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ABSTRACT

* Desire to understand user-generated content.

* But difficult to collecting a large scare humor dataset with reliable humor labels.

# CHoRalL

A framework to generate perceived humor labels on Facebook posts.
e Using the naturally available user reactions.

* Able to make both binary labels & continuous scores of humor and non-humor.
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INTRODUCTION

* Most attempts have focused on distinguishing between jokes / news.

e But far from real-world scenarios where humor and non-humor come from same domain.

 CHoRal: a framework for Collecting Humor Reaction Labels

Got kicked out from the hospital because )
I told the Covid patients to stay positive. = 2% ©O:

Too many families have lost a loved one @253 Q39 TE
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doesn't discriminate — we need to
come together & meet this moment. O
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1. Labeling humor on any Facebook post.
2. Providing both binary & continuous labels.

3. Enabling the collection of large-scale social media datasets on humor.




CHoRal Framework

e Data collection & cleaning

* Facebook posts from CrowdTangle by searching COVID-related keywords.
* Text-only post, set language as English.

e Humor Score (HS)

 Non-humor Score (NS)

# 785k posts

h

HS = - * tanh(—

t
50)

# of Posts

# of Poster Accounts
# of User Reactions
# of Haha Reactions

784,965
264,685
126,839,984
6,525,247

t
NS = —log(tanh(%) :a== Z
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Humor Detection Experiments

40k post 80:20 split

Fine-tuned 3 pretrained language models

RoOBERT
BERTweet
BERTweet-covid

Result

Continuous Binary

Fl AUC Fl AUC
Human - - 0.867 -
RoBERTa 0.869 | 0.939 | 0.868 | 0.937
BERTweet 0.879 | 0.947 | 0.881 | 0.950
BERTweet-covid | 0.880 | 0.948 | 0.883 | 0.951



Conclusion

 CHoRal framework for automatically collecting humor reaction labels.

e Dataset including 785k posts with humor and non-humor scores.

* Build models to detect humor.

 CHoRal enables the development of humor detection model on any topic.

e Also can be used to label other human reactions such as anger and sadness.
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-SLAM

« SLAM: Simultaneous Localiation and Mapping
- A2 ZH212f #{2] (Localization) 2 584 AF=2| 2{2[ (Mapping) & SA|0f| THef

« O A|ZIOCt 42l frameS 0|0 20|-= registration

o A|ZHO| A|E4~& drift error accumulation

« 0f|21F E&5l7| 2ol loop closure

T. Shan and B. Englot, "LeGO-LOAM: Lightweight and Ground-Optimized Lidar Odometry and Mapping on Variable Terrain," 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2018, pp. 4758-4765, doi: 10.1109/IR0OS.2018.8594299.



- Loop closure
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OverlapNet: Loop Closing for LiDAR-based SLAM

Proceedings of Robotics: Science and System(RSS) 2020

before loop

Chen, Xieyuanli & Labe, Thomas & Milioto, Andres & Rohling, Timo & Vysotska, Olga & Haag, Alexandre & Behley, Jens & Stachniss, Cyrill. (2020).
OverlapNet: Loop Closing for LiDAR-based SLAM. 10.15607/RSS.2020.XV1.009.



- Place recognition

« 912 imageE5E{ feature vector extraction

« 7} Classicst place recognition & 112|&2 bag-of-words

 Feature=2 k-nearest-neighborZ clusteringst® vocabulary set2 M4
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Local visual features

Clustered training features
of training images

Ji, S., Li, YX., Zhou, ZH. et al. A bag-of-words approach for Drosophila gene expression pattern annotation. BMC Bioinformatics 10, 119 (2009).

https://doi.org/10.1186/1471-2105-10-119




- Place recognition

« 71 Classicgt place recognition ¥112|S2 bag-of-words
- 942 imageE5E feature extraction

 Feature=2 k-nearest-neighborZ clusteringst® vocabulary set2 M4
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- OverlapNet

LiDAR pointcloudE image3™E 2 H2t

|0

end-to-end Neural network 21 AE3510{ place recognition 213

= &4 Ato]2] overlap?| =& H2I510q training

& &4 AHO] relative rotation angle= A| 4ol

-

Chen, Xieyuanli & Labe, Thomas & Milioto, Andres & Rohling, Timo & Vysotska, Olga & Haag, Alexandre & Behley, Jens & Stachniss, Cyrill. (2020).
OverlapNet: Loop Closing for LiDAR-based SLAM. 10.15607/RSS.2020.XV1.009.



- OverlapNet

- & input point cloudZ image HEHZ project
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-Overlap®| 49

« & 712| LiDAR scan®| pose(C;, C,)& Y1l QCHH
 Scan12| point& Scan22| coordinateZ transformation & range map ‘&4-d(V7)
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- Result
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samples from the new model -
(a) User sketches (b) Customizing a GAN using human sketches



Network Architecture

Photo = Sketch
—‘ — Sketch Discriminator

n / [
; ]
o) Uit [0
(a)ﬁskolch l—l
<fi:%::P IDy{} real
L

fake

Latent vector = Photo

(b) Eimagc

trainable

real

fixed

Image Discriminator



Objective Function

(
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)['skelch

trainable

fixed

(H

) Eimage

fake

real

fake
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Lsketch = Eympdm(y:i IDg(DY(}’))

+ Ezp(z) log(1l — Dy (F(G(z))))

Eimﬂgﬂ — Exm-pdm(x) ng(D){ (K))
+ E,p(z) log(1 — Dx (G(z)))
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Regularization term



Experiment

Sketch Original Baseline (Chamfer) Ours

¥

Horse rider

3

Horse on a side

Standing cat

Gabled church




Experiment

Latent space
interpolation

Image editing

(a) real image (b) project to z (c) customize (d) latent edits
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Online Knowledge Distillation via Collaborative
Learning

Qiushan Guo, Xinjiang Wang, Yichao Wu, Zhipeng Yu, Ding Liang, Xiaolin Hu, Ping Luo;

Guo, Qiushan, et al. "Online knowledge distillation via collaborative

~

learning.” Proceedings of the IEEE/CVF Conference on Computer Vision and WC‘S I_

Wireless Communication and
Information Systems Laboratory

Pattern Recognition. 2020.

Department of ECE, SNU WCISL
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Introduction

= Background of Knowledge Distillation

1 n
= Lkp=_ > T’KL(p;, i)

i=1

* n: batch size, T: temperature parameter.

* p & q: soften probability distribution produced by teacher and student network.

Zt Zs : . 4
* p:softmax (7) ,q:softmax (7) ,where z; & z; represents the logit of teacher and .
[
student. @. ‘ | |
=3
Question Answer

Department of ECE, SNU WCISL




Paper seminar

Introduction

= Baseline: transfers knowledge from the static pre-trained teacher to

student model.
= DML: Students can learn from each other.
= ONE: establishes teacher using multiple branch design.

= KDCL: consistently gains extra information from ensembling soft target

produced by all students, outperforming existing approaches.

= Question: Could we use a small network to improve the model with larger

capacity in a one-stage distillation framework?

Department of ECE, SNU WCISL

X
— Student

(a) Baseline

Gate

X — Share

Unshare2

(c) ONE

@ Mg
SEOUL NATIONAL UNIVERSITY

Student1

X

) Student2

(b) DML

X1

Studentl

X2 ——  Student2

(d) KDCL



e

SEOUL NATIONAL UNIVERSITY

Proposed method

= A new pipeline of knowledge distillation based on collaborative learning is designed. Models of various learning capacity
can benefit from collaborative training.

= A series of model ensembling methods are designed to dynamically generate high-quality soft targets in a one-stage online
knowledge distillation framework.

e B o
Input Augmentation Logits 1
Lia
Ensemble logits

h(x, €,) * Network m

Department of ECE, SNU WCISL
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Proposed method

= Loss function

« L= Lyg+ALlkp
=1
« CE: cross-entropy loss, KD: knowledge distillation loss (KL divergence between the output of students and the soft

target, A: trade-off weight.

= KDCL-Naive

z; = h(z1,22, ..., Zm)

h: function to produce higher quality logit compared with the logits of students.

Zi = Zp, k = argminLCE(zi, y)
1
y: one-hot label, L.;: standard cross-entropy loss

Department of ECE, SNU WCISL




Paper seminar

Proposed method

= KDCL-Linear
« Defines the teacher logit as the best linear combination of sub-network logits.
« Z = (2];2];...2%) , each column of the matrix represents the logit of a student.
* Problem: min Lep(a®Z,y), subject togaa =1la; >0

= KDCL-MinLogit
- p = softmax(z) = softmax(z — z°)
« z¢is the element corresponding to target class c in logit.

« z; =min{Z7,[i=1,2,....,m}

Department of ECE, SNU WCISL
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Proposed method

= KDCL-General
© B(x) = (f(x) —t)?

E = / (Z w; fi(x) — t) p(x)dx

m m

=1 j3=1

Where p(x) is the data distribution and C;; is expressed as Cij =

m —1
o ZJ:]_ kj

Wi —

(fi(x) =) (fj (%) = ) p(x)dx

>t 2 Gy ~ kZ(fz(xk) —1)(fi(xx) 1)

IH\

where wy, is the k-th element of the optimum weight w and Cl-}l is the value of the i-th row and the j-th column of the

inverse matrix of C.

Department of ECE, SNU WCISL
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Experiments

* Results on ImageNet
* 1000 object classes with 1.28 million images
« Learning rate starts at 0.1 and warms up to 0.8 linearly after 5 epochs.

* Weight decay: 0.0001, batch size: 2048, momentum:0.9.

Method ResNet-50 | ResNet-18 | Gain
Vanilla 76.8 71.2 0
KD[ 0] 76.8 72.1 0.9
DML 7] 75.8 71.7 -0.5
ONEJ 7] - 72.2 -
CLNNJ[ 7] - 72.4 -
KDCL-Naive 77.5 72.9 2.4
KDCL-Linear 77.8 73.1 2.9
KDCL-MinLogit 77.8 73.1 29
KDCL-General 77.1 72.0 1.1

Department of ECE, SNU WCISL
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Conclusion

= With models of ensemble method, models of various capacity can benefit from collaborative

learning.
= Different ensemble methods could have different results.

= |t is designed to dynamically generate high-quality soft targets in a one-stage online knowledge

distillation framework.

