $\alpha_3(C) = 0.021 \quad \alpha_3(R) = 0.008$
- $\alpha_4(S) = 0.002$ $\alpha_4(C) = 0.003$ $\alpha_4(R) = 0.007$
- $\alpha_5(S) = 0.0004 \qquad \alpha_5(C) = 0.0009 \qquad \alpha_5(R) = 0.0023$
- $P(O = (G, G, SS, B, B) | \lambda) = \alpha_5(S) + \alpha_5(C) + \alpha_5(R) = 0.0036$

Decoding Problem

- Viterbi Algorithm (Similar to Forward Algorithm)
 - 1. Initialization

$$\alpha_1(i) = \pi_i \ \phi_i(o_1) \qquad 1 \le i \le N$$

2. Induction $(1 \le i \le N, 1 \le t < T)$ $\alpha_{t+1}(i) = \max_{\text{all } j} \alpha_t(j) p_{ji} \emptyset_i(o_{t+1})$ $b_{t+1}(i) = \underset{\text{all } j}{\operatorname{argmax}} \alpha_t(j) p_{ji} \emptyset_i(o_{t+1})$

- 3. Set t = t+1. If t < T, go to step 2; otherwise go to step 4
- 4. Termination

$$\alpha^*_T = \max_{\text{all } j} \alpha_T(j)$$
 $b^*_T = \underset{\text{all } j}{\operatorname{argmax}} \alpha_T(j)$

Learning Problem

- There is no known method to analytically obtain λ that maximizes $P(O \mid \lambda)$
- Baum-Welch Algorithm
 - Iterative algorithm for choosing the model parameters in such a way that $P(O \mid \lambda)$ is locally maximized.
 - A special case of the Expectation Maximization method

$$p_{ij} = P(q_{t+1} = j \mid q_t = i) = \frac{P(q_t = i, q_{t+1} = j)}{P(q_t = i)}$$

$$\Rightarrow \overline{p}_{ij} = \frac{\sum_{t=0}^{T-1} P(q_t = i, q_{t+1} = j \mid O)}{\sum_{t=0}^{T-1} P(q_t = i \mid O)} = \frac{\sum_{t=0}^{T-1} \xi_t(i, j)}{\sum_{t=0}^{T-1} \gamma_t(i)}$$

$$\phi_{j}(k) = P(o_{t} = k \mid q_{t} = j) = \frac{P(o_{t} = k, q_{t} = j)}{P(q_{t} = j)} \implies \overline{\phi}_{j}(k) = \frac{\sum_{t=1, o_{t} = k}^{T-1} \gamma_{t}(j)}{\sum_{t=1}^{T-1} \gamma_{t}(j)}$$

• We need $\xi_t(i, j)$ and $\gamma_t(i)$

Baum-Welch algorithm (1)

$$\begin{split} \gamma_{t}(i) &= P(q_{t} = i \mid O) \\ &= \frac{P(q_{t} = i, o_{1}, \cdots, o_{t}, o_{t+1}, \cdots, o_{T})}{P(o_{1}, \cdots, o_{t}, o_{t+1}, \cdots, o_{T})} \\ &= \frac{P(o_{1}, \cdots, o_{t}, o_{t+1}, \cdots, o_{T})}{P(o_{1}, \cdots, o_{t}, o_{t+1}, \cdots, o_{T})} \\ &= \frac{P(o_{1}, \cdots, o_{t} \mid o_{t+1}, \cdots, o_{T} \mid q_{t} = i)P(q_{t} = i)}{P(o_{1}, \cdots, o_{t} \mid o_{t+1}, \cdots, o_{T}, q_{t} = i)P(o_{t+1}, \cdots, o_{T} \mid q_{t} = i)P(q_{t} = i)} \\ &= \frac{P(o_{1}, \cdots, o_{t} \mid q_{t} = i)P(o_{t+1}, \cdots, o_{T} \mid q_{t} = i)P(q_{t} = i)}{P(o_{1}, \cdots, o_{t}, o_{t+1}, \cdots, o_{T})} \\ &= \frac{P(o_{1}, \cdots, o_{t}, q_{t} = i)P(o_{t+1}, \cdots, o_{T} \mid q_{t} = i)}{P(o_{1}, \cdots, o_{t}, q_{t} = i)P(o_{t+1}, \cdots, o_{T} \mid q_{t} = i)} \\ &= \frac{\alpha_{t}(i)\beta_{t}(i)}{\sum_{i=1}^{N} P(o_{1}, \cdots, o_{t}, q_{t} = i)P(o_{t+1}, \cdots, o_{T} \mid q_{t} = i)} \\ &= \frac{\alpha_{t}(i)\beta_{t}(i)}{\sum_{i=1}^{N} \alpha_{t}(i)\beta_{t}(i)} \end{split}$$