Department of ECE, SNU WCISL




Uncertainty-aware Score Distribution
Learning for Action Quality Assessment

« CVPR 2020, Tang et al.

4 E -2 2020-30224
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Action Quality Assessment (AQA)

= Aiming to evaluate how well a specific action is performed

Diving

Gymvault

Suturing Knot-tying

JIGSAWS dataset

Needle-passing

AQA-7 dataset



Why | select this paper?

» Probability model
= Uncertainty (KL-divergence)

= Parametric density estimation Maximal Likelihood vs. Bayesian

- MLP, MAP
p(x|D")=p(x]0,):N(0,.07)

P(x|0) MLP:6, = argmax p(D"|8)
" Relative entropy (or Kullback — Leibler divergence) ‘ /\ MAP: 6, =argmax p(6| D")
Dyjg = Z px(x)log (pX (IJ) J
qx(x)

where py(x) is probability mass ftn.(pmf), g (x) is reference pmf

x
+ Bayesian Learning

p(x|D")= [ p(x|0)p(0]| D")d0: N(8,.0" +07)

P(O|D™) p(BID")=a p(D"|8)p(6)
1. Y. Choi. SNU Af{gaano{:) = f(gg 9",52,0{::90)

[7)

J. Y. Choi. SNU



Previous works

» Regression algorithms which directly predict evaluation score

= |gnore the intrinsic ambiguity in the score labels caused by multiple judges or
their subjective appraisals

[ Clipl
1 (16 frames) 4 —*| @D — | L™
_________ 1
....... : | s -_
M Cip2 | '
I caD — LSTM s shared
- weights
l *112*112*3 &
L] L]
L]
B - L] ]
{ ‘95”‘1”"*‘-5 o T 2048 | 256 | (CVPR 2019)
96 *112*112*3
oetameg — [ 0] — o] = —
________
— — \ —
Feature Feature Regression
computation aggregatior.

(WACV 2019) 4



Main idea

* “Uncertainty-aware score distribution learning”

= Utilize a distribution of different scores as the supervisory signal rather than a
single score

Generated Score
Distribution:

N

Judgel JudgeZ Judge3

Ezaf] -/\-/\ /l\
50 60 70 80 90 100 110 l?Ol

Score Judge4 Judge5 Judgeb Judge7
Single Score Distribution | Multiple Score Distributions 100 . 70 — (9 . 0+9 . O+8 5)X3 . 8

ROUND 6 DIFFICULTY 3.8 PENALTY 0.0 SCORE 100.70

8 90 80 96 85 8o /_/\
’ | R

Probabilities

Assumes the inherent
uncertainty of the final
score caused by
different judges.




Uncertainty-aware score distribution learning (USDL)

e Score Label: 100.70
P
(o))
£
© = = KLloss =
< £ E 5
£ E — 2
T 3 o S
E . | i
s| ©
50 60 70 80 90 100 110 120
score score
o/ Predicted Distribution Sy Generated Distribution p.
g(c) = —— exp(~ =2V
V2ro 207
C. Score

s: mean = labeled score
0. hyper parameter



Uncertainty-aware score distribution learning (USDL)
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= Training loss : Kullback-Leibler (KL) divergence between S,,.. and P,

KL{p.||spre} = Zp(cz) log
1=1

p(ci)
SFTE(CE')




Uncertainty-aware score distribution learning (USDL)
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score

N Predicted Distribution Spre
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» Inferring from score distribution

Sfinal = argmax {Spre(€1), Spre(€2), vy Spre(Cm)}

Cq



Multi-path uncertainty-aware score distribution learning (MUSDL)

* Train sub-networks
representing judges
of different rigor

Input Video

Multi-Path
Network

Training Phase

Inferring Phase

| mllllnmlliunllllmdumllleluudllL :
1+ 3 1 1 |
A O R B _J_\: L= }_ J g

il ol ol il iy il o
0 4 0 0 0 & 3§ !
: 65 65 75 80 80 80 80 |
| S=(7.5+80+80)X35=820

THEES S G SN SR SN SN G GED S S N D S G G SIS S G G SE e '

_ judge
S final = DD X 2 : Stinal k'
k'eU



Results

» Spearman’s rank correlation : (-1, 1), the higher the better

Table 3. Comparisons of performance with existing methods on

Table 1. Comparisons of action quality assessment accuracy on the AQA-7 dataset. the MTL-AQA dataset.

— - Method | Sp. Corr.
| Diving Gym Vault Skiing Snowboard Sync. 3m  Sync. 10m | Avg. Corr.

Pose+DCT |22] 1.2682
Pose+DCT [22] | 0.5300 - - - - —~ —~ C3D-SVR [18] 0.7716
ST-GCN [38] 0.3286  0.5770  0.1681 0.1234 0.6600 0.6483 0.4433 C3D-LSTM [18] 0.8489
C3D-LSTM [18] | 0.6047  0.5636  0.4593 0.5029 0.7912 0.6927 0.6165 MSCADC-STL [19] | 0.8472
C3D-SVR[I8] | 0.7902  0.6824  0.5209  0.4006 0.5937 0.9120 0.6937 C3D-AVG-STL.[19] | 0.8960
JRG[16] 07630 07358  0.6006  0.5405 0.9013 0.9254 0.7849 MSCADC-MTL [19] | 0.8612
r C3D-AVG-MTL [19] 0.9044

Ours-Regression | 0.7438  0.7342  0.5190 0.5103 0.8915 0.8703 0.7472 —
_ urs-Regression 0.8905
Ours-USDL 0.8099  0.7570  0.6538  0.7109 0.9166 0.8878 0.8102 Ours-MUSDL 0.9273

10



Results

» Spearman’s rank correlation : (-1, 1), the higher the better

| [ 1 1 [ s
Olympic Game: Gym Vault VideolID: 042

Prediction
—

Groundtruth

Low
Final Results

fell to the ground
. low score prediction

11



Contribution

“Uncertainty-aware score distribution learning” rather than “directly predict
evaluation score”

- Learn inherent uncertainty of the score caused by different judges
- Set new state-of-the-art performance

() Score Label: 100.70
) @ N EEEENY
2 ' | u=100.70 [l
5 % = KLloss > X .
<2 | £ =) 5 ‘

- e sl | [ | Gr—

N | g i’
£ J \
2 — ,JJ“.LHLJ.I [lin“l" Iu L . |
50 60 70 80 90 100 110 120 50 60 70 80 90 100 110 120
score score
A Predicted Distribution Spe Generated Distribution p.

12
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with Adversarial Learning for
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VITS

* Variational Inference with adversarial learning for end-to-end
Text-to-Speech

» 7| Z2| mel-spectrogram -> audio 2| two-stage TTSEZH&
natural SFHA| parallel S| samplingO| 7ts%t TTS 2 & O|LC}.

« 71 10| A Flow, GAN, Conditional VAE 2| generative
modelE SYX 22 0|3t}



Generative Models

Discriminator

D(x)

Generator

G(z)

GAN: minimax the -
classification error loss.

VAE: maximize ELBO. x ——» Encoder
95(z(x)

Flow-based
generative models: o Flow z Inverse o
minimize the negative f(x) ' f—l ()
log-likelihood




Model(Training)

¥
[ Flow fﬂ ]
- \
aw "
waveform Y Monotonic I I I I I] fe(2)
Alignment ¥
Search = "=~~~ """~ :
. Q00O |z2| d
4400 O |2
: olelele) FRE
0
038 ~n
Encoder 1
, [ Projection ] Stop W
Linear . 1 Gradient [ Stochastic
Spectrogram BE O h.. Duration
1~ ' Predictor
[ Text ETncuder ] Noise

Phonemes Crext

X: spectrogram

Z: latent variable

Y: Ground Truth audio
Y-hat: generated audio
C: phoneme of text



Model(Inference)

Raw Waveform

A
\ Decoder I

Z

[ Flow f.1 )

A Ceil
( Projection ] ([2.8l2.21l0.9])
1 Rie e Stochastic
Duration
Text Encoder | Pm;qqr

Phonemes Crext Moise

TextE input2 2 @O ™ Encoders Sl
parameterized |1 O|& duration predictor
of Zut0f et Z0|E =& Crx, fAlHA
o Z1tZ Decoderg &3l CtA| audio2
inference®.



Result

LJ Speech Dataset VCTK Dataset(Multi Speaker)

Model MOS (CI) Model MOS (CI)
Ground Truth 4.46 (£0.06) Ground Truth 4.38 (£0.07)
Tacotron 2 + HiFi-GAN 3.77 (£0.08) Tacotron 2 + HiFi-GAN 3.14 (4+0.09)
Tacotron 2 + HiFi-GAN (Fine-tuned)  4.25 (+0.07) Tacotron 2 + HiFi-GAN (Fine-tuned)  3.19 (+0.09)
Glow-TTS + HiFi-GAN 4.14 (£0.07) Glow-TTS + HiFi-GAN 3.76 (+0.07)
Glow-TTS + HiFi-GAN (Fine-tuned)  4.32 (+0.07) Glow-TTS + HiFi-GAN (Fine-tuned)  3.82 (+0.07)
VITS (DDP) 4.39 (£0.06) VITS 4.38 (+0.06)
VITS 4.43 (+0.06)

Synthesis Speed

Model Speed (kHz) Real-time
Glow-TTS + HiFi-GAN 606.05 x27.48
VITS 1480.15 x67.12

VITS (DDP) 2005.03 »%00.93
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“Normalization Matters in Weakly Supervised Object Localization”

(ICCV 2021, Jeesoo Kim et al.)
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Purpose & Background Knowledge

= Purpose

» To suggest the Optimal Normalization Methods for CAM-based Localization Method.

=  What’s the Class Activation Map (CAM)?

Australian
C terrier
(o}
N
v Of ¥
Class
= Wo » Activation
; Map
' {Australian terner)
K: Num.of Channels
1 K H: Normalization Function
Fe= E Z Wi F': Score Map
=1 C: class Index /|
\é’%'\’g’ r\ 577 \‘"
' . . . ; . N UHY
“{Q@EKW 2022-01-13 SNU Biomedical Imaging and Computing Lab. 3 ?SNUH;;
D, L



BaCkg round KnOWIedge *WSOL.: Weakly Supervised Object Localization

= \What kinds of CAM-based *WSOL Methods Exist?

a) Class Activation Mapping (CAM)

» The first approach using the activated convolutional feature as a score
map to locate an object in an image.

b) Hide-and-Seek (HaS)

» Makes a grid in an image and randomly erases multiple patches. The model struggles to
make a correct decision with the corrupted image and this induce the feature of the model

to be activated in the location of the target object.

c) Attention-based Dropout Layer (ADL)

» Uses two branches which adversarially get rid of the highlighted activated region from each
other. This approach is different from HasS in that the feature is erased instead of the image

itself.

d) CutMix
» Patches from training images are cut and pasted to one another and this helps the model to
capture less discriminative parts of the target object. ,

74

‘\@I@Exly 2022-01-13

SNU Biomedical Imaging and Computing Lab.



Materials & Methods
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= Types of Normalization in the Paper

a) Min-max .
F — F — min(F) osf| — CAM
— maX(F) — min(F) oell— score map
0.4
b) PaS 0.2} /
0.0
, F — min(F) —
— -0.2 : ' - . . L : s
Pct,(F — min(F)) o (a) Min-max o (b) PaS
C) Max 0.8 {1 08
0.6 | {1 0.6}
F 0.4 0.4
F' = ! | i
III&X(F) 0.2 0.2
0.0 0.0
-0.2 L L 1 . -0.2 " " )
d) IVR (c) Max (d) IVR
B F — Pct,,(F) > Assume that the region colored in red
o max (F — Pct,(F)) is excluded from the final score map. P
» o
y 2022-01-13 SNU Biomedical Imaging and Computing Lab.
7L
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(c) ADL (d) CutMix

Figure: Visualization of score maps and activated areas by the optimal thresholds in CAM, HaS, ADL, and CutMix
on CUB dataset. Red, green and blue area are regions extracted by the optimal thresholds of loU 0.3, 0.5 and 0.7.
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Results & Discussion: Quantitative Analysis
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Figure: Distribution of minimum and maximum values from class activation map F of all test images. Each point
represents a single image whose values from horizontal and vertical axes are minimum value and maximum value
respectively. Black dots correspond to correctly localized images while red dots are not. Note that VR shows overall

higher density of positive samples (black dots) than other methods as highlighted with green circles.
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Results & Discussion

ImageMet percentile ablation
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Figure: Localization accuracy measured with different percentile values when using IVR. The evaluation has been
done only with CAM in the validation set of every datasets. To keep simplicity, the best percentile value in each

architecture and dataset has been used in all other WSOL methods.

Figure: Distribution of minimum

200 . .
04 VGG Inception i, | and maximum values from class
. activation map F of all test images
. in  Openlmages. Compared to
e n CuUB and ImageNet, the
. . - .-'-n‘. distribution of maximum values is
0.00" 0" " more influential.
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Conclusions

v" New and effective normalization method along with a solid evaluation with many

other possible normalization methods are proposed.

v" Point out that the normalization method should be selected according to the traits of

the dataset

v For future works in WSOL, we suggest that even though many WSOL methods
successfully improved the performance in a dataset like CUB, a new perspective

which will also work in real world datasets such as ImageNet and Openlmages is

still in need.
GRS
G Y
\%@E&y 2022-01-13 SNU Biomedical Imaging and Computing Lab.
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 Bayesian Neural Network

* BatchEnsemble




Bayesian Neural Network

* Neural network for uncertainty
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Bayesian Neural Network

* Neural network for uncertainty
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Bayesian Neural Network

* Neural network for uncertainty
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Bayesian Neural Network

« Weight extracted from distribution (e.g. gaussian)
X ~ Ny, o)
 Learning mean and std rather than weight

B
L=~ 3" Eyw)llogp(us | x5, W)] + KL(a(W) [p(W))
b=1



BatchEnsemble

* Ensemble method
« Getting better performance by combining several models
« Weakness: Learning parameters highly increase

[ Model 1




BatchEnsemble

 Shared weight parameter W
 Additional parameter vector r and s

e Ensemble W1 and W: ...




Proposed method

« BatchEnsemble on Bayesian Neural Network

PQSQ

ro

ZEQ (r)q(s) lng yb‘xba W r 8)] + KL(Q( )Hp(’f’)) + KL(Q(S)HP(S)) o logp(w)

mlz



Proposed method

« BatchEnsemble on Bayesian Neural Network

il - .
— ”l =Wo I']Slll. — Bayes.lan
E BN i " Learning
.. r:s,
i1+ £ B
Traditional B . (&) . . :
Learning + Q) —

- l= Wy = W orgsyT

©

ZEQ )a(s) llogp(ys| @y, W,y s)] + K L(q(r)||p(r)) + KL(q(s)|[p(s)) — logp(w)




Result

« # parameter is not increase with high performance on BNN

Efficient and Scalable Bayesian Neural Nets with Rank-1 Factors

Method NLL(]) Accuracy(T) ECE(]) cNLL/cA/cECE mCE(]) # Parameters
Deterministic 0.943 76.1 0.0392 3.20/40.5/0.105 75.34 25.6M
BatchEnsemble 0.951 76.5 0.0532 3.23/41.4/0.120 74.14 25.8M
Gaussian 0.886 77.3 0.0166 2.95/42.9/0.054 72.12 26.0M
Rank-1 BNN (4 samples)
Cauchy'” *4mPe 0.897 77.2 0.0192 2.98/425/0.059 72.66 26.0M
Deep Ensembles  ResNet-50 0.877 77.5 0.0305 2.98/42.1/0.050 73.25 146.7"M
MCMC BNN! 9 MC samples 0.888 77.1 - - - 230.4
MCMC BNN? 30 MC samples  0.883 717.5 - - - 768M




THANKS



Bias-Variance Reduced Local SGD for

Less Heterogeneous Federated
Learning (ICML2021)

ANsdEsd

Ot

F1F 2021-29046 =9

i



Reason for selection
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« =0 A B-2 optimizationdt 2HH =

» H|Z optimization= CHE & convex &= F[T 7| E

» £t2 Domain®! Big-data &=0F0|= IXt&, non-convex dEE 7tX|= 8F7t
=00l HO|HO| § Metct sgdE HOLEL HRUS

 Minibatch Stochastic Gradient Descent(SGD) (Dekel et al., 2012), Minibatch
StochAstic Recursive grAdient algoritHm (SARAH) (Nguyen et al, 2017,

2019), Local SGD Converges Fast and Communicates Little(Sebastian U. Stich,

2019) S A&HA o S sgd 7L



Introduction

. A|H3} SR AIZI0| QLT > L4 oL, W HEY

* Minibatch SGD= S/H| 80| (4 HEXZF O|LEfX| 7|27] At = 8222 =2

4 DES QIE0|E), SA ¥ W0 3ofs

* Local SGD(Parallel Restart SGD)= &4 E= d&d= ==017| fleh &= X7 At
o 4 o
E —

Mol 22 HO[EAS Jlgoz 22 2

» YEIEO = |ocal SGDL| &4 F&-d1F E=d2 non-local SGD(minibatch)2.Ct LIS,
- Woodworth et al. Is local sgd better than minibatch sgd?(2020)%|A| heterogeneity”Zf

A+= [l local SGD7} non-local SGDELE 40| HOHH(H ¥ EAM=8d)2 Y




Problem definition

We want to minimize nonconvex smooth objective

j'.l'
1
f{-’} " F Z fﬂ{‘r}' where fJJ[J-::' T EE“‘”UF?[HJ-' EH

p=1
- =29 B8 : HCI 2A3IE =AU M non-local ¥ 7|= local algorithm2 S7}5l=

local algorithm= &tX}.

- 2t AR p= 40| Qo T, XHAO| HIO|H 2 Dpof Bt AAM AL 5= ATt 74,

Assumption 1 (Heterogeneity). { fr,,}y_l is second-order Assumption 3 (Existence of global optimum). f has a
(-heterogeneous, i.e., for any p, p' € [P], global minimizer z, € R
||-,;r2 fo(z) = V2 ()| < ¢, Vz € R Assumption 4 (Bounded gradient variance). For every p
“ [P,
Assumption 2 (Smoothness). For any p € [P] and =z € E..p,|[VE(z,z) — Vf,()|]* <o

supp(D,), £(-, z) is L-smooth, i.e..

Assumption 4 says that the variance of stochastic gradient

IVE(z, z) — VE(y, 2)|| < L]z — y|, Yo,y € R is bounded for every local objective.



Building blocks of Bias-Variance Reduced Local SGD

1) Localization

» Regularization 7| && otLt. ==0A= 4! HE E0[7] fsi 1.

2) Bias reduction

- local gradients2| bias& = QIC}

« FI|IHOZ VIX)E ALt estimator| biasg X225, O|2M second-o
rder heterogeneity (7t X &2 40| x vanilla non-local & local GDELC}

2| e > U &

T o=



Building blocks of Bias-Variance Reduced Local SGD

3) Stochastization(2t&2}
« ZYEXN HHE2 72 XHSI0AM THY A0 E0| TCioH A4t H|E0| 2R

« GD to SGD (A A H|E &)

4) Variance reduction

T

« Convex22O}L|2} Non-convex functionO| = At 7ts%t 7| O 2 StochastizationZ &

=
AWot= 242 20|10 FIIHLE AL = local gradientsE AHESHY AlM E2d2



Bias-Variance Reduced Local SGD Algorithm

Algorithm 2 BVR-L-SGD(x, 1, b, :!;* K.T.5)
I: fors =1to Sdo

Algorithm 1 Local GD(zg, 1, B, b, K, T)

I: fort = 1to T do
for p = 1 to P in parallel do
Set I{P}
Jor k=110 K do

= Tt-1.

end for
end for
Communicate {-r'!:p} |
9:  Fp=153 o (k~ Unif[K]).
10: end for
11: Return: 7; (f ~ Unif[T7).