Baum-Welch algorithm (2)

$$\begin{split} & \xi_t(i,j) = P(q_t = i, q_{t+1} = j \mid O) \\ & = \frac{P(q_t = i, q_{t+1} = j, O)}{P(O)} \\ & = \frac{\alpha_t(i) p_{ij} \phi_j(t+1) \beta_{t+1}(j)}{\sum_{i=1}^N \alpha_t(i) \beta_t(i)} = \frac{\alpha_t(i) p_{ij} \phi_j(t+1) \beta_{t+1}(j)}{\sum_{i=1}^N \sum_{j=1}^N \alpha_t(i) p_{ij} \phi_j(t+1) \beta_{t+1}(j)} \end{split}$$

$$\overline{p}_{ij} = \frac{\sum_{t=0}^{T-1} P(q_t = i, q_{t+1} = j \mid O)}{\sum_{t=0}^{T-1} P(q_t = i \mid O)} = \frac{\sum_{t=0}^{T-1} \xi_t(i, j)}{\sum_{t=0}^{T-1} \gamma_t(i)}$$

$$\bar{\phi}_j(k) = \frac{\sum_{t=1}^T p(o_t = k, q_t = j | 0)}{\sum_{t=1}^T p(q_t = j | 0)} = \frac{\sum_{t=1, o_t = k}^T \gamma_t(j)}{\sum_{t=1}^T \gamma_t(j)}$$

Baum-Welch algorithm (3)

Forward-backward algorithm

$$\begin{split} \gamma_{t}(i) &= P(q_{t} = i \mid O) = \frac{\alpha_{t}(i)\beta_{t}(i)}{\sum_{i=1}^{N}\alpha_{t}(i)\beta_{t}(i)} \\ \xi_{t}(i,j) &= P(q_{t} = i, q_{t+1} = j \mid O) = \frac{\alpha_{t}(i)p_{ij}\phi_{j}(t+1)\beta_{t+1}(j)}{\sum_{i=1}^{N}\alpha_{t}(i)\beta_{t}(i)} \\ \alpha_{1}(i) &= \pi_{i} \ \phi_{i}(o_{1}) \qquad 1 \leq i \leq N \\ \alpha_{t+1}(i) &= \left(\sum_{j=1}^{N} \ p_{ji}\alpha_{t}(j)\right)\phi_{i}(o_{t+1}) \qquad 1 \leq i \leq N, \quad 1 \leq t \leq T-1 \\ \beta_{T}(i) &= 1 \qquad 1 \leq i \leq N \\ \beta_{t}(i) &= \sum_{i=1}^{N} \ p_{ij}\phi_{j}(o_{t+1})\beta_{t+1}(j) \qquad 1 \leq i \leq N, \quad T-1 \geq t \geq 1 \end{split}$$

Baum-Welch algorithm (4)

- The algorithm starts by setting the parameters $\lambda = (P, \Phi, \Pi)$ to some initial values that can be chosen from some prior knowledge or from some uniform distribution
- Detailed Procedure
 - 1. Setting an initial parameters: λ
 - Obtain the estimate of the initial state distribution for state i as the expected frequency with which state i is visited at time t = 1: $\overline{\pi}_i$
 - Obtain the estimates \overline{p}_{ij} and $\overline{\phi}_{j}(k)$
 - 2. Let the current model be $\lambda = (P, \Phi, \Pi)$ and compute \overline{p}_{ij} and $\overline{\phi}_{j}(k)$ Let the re-estimated model be $\overline{\lambda} = (\overline{P}, \overline{\Phi}, \overline{\Pi})$.
 - 3. If $P(O|\overline{\lambda}) P(O|\lambda) < \delta$, stop, where δ is a predefined threshold value. Otherwise, we go to step 2 (a new iteration) by using the updated model.