Be

2
3
4
5: Update .r[” =z E”} — NV fo(z} p) )
6
7

8:
Q-
10:
1:
12:

13:
14:

15:

16:
17:

18:
19:
20:
21:
22:
23:

24:
25:
26:
27
28:

2
3
4:
5 .
i
7

forp=1to P in parallel do
rfb > 1 Z | #supp(D,) then
V) = Vip(Ts-1).
else _
vE = %ZLI VE(Fg1,2) (2 "5 D).
end if
end for
Communicate {V(f’j}‘r L set Ty = E,,— Ve,
Setxg=1x_1=7=T, 1.
Jfort =110Tdo
for p =110 P in parallel do

Kb
QEP}(II—I]: hlb 11 Vl(ze—1, 21),
QEP}(Ii—z} = hlb fwl Vé(zi-2,21)
ii.d.
forzp ~" D,

~{p) )
7 = g (x01) — g7 (202) + 7).

end for
Communicate {v I:”7;-.”_1, set iy = & Z‘p . P,
for p =110 P in parallel do

..':1'-']' . (;U:].uul o
..L! iy =

Local-Routine(p, xy_1.1m, 0y, b, K).
end for

5 3 it 3
Communicate {z\"’ W and { pPheu

p=1"
Set T, = .rE') and " =z, p)-out (p ~ Unif[P]).
end for
Set T, = xp and T = .'r:;.’“" (t ~ Unif[T)).
end for

Return: 7" = 72" (3 ~ Unif[S]).

Algorithm 3 Local-Routine(p, zq. 1, vg. b, K)

fonll - o

. Set 2 = 2'P) = g.

furkrltﬂfidu 1

Qip (a I:-V—}l = & Z!— Iip 15 21)s QEP}{ J[.—jz

i.i.d.
aZ:— -'1 0:21) (21~ D).
':l ﬂl ¥ ] i
{P _ QLI (Iip}l E’EI){IEP ,) + t*':’

Updale :1:': = JEP} I}t‘{p}
end for
. Return: ':;:} I[pj (k ~ Unif[K)).




Results

re) . = =~ = =
23t 2 QI heterogeneityZt 2 Il 7|E local sgd=2| d&
o L L S o
AA XMotk|s 9HH, BVR-L-SGD= 1 =7 M 23
L O L
BVR-L-SGD+= 7| E2| non-local, local sgd?| ds2 s7I.
Bias-Variance Reduced Local SGD for Less Heterogeneous Federated Learning
e = Sl S 54 D 0,056 q=-0.-1 5GD 54.0 G
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Figure 2. Comparison of the best train loss and test accuracy
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Figure 3. Comparison of the best train loss and test accuracy
against local computation budget B.
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Figure 4. Comparison of the train loss and test accuracy against
the number of communication rounds.



Contribution

Nonconvex distributed learning0fl At&5t= MEZ2 algorithm.

BVR-L-SGD7} 541 S&4 ZHO|A 0|F 2] locald ' # OtL|2t non-local &HELH L4
Second-order heterogeneitys Z[Ciot &-&5t7| 2[5 7|& 22 YROM AFEE= Ho S
Fote HE A F2E HEE 24 DEHE 228 REHE ALE

23t ZQl heterogeneity?t 2 I 7|Z local sgd=2| ds2 3AA Xotkl& BHH, BVR-L-
SGD= 1 ME7} &M 22

2t Domain@! Big-data®=OF0l| Al deeplearning ZF 2 A| optimization®| A sgd CHA! bvr-I-
sgd& AMESIH, O 22 complexity@l O HE £ O2|0 H&AEE 7|0 2 = A2 A.
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Learning Disentangled representation via
product manifold projection
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Disentangle features

Learning a disentangled representation
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Contribution of the research

. 7|5FStA ZHHO| A disentanglementE SiiA =, O|2{¢t O|2X ECH7}
AR AMR K= HRES et = UL AS 2

weakly-supervised recipeE XS
» 0|2{TF RecipeE -8 H|O|EL} &EIZISHY| Oje{=2 &A| HfO]E A0
=251, 7= WH0f Ho) O Lte 452 Ho
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Theoretical justification




Basic Assumptions

e =2 X9l 40| = Y2 X 2| Manifoldd| Af2[SHC}

. 0] ¥2 X2 Manifolde datal| &% featureE modeling 8=
6{2] 7§2| Submanifold2] productE O|-,-O1 XIC}
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Geometric definition of disentanglement

P

z2 21

Definition 1 (Product metric space) A product metric
space is an ordered pair (M,d) where M is a product

of sets My x ... x My, each equipped with a function
di - M; x M; — R, Vi s.t. Va:,y,z e M;:

di(way) di(yaw)

[di(xay)o = r=Y
di(x,2) < di(x,y) + d;(y, 2)

The metric on the product space corresponds to the Lo norm

of the metric on the subspaces. I : I 1 Human
i

Interface
Laboratory



Disentangled representations

Submanifold #1

o

Manifold ]
K Submanifold #2
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Methodology




Brief summary of the model

Embed data in pair to latent space

Il

T2

Sum all vectors in submanifolds

st

aggr}——»

I
-

- 1
21 S1
I >
—
— —»
22
S3

Embed latent to submanifold

aggr

<1

L

i

Z2

18l
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Loss functions

[: — [-"'rec + 51 (ﬁdis + ﬁspafr) = 52‘6007’&5 + 53[-"7“69

T Human
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]
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Loss functions — reconstruction loss

ﬁrec:”a: — g’}f(aggr(Plgwl fﬂ(fﬂ); Loy Pk,wka(m)))||g

2 @

X2 @

Interface
Laboratory



Loss functions — consistency loss

k
Lecons = Z ”Pi,wa;(fl?(i'sz')) — SZHg
1=1

s;=P; f(x1) and 2, =g(aggr(P; f(x1), Pjzif(r2)))

Human
Interface
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Loss functions — distance loss

k
Edis — Z(l—az)d? + aimax(m—éi,0)2
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Loss functions — distance loss

k
Edis — Z(l—az)d? + aimax(m—éi,0)2
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Experimental result




Experimental result
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k-Nearest Neighbors by Means of Sequence to

!l_ Sequence Deep Neural Networks and Memory Networks

Yiming Xu and Diego Klabjan
Northwestern University

[JCAI 2021
Presenter: Jinwoo Kim



Introduction:
Problem definition

Task 1: Classification
O P N Predict Label of test data,
@ Labels of K nearest neighbors,
Feature vectors of K nearest neighbors

V4
/ \
/ \
/ \
U \
! \
1 \
1 |
A | ? |
1 H I
\
\
\

Task 2: Oversampling
N é& ? H Add generated samples to minority class
A 5 for better classification

Feature space with data points with labels




Introduction:
Sequence to Sequence Model

= Architecture

Output sequence @ @ @

y A 4

Decoder Q
he he hS he

h3. Context vector
encoder [ J—{ }={ J~{ J— - —{ }—

A A

Input sequence @ @ @ @ @ 4{ Feature vectors of training data ]

Architecture of sequence to sequence model

% 15t,2nd . K" nearest neighbors}

hi —\bg

>
—D]
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Introduction:
KNN Models on Sequence to Sequence Model

= Below models are built on Seq2seq model:

= Vector to label sequence (V2LS)

= Vector to vector sequence (V2VS)

= Vector to vector sequence and label sequence (V2VSLS)
= Notation

= Input feature vector x

= Feature vector X, label Y

= Subscript t = 1, ..., K: t'" nearest to x, superscript P, T: predicted, target
= Given

= Input feature vector x and corresponding ground-truth label Y¢T

= KNN upfront -> obtain labels Y/, Y/ ,..., Y{ and feature vectors X{,X7,..., X¥



Sequence to Sequence Model:
Vector to Label Sequence (V2LS)

= Predict label distributions Y, of t* nearest samples from x

linear mapping softmax with temperature t p

= Vi > Wyye + by > Y
= With 7 lower than 1, Y becomes similar to one-hot vector
= Preceding decoder cells preserve closeness to the original input, so y, — tt* nearest

= Predict label distribution Y? of x as:
= VP = %Z{“{:l Ytp
= Correspond to majority voting in kNN
= Loss function
= Ly = E{%Z?’ﬂ Dy, (YY) + aDg, (YET||Y )}




Sequence to Sequence Model:
Vector to Vector Sequence (V2VS)

+

= Generate feature vector X/ corresponding to t'" nearest samples to x

linear mapping 1 with ReLU linear mapping 2 p

=Vt >0 (Wy1Ye + by1) > Xt

s Loss function
2
« L, = EQENXE - XE N7

= Objectives of generating out-of-sample feature vectors
= Make model to capture representative information of input and nearest neighbors
= Improve classification performance
= Enable oversampling



Sequence to Sequence Model:
i Vector to Vector Sequence and Label Sequence (V2VSLS)

= Joint training of V2VS and V2LS

= Loss function L = L, + AL,
= L, for learning both neighboring labels and the ground truth label
= L, for learning neighboring vectors

= Learn both label and feature vector of nearest neighbors, including label of x



Experimental Results

= Classification

NI cov SensIT ccD
XGB 87.53 91.98 82.56 66.95
FFN 88.53 91.83 83.67 65.37 V2VSLS consistently outperforms
V2VSLS 92.07 94.97 86.24 69.87 E:eatl’le%ucr'?:tiggggon models
MNKNN_VEC 84.59 83.94 83.41 68.82

F1 score comparison of full models



Experimental Results

= Oversampling

Classification Oversampling

models Techniques NI cov >ensIT b
No oversample 89.64 91.83 83.67 65.37

SMOTE 89.99 91.18 83.43 66.32

ik ADASYN 90.38 90.67 83.72 66.51

K=5 out-of-sample

V2VSLS 90.89 92.05 83.94 66.82 Add them to training set
until the classes are balanced

No oversample 87.53 91.98 82.56 66.95

SMOTE 87.79 91.86 82.87 66.56

Xe8 ADASYN 88.39 92.56 83.42 66.20
V2VSLS 87.62 92.43 82.46 66.96

Oversampling: F1 score comparison
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<=E H=> Empirical Study of the Benefits of Overparameterization in Learning Latent Variable Models

Latent Variable Model

Latent variables : Variables that are not directly observed but are rather inferred

from other variables that are observed (< Observable variable)

Generation
AT
p(z) z | l: x p(x)
p(zlx)

2 St 3

Overparameterization

having more model parameters than necessary to represent distribution of the data

Ex) Ground truth model
Latent variables

—  Generate synthetic data set

Observed variables

Trained model
Latent variables Latent variables

Observed variables Observed variables

Non-overparameterized model Overparameterized model

- Latent variable model& %}& 3t unsupervised learning0®| Al overparameterization2| 20| CH5L0| empirical study

=
- Cryst el 5l sh& 22| S (Noisy-OR network / sparse coding / probabilistic context-free grammars)0j| CH5H0] Z134

- Supervised learning®| A = overparameterization2| = 0| 0| o=



<=& M= > Empirical Study of the Benefits of Overparameterization in Learning Latent Variable Models

Noisy OR Network

« 1 binary latent variables layer & 1 binary observed variables layer

+ Prior probabilities m, noise probabilities [

T T Tm-1 Tm-1  Prior probabilities m € [0,1]™

oo ces Latent variables h € {0,1}™

exp(—Wj;) : failure probability between related h; and x;

m

p) = [ [mhet - myr

n
. i=1 m - p(x,h) =p(h) Hp(leh)
Observed variables x € {0,1}" p(x; =0lh) = (1 — 1) Hexp(—Wjihi) j=1
i=1

lj Noise probabilities [ € [0,1]"
Training algorithm Extracting ground-truth latent variables
* log p(x;0) 2 Ey(.|x; ¢)llog p(x, h; 6) —log q(hlx; p)] = L(x,6,) * (m; < 0.02) or (exp(—Wj;) > 0.8 for all related observable variables) = discard latent variables
« Assume q(hlx; ¢) = [T, 0(x - w; + b)"(1 — o (x - w; + b)) 7h + Latent variables that are duplicates = discard the one with lower prior probability

*  Maximize the lower bound L(x, 0, ¢) by taking gradient steps w.r.t. (6, ¢)

q(hlx; @) : variational posterior, also known as a recognition network



<== M= > Empirical Study of the Benefits of Overparameterization in Learning Latent Variable Models

Results

Recovered” = ground truth latent variables 4= &3

(Recovered : there exist a learned latent variable with the same parameters)
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- Larger model — recovered ground truth latent variables 57}

- Extreme Overparameterization?| THY 37| L}EfLLX] %S

- 8h& ¥2|E0| HHY O £ overparameterization2| 27Xl Fako= I3 A

Configuration of the IM

y= : 50019| run
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variables
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(first eight)

G noisy-OR ground truth model

Tl = recovered &l latent variable &=
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Multisource Domain Factorization Network

Needs for Domain Adaptation in Fault Diagnosis

 Deep-Learning based Fault Diagnosis « Difficulties Obtaining Industrial Data
R * Normal L
NI . Fault1 m @ - Insufficient
T * Fault 2 l
aeliadiy - Sufficient but unlabeled
* Fault 3 Industrial Data

Signal from sensor

« Most Common Approaches

- Training: several labeled source domain datasets and unlabeled target domain dataset

- Validation: labeled target domain dataset

Source domain dataset Target domain dataset
System Dataset System Dataset

Testbed Industry

Amounts
Amounts

Normal Faultl Fault?2 Fault3 Normal Faultl Fault2 Fault3

SHRM
i shrm.snu.ac.kr



Multisource Domain Factorization Network

Limitation of Conventional Domain Adaptation
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Conventional Multisource Domain Adaptation

- Purpose: Learn domain-invariant features

= I
A
A A | A A /
B — oAl 0o —
. . Source 1 ! / @g
Existing — * ‘ , Proposed
Methods / o] Method
#  iHealthy
Domaint ’
Shift
] A O
A K ShE A
e K exmer~" | [ETEy = _\'»‘x' _____
S0 % |m] * H =] T *
______ e =) Ly *
* 3 " Source 2», m A
1 Domain : O
! Shift | o
] :; .\.\\ / =
J <o
By A l’""‘ . *
b * LR
A 7{}{:* w *
#
B L T NETT—
e e ... _» Misclassify * “Bad Sample
R/
" Target A [ ¥¢ Samples in Health Condition
I

A W  Samples in Fault Condition

SHRM

1) Vulnerable to noise
- Shared feature space is vulnerable to *noise

- Weaken the diagnostic performance

*Mechanical structure, working load, sampling frequency, and environmental noise

2) Negative transfer issue
- Not all samples are transferable - "bad samples”
- Bad samples forcefully align the different domains

- It makes condition classifier confuse.

shrm.snu.ac.kr
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Proposed Method of MDFN
 Network of MDFN

cssssss

Private Feature Encoder
— {E"’}"*‘({ES{,,,, wiEY) F
i=1,2, -, M+1

X
e Shared Feature Decoder
Shared Feature Encoder E*' ' & — i —
_F — D (F*' + F}") ES
0 :
H

F
% > Condition Predictor P —P @
Domain —b - . l entropy

orthogonal
e S
T constraint

Prrescscslhocccccsnccans

Discriminator D weight > % —b @
T Vs
1) Factorization loss 2) IET loss
Squared Frobenius norm of source domain Normalized domain discriminant entropy
M Nau L
T TP ay S, log(digm )|
L, = Z Hsf pr _|_ | Hsf pr L — Z wiH(x:) = — Z Z 1— i(m) i(m) )] o ]
f £ S (m) L IET ya iH(x;) —L l=1( log(M + 1) Jpiwlogiy)

Squared Frobenius norm of target domain Health condition entropy

SHRM 4
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Prototypical Contrastive Learning (PCL)

* Unsupervised (self-supervised) representation learning method

* Introduce prototypes as latent variables to help find the maximum-likelihood estimation of
network parameters in an Expectation-Maximization (EM) framework

* Prototype is defined as “a representative embedding for a group of semantically similar instances”




Maximum Likelihood Estimation

* The objective is to find the network parameters 8 that maximizes the log-likelihood function of

the observed n samples

0" = argmax Y logp(x;;0
s 3 loap(a0

1=

* Assume that the observed data are related to latent variable C = {ci}é‘zl

* ( denotes the prototypes of the data

e Can re-write the log-likelihood function as

0" = arg maKZngp(mi;H) = arg maKZng Z plx;,ci; )

ﬂ '1:]. FIEF



Maximum Likelihood Estimation

n T
0% = arg maJ{Zlogp(:ri;ﬂ] = arg maXZIDg Z p(x;, ci;0)
6 =1 b =1 cec

* The log-likelihood can be expressed as

Z Z Q(c;)log p(xi, i 0)

i=1 c; €C

p(ﬂ:i!ci:‘g) p(Ii:ci;g}
Ci) = = = Ei;illi,ﬁ
@) Zciefj p(x;, c;:0) p(z;:0) P )

* Find 8 via Expectation Maximization



E-step

T

Aim to estimate Q(c;) = p(c;; x4, 0) Z Z Q(ci) log p(i, ci; 0)

i—=1 c; €C

Perform k-means on the features v; = fg(x;)

Define prototype c; as the centroid for the i-th cluster

p(ci; i, 0) = 1(x; € ¢;)
. ]l(:l:i - Ci) =1 if x; belongs to the cluster represented by c;

e Otherwise 0



M-step
Z Z Q(f’z) lﬂgp Ly Ciy 9) Z Z p(r'i L, 9) lﬂgp(“}ji Ci; '9)
i=1 ¢c;eC i=1 ¢; €C
p— Z Z :|]_(’I?1 - C.i)]Dgp(iI?.i,Ci;g)

i=1 e; €C

* Under the assumption of a uniform prior over cluster centroids

1
p(zi, ¢i:0) = p(zis ¢i, 0)p(ciz ) = 1 - p(zis ci, 0)

* Assume the distribution around each prototype c; as an isotropic Gaussian

p(xizci,b) = G}{p( Cs )/ZCXP( (vs ;?pi)?)




M-step

* Ifvandc are [2-normalized, v —¢)? =2—-2v-c

* Rewrite maximum log-likelihood estimation as

7 .-
explv; - C
f* = arg min E — log - p( i " Cs/Ps) |
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Experiments

* Low-shot image classification

. YOCo07 Places205
Method architecture k=1 k=2 k=4 k=8 k=16 | k=1 k=2 k=4 k=8 k=16
Random RecNerS0 80 82 82 82 85| 07 07 07 07 07
Supervised ‘ 543 678 739 79.6 823|149 210 269 32.1 360
Jigsaw 365 31.1 400 467 518| 46 64 94 120 174
MoCo ResNet-50 314 420 495 600 659| 88 132 182 232 280
PCL (ours) 469 564 62.8 702 743|113 157 195 24.1 284
SimCLR 327 431 525 610 67.1] 94 142 193 237 283
MoCo v2 ResNet-SO-MLP | 463 583 649 725 76.1|109 163 208 260 30.1
PCL v2 (ours) 479 59.6 662 745 783|125 17.5 232 28.1 323

Table 1: Low-shot image classification on both VOC07 and Places205 datasets using linear SVMs trained on
fixed representations. All methods were pretrained on ImageNet-1M dataset for 200 epochs (except for Jigsaw
trained on ImageNet-14M). We vary the number of labeled examples k& and report the mAP (for VOC) and
accuracy (for Places) across 5 runs. We use the released pretrained model for MoCo, and re-implement SimCLR.



Experiments

* Semi-supervised learning

Method architecture ﬁg;iﬁ:m T?E;S TCC%?}?
Random (Wu et al., 2018) ResNet-50 - 22.0 39.0
Supervised baseline (Zhai et al., 2019) ResNet-50 - 48.4 80.4
Semi-supervised learning methods:

Pseudolabels (Zhai et al., 2019) ResNet-50v2 - 51.6 82.4
VAT + Entropy Min. (Miyato et al., 2019) ResNet-50v2 - 47.0 83.4
S*L Rotation (Zhai et al., 2019) ResNet-50v2 - 53.4 83.8
Self-supervised learning methods:

Instance Discrimination (Wu et al., 2018) ResNet-50 200 39.2 T7.4
Jigsaw (Noroozi & Favaro, 2016) ResNet-50 90 45.3 79.3
SimCLR (Chen et al., 2020a) ResNet-50-MLP 200 56.5 82.7
MoCo (He et al., 2020) ResNet-50 200 56.9 83.0
MoCo v2 (Chen et al., 2020b) ResNet-50-MLP 200 66.3 84.4
PCL v2 (ours) ResNet-50-MLP 200 73.9 85.0
PCL (ours) ResNet-50 200 75.3 85.6
PIRL (Misra & van der Maaten, 2020) ResNet-50 800 57.2 83.8
SimCLR Chen et al. (2020a) ResNet-50-MLP 1000 75.57 87.87
BYOL (Gnll et al., 2020) ResNet-50-MLPyig 1000 78.47 89.07
SwAV (Caron et al., 2020) ResNet-50-MLP 800 78.5* 89.9*

10
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Contrastive Learning

Unsupervised (self-supervised) representation learning method

repel
* One successful use case of contrastive loss

* Positive sample I

; CEcmm T
* Negative samples MEE

H EE=

ETWT] [T Wrepresentation (T T [T

X ={x1,%9, ..., x5}

Embedding function fy

v; = fo(x;)

T

exp(v; - v, /T)
LinfoNceE = )  —log :
e ; > i—o exp(v; - v /7)




Maximum Likelihood Estimation

* Itis hard to optimize this function directly 0" = al‘g;naleﬂgp(i‘“ = arg maleﬂg Z p(zi,cis 0

i=1 ci e
e Use a surrogate function Q to lower-bound

* ZCiQ(Ci) = 1

ng > plai,ci0 Zlﬂg > Q) T‘ "”1 3 Qler o :5(:;9)

c; eC c;e’ i=1 ¢g; eC

Jensen’s inequality

13



Maximum Likelihood Estimation

Zlog Z plr;, ci;0) = Zlog Z Oles p(“rt r*i)

c;eC ;e

p(x;,ci;0)

should be a constant
Q(cy)

* To make the inequality hold with equality,
p(xi, ci;0) . plx;, ci;6)

Ci| — o
Q) > ciec P(Ti,¢:30) p(z::0)

:p(ci;mi:g)

« By ignoring the constant —2_;—1 2_.,cc @(ci) log Q(c;) | one should maximize

Z Z Q(ci)log p(xi, c;: 0)

i=1 c;€C

* Find 8 via Expectation Maximization

) >

14
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Under-Display Camera

« Under-Display Camera (UDC) . |
. ClAZ20| Ofhof FHol2t Z X 8:16 8:16

Tuesday, April 6 Tuesday, April 6

» x|/ HX|E Qe §2 HAE0] 7+

* Image degradation of UDC
' -

S EEYE R

== O [

Dot-Drop solution Under-display
Camera solution

> UDC O|0|X|E =dot= 7|z ER

(a) Display-free (b) TOLED (c) POLED

Seoul National University | OEQE Lab




Optical System analysis

Display Pattern PSF Horizontal MTF Vertical MTF

= (Green

- Blte || %8
(@] ©
L =06
= 5
Q 004
[

0 2 4 6 8 10 12 14 0 2 4 6 8 1012 14
Frequency(cycles/?) Frequency(cycles/?)

Display Lens Sensor
gm,n)  p(m,n) (u,v)

P-OLED

0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
Frequency(cycles/?) Frequency(cycles/?)

z=0 > (+)
.-

Diffraction-limited
Point spread function (PSF)
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Image formation & restoration

* Observation

1q(0, s)ds
y =(1x) @k +n. Y= ffb l
g +nda

R—>
5 3
-
<C

* Poitnt spread function

:
! 2’r °
: I(u,v) (m,n)exp — (mu + nv)| dmdn
X )\f
.
: u v |
o J )
E I(’U,, U) X |GP(UTH: rU’”:)' — GP()\_f )\_f)
Display Lens Sensor
g(m,n) p(m,n) I(u,v)

* Shot & readout noise

n ~ N(,(L =0, o* = Aread + )\shotw)

Seoul National University | OEQE Lab



Learning—based methods

* Monitor-Camera Imaging System for dataset

( ML Black Box Cover \
[ Point-grey
UK LCD Display e Camera
- Sy . v
_______ 4K Display—
________________ - C— Point-grey
----------- Display Samples o hera

0
=
m
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m
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Black Box

(a) Display-free (b) TOLED (c) POLED

vyl N é
’I*""' i v )

—* 2x2 Max Pool—* 2x2 ConvT--- Concatenate

5
g , : v I L ]| &
ol /ILUL ———  Residual detail [ ] _ .« .N 1° E
2 mE . L l
e \ N Content encoding 56 T 128 | | 64 T32 12
4 Ty ﬂ I N IM — 3x3 Conv —* 1x1 Conv —* Pixel-Shuffle 2
= »
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(a) T-OLED (b) DeP (c) UNet(Syn) (d) UNet (e) GT
Table 4: Pipeline Comparison
| | | 4K T-OLED P-OLED
Pipeline Structure #P | GFLOPs | T PSNR/SSIM 1 LPIPS | PSNR/SSIM 1 LPIPS |
DeP - - - 28.50/0.9117 0.4219 16.97/0.7084 0.6306
ResNet 1.37M 721.76 92.92 36.26/0.9703 0.1214 27.42/0.9176 0.2500
UNet(Syn) 8.93M 124.36 21.37 32.42/0.9343 0.1739 25.88/0.9006 0.3089
UNet 8.93M 124.36 21.37 36.71/0.9713 0.1209 30.45/0.9427 0.2219

Seoul National University | OEQE Lab




Results

(a) P-OLED

(b) DeP

(c) UNet(Syn)
Table 4: Pipeline Comparison

(d) UNet

| | | 4K T-OLED P-OLED
Pipeline Structure #P ] GFLOPs | T PSNR/SSIM 1 LPIPS | PSNR/SSIM 1 LPIPS |
DeP - - - 28.50/0.9117 0.4219 16.97/0.7084 0.6306
ResNet 1.37TM 721.76 92.92 36.26/0.9703 0.1214 27.42/0.9176 0.2500
UNet(Syn) 8.93M 124.36 21.37 32.42/0.9343 0.1739 25.88/0.9006 0.3089
UNet 8.93M 124.36 21.37 36.71/0.9713 0.1209 30.45/0.9427 0.2219

Seoul National University | OEQE Lab
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Overview

« Causality

. QIBIEAE 0|83 RS AT, TE5ls BHO| US

* Representation learning
- HIO|E{E 72 & HJS= representation vectorE o211 &
» Neural net 2 O|23l|A..

o| = O FiSIS} L O
« 2 EIEE delol ==
« Causal mechanism S 0|25l 22 AA|

« Causality 2t80|A 7|Z contrastive learning & 43

ML
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* Representation learning

« Causal mechanism
« Cause variable
* Intervention

» do operator

* RelLIC




Representation learning

Default Representation "Good" Semantic Representation

BB E
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&5~ o X~ Deep Neural Ly
@ e O e I | Network
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Causal Mechanism

Cause Outcome

X7FY o QI o[2tH, X=Y 2| cause

TroF, X & HHZ 242 = AN att= 2= HH = A - do(X=a)

O|ZA| do HAFE off XE O| WA A HHHZIHH Y& 2Hel= A : intervention



ReLIC

Data generation S : Style
@ @< @ C : Content
\ / @\\ X : Data
X \) Y, : Downstream task target
Y® : Target
f : Model

JX)pmmmmmmmmmes Y F

Representation Learning
Style It content 2 213 data 7} Tt=S0{ &
Style 2t content = M2 =E
Content 2F downstream task (e.g. classification) 0f| AF2-=

Style 2 2|3 HiE = US. Intervention & A.
)

(e.g. rotation, color distortion, noise -




ReLIC

Data generation S Sty|e

© @/ @ C : Content
\ / \@\\ X : Data
X \) Y, : Downstream task target
Y® : Target
f : Model

JX)f-mmmmmmmmes Y T

Representation Learning

Y; = O 2 EL| downstream task 2L} I 0]2]Z proxy task & 2H&50] ef& (refinement)

YR f(x) =i
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Data generation

fX)----------> YR

Representation Learning

Content StLt0]| style = 271 21&
S 1 Cco|Bg pdoS=a)(yR|C) = pdo(S=b)(yR|()

KL + cross—entropy loss
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1. Introduction

v' DEAR: Deep Reinforcement Learning for Online Advertising Impression in Recommender Systems
(Zhao et al, AAAI 2021)

original rec-list

i

Lﬁ

.
nn

Recommender
Agent

I

Ll

0

T
Advertising
Agent

L

mn

all items to be displayed

DEAR: Deep Reinforcement Learning for Online Advertising Impression in Recommender Systems (Zhao et a/ AAAI 2021)
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1. Introduction

v DEAR: Deep Reinforcement Learning for Online Advertising Impression in Recommender Systems
(Zhao et al, AAAI 2021)

= Tremendous interests in utilizing RL for online advertising in recommendation platforms

= However, the most RL-based algorithms focus on optimizing ad’s revenue, ignoring the possible

negative influences of ads on user experience of recommended items.

= For example, interpolating ads improperly or too frequently may decrease user experience, while

interpolating fewer ads will reduce the advertising revenue.

original rec-list

L"'I

llll‘
Recommender
Agent

il
LLLL

T .
Advertising
Agent

all items to be displayed

DEAR: Deep Reinforcement Learning for Online Advertising Impression in Recommender Systems (Zhao et a/ AAAI 2021)
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1. Introduction

v DEAR: Deep Reinforcement Learning for Online Advertising Impression in Recommender Systems
(Zhao et al, AAAI 2021)
= |n this paper, a novel advertising strategy for the rec/ads trade-off is proposed.
= Specifically, it is the RL-based framework that can continuously update its advertising strategies and
maximize reward in the long run.

= Given a recommendation list, the proposed Deep-Q-network(DQN) algorithm can determine three

internally related tasks jointly;

original rec-list

* 1) Whether to interpolate an ad of not in the recommendation list, and if yes,

=
L

= 2) The optimal ad and, Recommender
Agent

1l
LLLL

» 3) The optimal location to interpolate.

Advertising
Agent

all items to be displayed

DEAR: Deep Reinforcement Learning for Online Advertising Impression in Recommender Systems (Zhao et a/ AAAI 2021)



—-a8e
. ad

aEEE
k bw /BB

=~ 40
MUSIC & AUDIO RESEARCH GROUP

2. Problem Definition

v Problem Statement
= The advertising problem within a rec-list is considered as a Markov Decision Process(MDP), consisting
of a tuple of five elements; (S,4,P,R,y)
» 1) State space S: A State s; € S is defined as a user’s browsing history before time t and the information
of current request at time t.

= 2) Action space A: The action a, = (a4, al’) € A of AA is determine to three internally related tasks.
= a2 -> Chooses a specific ad.
= al°¢ -> Interpolates the chosen ad into the optimal location.

= 3) Reward R: The reward r(s; a;) is two fold; (i) The income of an and that depends on the quality of the

ad, and (ii) the influence of an ad on the user experience.

= Given the historical MDP; (S, A4, P, R,y), the goal is to find an advertising policy m: S — A, which can

maximize the cumulative reward from users.

DEAR: Deep Reinforcement Learning for Online Advertising Impression in Recommender Systems (Zhao et a/ AAAI 2021)
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3. The Proposed Network

state s;

DEAR: Deep Reinforcement Learning for Online Advertising Impression in Recommender Systems (Zhao et a/ AAAI 2021)
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3. The Proposed Network

v The Processing of State and Action Features

— rec ,.ad
"S5t = concat(pt » Pt ,ct,rect)

= ple¢ (or p2¢)-> The final hidden state of GRU, which is the representation of user’s dynamic preference

of recommendations (or ads).

» ¢, -> The contextual information feature of current user request. It consists of information such as OS,

app version and feed type (swiping up/down the screen).

= rec, -> The transformed low-dimensional dense vector of concatenated features of L recommended

items displayed at time t, which is expressed as rec; = tanh(W,q.concat(recy, ...,recy) + byec).

= For the action a; = (a2%, al’%) € A, a?® is the feature of a candidate ad, and a{°° € R!*! is the location

to interpolate the selected ad (given the L items, there exist L + 1 possible locations).

DEAR: Deep Reinforcement Learning for Online Advertising Impression in Recommender Systems (Zhao et a/ AAAI 2021)
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3. The Proposed Framework

v The proposed DQN Architecture

= Firstly, to incorporate the sub-action (i) whether to interpolate an ad or not, into the DQN architecture,
the option of not interpolating an ad is considered as a special location 0. The length of ouput layer is
extended from L + 1 to L + 2, where Q(s;, a?®)°? corresponds to the Q-value of not incorporating an ad
into current rec-list.

= Secondly, simultaneously tackle the sub-action (ii) where is the optimal and (iii) which ad is optimal.
Those two sub-actions are integrated into one framework, estimating the Q-values of all possible

locations al°¢ for any given candidate ad a2<.

= Can determine three internally related sub-actions at the same time !

DEAR: Deep Reinforcement Learning for Online Advertising Impression in Recommender Systems (Zhao et a/ AAAI 2021)
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3. The Proposed Network

state s;

DEAR: Deep Reinforcement Learning for Online Advertising Impression in Recommender Systems (Zhao et a/ AAAI 2021)
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3. The Proposed Network
a4 A
=

* oo [HE000)

| l

| Al: N
Q( s, a;"‘)0

Neural
Network

DEAR: Deep Reinforcement Learning for Online Advertising Impression in Recommender Systems (Zhao et a/ AAAI 2021)
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3. The Proposed Framework

v The proposed DQN Architecture

= On the one hand, whether to interpolate an ad into current rec-list is mainly impacted by the state s;
(e.g, if a user has good experience for current rec-list, the advertising agent may prefer to interpolate

an ad into the current rec-list).

= On the other hand, the reward for choosing an ad and location is closely related to all features (both

current rec-list and the ads).

= According to these observations, the Q-function is divided into the value function V(s;), which is
determined by th state features, and the advantage function A(s;, a;), which is determined by the

features of both state and action.

DEAR: Deep Reinforcement Learning for Online Advertising Impression in Recommender Systems (Zhao et a/ AAAI 2021)



3. The Proposed Network

Algorithm 1 Off-policy Training of DEAR Framework.

1: Initialize the capacity of replay buffer D
2: Initialize action-value function ) with random weights
3: for session = 1, M do

4:  Initialize state sp from previous sessions
5: fort=1,Tdo
6: Observe state s; = concat(p;“, p?d, Ct,TeCt)
7 Execute action a; following off-policy b(s;)
8: Calculate reward r; = r#% + arf® from offline log
9: Update state s; to sy
10: Store transition (s¢, a¢, ¢, S¢+1) into D
11: Sample mini-batch of transitions (s, a,r, s’) from D
12: Set
e P terminal s’
Y=\ r+ymaxy Q(s'.a’;#) non—terminal s’
13: Minimize (y — Q(s, a; (9))2 according to Eq.(6)
14:  end for
15: end for

< (52
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DEAR: Deep Reinforcement Learning for Online Advertising Impression in Recommender Systems (Zhao et a/ AAAI 2021)
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Introduction

= Many works model the MNIST with neural network parameterizing Bernoulli likelihood
= MNIST dataset consists of images x,, € [0,1]°,n = 1,---, N where N is the dataset size

= However, the support of Bernoulli distribution is {0,1}
* VAE objective function built upon Bernoulli distribution is not a true probabilistic model
* Modelling x € [0,1] as Bernoulli distribution is equivalent to ignoring normalizing constant

/40 [,_
2121/ . : zz:

FeaturesDict({ 20 1

‘image’: Image(shape=(28, 28, 1), dtype=tf.uint8), 207 .
t f / ‘label’': Classlabel(shape=(), dtype=tf.int64, num_classes=18), 25
T T T o-
i H 0 10 20 075 080 085 090 095 100

Pixel intensity

In Tensorflow, MNIST is provided in integer type in

From the pixel histogram we can see the
MNIST dataset samples {0,---, 255}, and we normalize it to [0,1] float values. P &

MNIST do not follow pmf of Bernlo-ulli B

VISION



Introduction - cont’d

* How prior works address this problem?
* Conduct data augmentation to binarize the MNIST data + negative binary cross entropy (non-probabilistic)
* Another type of relaxation methods™ have also been proposed

= Contribution of this work
* Continuous Bernoulli (CB)-VAE outperforms Bernoulli (B)-VAE
* It also outperforms Beta-distribution VAE and Gaussian VAE for [0,1] ranged dataset
* Provide decent lower bound that considers normalizing constant for pdf

*Maddison, C. J., Mnih, A., & Teh, Y. W. (2016). The concrete distribution: A continuous relaxation of discrete random variables. arXiv preprint arXiv:1611.00712. 3
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Methods

= Evidence lower bound of variational autoencoder (VAE) for Bernoulli distribution
N

E0.6) =3 Eqyentim 108 90 (20]20)] = K L(gs (2l |po(20)) < logpo((z1s...,2n))-

n=1

v x, € [0,1]P and we model pg (x|z,) = B(2A9(2,)), where Ag: RM — RP is neural network 8
v B(Ap) is a product of D independent Bernoulli distribution (for all D pixels)
e Problem: Bernoulli distribution cannot model data x,, € (0,1)” -> unnormalized in [0,1]
v p(x|Ad) = A*(1 - 1D)¥, "~ denotes the distribution is unnormalized in [0,1]
v’ It is equivalent to ignoring the normalizing constant, which is crucial for probabilistic modelling®
* The continuous Bernoulli (CB), CB
* It is a distribution having a supportin [0,1], parameterized by A € (0,1).

X ~CB(N) <= p(z|\) o< p(z|N) = A" (1 = N)' ",

*Wainwright, M. J., & Jordan, M. I. (2008). Graphical models, exponential families, and variational inference. Now Publishers Inc. 3



Methods - cont'd

= Properties of (B
* pdf: normalized with C(4) 2tanh (1 — 2))

p($|/\) — O(A)AT(l - )\)l_m,where O()\) = 1 — 2\ if A % 0.5
2 otherwise

A
_l_
p(A) = E[X]=<{2\—1  2tanh™ (1 —2)\)
0.5 otherwise

if A £ 0.5

* conjugate prior
v pNea, Br) o A1 = N)PTEC(N)”, wherea, B > 0andv > 0

CB log normalizing constant B density CB mean
2.5 0.5 101 — continuous Bernoulli
2.50 1 . '
2.25 1 - 0.8 084
! 0.7

2,00 A "E
= —_ 0.6 @ 0.6
o 1751 = 157 @ =

£ 0.5 £ =

T 1504 e Toal
- 1.0 04 % '

1.25 0s 2

Lood 0.2 1

' 05 0.2 .
0.757 0.1 0.0
0.0 0.2 0.4 0.6 0.8 10 00 02 04 06 08 10 0.0 0.2 0.4 0.6 0.8 1.0

parameter A X parameter A



Methods - cont'd

= Properties of (B
* Forms an exponential family, closed form variance, CDF, and inverse CDF, and entropy

CLASS torch.distributions.continuous_bernoulli.ContinuousBernoulli(probs=None,

logits=None, 1ims=(0.499, 0.501), validate_args=None) [SOURCE]

cdf(value) [SOURCE] PROPERTY mean has_rsample = TRUE log_prob(value) [SOURCE]
entropy() [SOURCE] PROPERTY variance icdf(value) [SOURCE]
A—=0 A—1

* Bernoulli limit CB(\) —— 6(0) and CB(\) —— §(1)

v' (B becomes Bernoulli at each limit of the support

* Maximum likelihood A
- lofais 1) = % 3, @
v’ From observed variables x4, -+, xy ~jig CB(1), MLE A of 1is M N Zontn
* Thus, we can formulate decent ELBO for VAE on the CB

N D
E(p,6,0) = > —KL(asllpo) + Eq, > wn,alogXe,d(zn) + (1 — zn,a)log(l — X a(zn)) + log C()\e,d(zn))}
‘ |

CL

VISION

n=1

B



Experiments

" Experimental results

* Qualitative reconstruction from VAEs
A

« ANBHHAAENHR
Continuous Bernoulli  ¢8 VAE E E n m
Bernoulli B VAE a n

* Quantitative results y denotes degree of warping the MNIST data; y: —0.5 (binary), 0.0 (original), and > 0 (blurry)

~jofw

v (B shows higher ELBO, close Inception score to GT, and higher knn accuracy compared to B

1600

ELBO for ¢B VAE

inception scores of B VAE

knn accuracy of CB VAE latents

] 1.0 4
1470 10 —— — Kip)
1400 4 ————— <)
1200 1 o &1 0.8
o
(=]
1000 o >
(] -]
Q c 67 © 0.6
@ goo S 5
= 2 o
500 4 T 4l —— IS data T g4
g — 1S Ag"(pl2)
4004 — £p.8" (ph ¢ (p) = 18 Ag- (2}
£lp, 8 (e 15 \ “BlAg 101
200 4 (e ‘[.rf? qﬂlt;“J] . \ P) IS £BlAg {2} 0.2
Sp. 87 ()¢ (9) with u™* 1S CB{As iz}
v T T T T T T T T T T T T T T T
-0.4 -0.2 0.0 0.2 0.4 -0.4 -0.2 0.0 0.2 0.4 -0.4 -0.2 0.0 0.2 0.4
warping y warping y warping y

3
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Conclusion

= Proposed a novel probability distribution with [0,1] support
= Continuous Bernoulli resolves the normalization error of Bernoulli

= Continuous Bernoulli supports
* Re parameterization
* Likelihood evaluation
e sampling

= VAE with continuous Bernoulli outperforms baselines (Bernoulli and Gaussian)



Thank you for your attention!
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Introduction

= Super Resolution DL models need more transparency to decide whether
to trust the output

= Bayesian approaches can provide posterior distribution

= Author proposed faster Monte Carlo Batch normalization algorithm for SR
provide the uncertainty

= Proposed algorithm to reduce uncertainty and
Improve the result




N
Background | MCBN

= Batch normalization process

. ~ x.—
1. Normalize %; = ~=-£5
OB
2. Scale & Shift y;=yx; +
Learnable ={W, y, B8, ug, o5} MCBN 95% Cl it
. MCBN 50% ClI II II
— Use {ug, og} as stochastic parameter —wcen mean o i

—— CUBN 95% ClI

And pick random sampled {ug, o5}
from batch to get y

= Use E[y] for result
Cov[y] for uncertainty

= We can get not only value but also
Uncertainty from model

= But in Single Image Super Resolution problem making batches of test image is
too expensive



Algorithm and architecture]|

— Insert Batch normalization in every layer to existing SR model
— Use BN layer to estimate uncertainty

— Calculate mean to get output and  Vsr = Fw(IV Lr, 07 );

Std to get uncertainty Isr = mean(IN gg);
& = std(IN gRr);

= Concat input image as input and Instead of calculate {ug, o5}
distribution from test batch we use{ug, og} for faster calculation

W W
- | L1 L2 L3 Ln Last

////

//// . Y 1

Output T samples(I2%)

N
Input (I7g) B Batch normalize layer



Uncertainty reduction |

— Sample T output with model

— ]

— Model —_—

///'/ l///'/.
Input (I7%) Output T samples(I2)
Random sample two output to calculate uncertainty T times

and calculate gradient direction

for total updates on I,z do
Gradient directions for I :
for total iterations, T do
— Random Select ¢; and ¢5 ;
It g = Fy(ILRr, @) ;
I**sg = Fw(ILRr, ®7) ;

/ / L= zog (I sr —I"2gR)?;
N =N+ sign(Ve)

for diffc-rcnt levels of perturbation, 5 do

— Decide perturbate level Sto find In=Tin—B.3
'Calculate Uncertainty for I} 5, U(5) ;
minimum uncertainty IS Ty

break ;



Result | Example

— Increasing SR scale increase uncertainty
— Noise unseeable in LR can make high uncertainty in SR

(a) LR Image (b) SR Image (c) Uncertainty (a) LR Image (b) SR Image (c) Uncertainty Map

— PSNR decrease with increasing uncertainty

27404 155 2L
.
35t “ane e
. 145
P 274
o 2 .
T30f e e = 2
5 e N = £ 135
-
= ! ﬂ;—-ﬁ" & gl
w25 s elymte % 17 £
= s =¥ - =]
sl 273
.
. 1.
15 7.392 - - - - 115 - - - -
05 15 2 25 3 15 0 20 40 60 30 100 0 20 40 60 80 100

Uncertainty «<10% MC Samples MC Samples




Result | measurement

— Noise made in LR can be reduced by uncertainty reduction

(a) HR (b) LR (c) Adversarial LR  (d) SR (No Def.) (e) SR (After Def.) (f) UN (No Def.) (g) UN (After Def.)

Scale Factor (x2/ x3/ x4)

Type PSNR Uncertainty

Level of Attack No Defense After Defense No Defense After Defense
32.02/28.95/27.43 | 31.94/28.87/27.32 | 0.0011/0.0014/0.0015 | 0.0009/0.0011/0.0013
31.16/ 28.36/ 27.03 | 31.55/28.63/27.16 | 0.0014/0.0017/0.0017 | 0.0010/0.0013/0.0013
29.54/27.27/ 26.25 | 30.86/28.25/26.89 | 0.0019/0.0022/0.0021 | 0.0013/0.0014/ 0.0015
26.30/ 25.03/ 24.63 | 29.73/27.67/ 26.43 | 0.0034/0.0035/0.0030 | 0.0018/0.0018/0.0018
21.97/21.78/ 22.02 | 27.78/26.60/ 25.59 | 0.0058/0.0055/0.0047 | 0.0026/ 0.0024/ 0.0023
18.04/ 18.37/ 18.82 | 24.78/24.64/ 23.94 | 0.0086/ 0.0084/ 0.0072 | 0.0040/ 0.0037/0.0035

No Attack

Attack

oo B b = 1

—
(=)}
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Motivation

= Transparency by example

= Obijective: Build a holistic understanding of a classifier.

A Corgi/Bread Decision Surface — = Bayes-TrEx search for level set examples which elicit a
target prediction to help us gain insight into the classifier.

P(y = Corgi)

<~

- 0.5

\‘»

N

This slice corresponds to P(Corgi) = 0.5 level set.



Bayes-TrEx want to find an example x which is natural and plausible under the data, and for which the
classifier f(x) has confidence p

To solve problem 1, Bayes-TrEx relax the formulation
by widening the level set.

&-’ﬁ o Introduce a random vector:

QD ulx ~ V'(f (%), %)
Want to sample from: p(X|f(X) = p < pX)(f(xX) = p|x)

And sample from the new posterior:

p(xlu =u’) < p(x)p(u = u’|x)
u* =p

= Two problems in applying MCMC methods:

1. {x: f(x) = p}hassmall or even zero measure. _
) , , To solve problem 2, Bayes-TrEx use a generative
2. xtoo high dimensional. .
model to represent X and sample from its parameter
space, instead.



Applications, Evaluation, and Results

(a)Pp=Pc (b)PpCPc (c)PpNPc#Pp#Pc (A)PpNPc= @

Tt o= W N

=1

©

97.2% 96.0%

Classifier: “Contains 1 Cube”

Bayes-TrEx lets us assess class
boundaries by finding examples
where the classifier has 50/50

confidence between two classes.

Bayes-TrEx lets us find high
confidence failures, which are
more likely to be missed in
assessing models.

90.4% 90.5%
Classifier: “Contains 5 Cube”

Bayes-TrEx lets us assess model responses
to novel classes, like these Corgis.

S 5
PI Sphere = 0.1%

i Shhare = 97.1% Saliency Map

Further assessing with explanation method
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Problem definition

Long Tail Problem in CS

Headd|| sl &ot= H|O|E= RA[Z Tailof| sieot= HIO|E Q| 77t £5ot 3%
Class?t H|O|H &27 o &t 3Lt 50| XotE= =4

Entanglement

Ps(y) ‘

OB 2

1ot
>

Head Tail

Long tail Dataset

[

A



* Problem definition

1.0
- Avg. Prob.
ol o= 20| o AT ZEASE 2vQ| ZFASH

> 08 — = ps(y) / 2E o= 259 WHo| Ho|EQ| 7Tt Zastof et Zo| LAY
= w— = DY) A
0
(0]
Q06
o " / BAE HO|Es Saf2 & #Y3 xS 74X|1 UG
o
o
%0.4
3 / a4 OIO|E = Class?| indexZt 1000 77t E+E Safla © HIO|HQ| It Zast
=z L
<o0.2

0.0

0 20 40 60 80 100
Class index (Head to tail)

Cross-entropy

In P,(y) # P:(y) Problem,
~ Label distribution DisEntangle (LADE) Loss & 0| &23}04

1ok
o[>
Ot
rg
0X
olr
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0%
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e Method

1. Post-Compensated Softmax

« & HA0|M Soft max2| 80| s 2222| st HO|HeF HIAE Ol ZF Hl&S
=

efo(OY]
S efotc]

P(ylx; 8) =

Logit : fEC()[y] = fo(x)ly]l —logps(y) + logp,(¥)

v

PeQY) | re@iyl
ps(y) _ _
y Pt%% e fo(OIc] Y. e(fe(ly] -logps(c) +log pe () Y. 7adeslsd
Cc
ps(C

e (fo()y] =log ps(¥) +1og pe(»)) ofo COy]

P, (ylx; 6) =



e Method

2. LADER: Label distribution DisEntangling Regularizer

(1) = p;(’(cg) ps(¥)
|:Entangled!
L _ ps(x|y)
ps(ylx) = 1. (%)
L p.(y]x) = ps(x|y) R pu(x|y)
’ ps(x) Pu(x)

Replacing ps(y) with p,(y)

fo()[yl = log

pu(xl:V)
Pu(x)

¢ D\/ representation O|-&!



- Donsker varadhan representation

Di(P]|1Q) = STléIl? Ep[T] —logEq[e’]

d P
logm = argmax(E,[T] — log(Ey[e™])
T:Q—R

d P
log—— = argmax(E,[T] — log(EQ[eT]) — /l(log(EXNPu(x)[eT]))z)
d Q T:Q-R

Py (x|y)
Pu(x)

fo(x)ly] = log



e Method

2. LADER: Label distribution DisEntangling Regularizer

d P

log 75 = argmax(Ey[T] —log(Eqle"]) - A(108(Ex—p,cole™))")

T:Q0>R

P - pu(xly)

Q- py(x)

T - fo(x)[y]



e Method

2. LADER: Label distribution DisEntangling Regularizer

pu(x|y) 5
log =5 = Agmax Erp, iy [fo COI] = 108(Exep o [e/2PP]) = A(108(Ex-p, o [/* 1))
u 0 |
N
1
= ) Tye folwle]
C =1  / v
N
E( ) [pu(:V) fe(x)[C]] ~ l pu(yi) . efe(xi)[c]
x,y)~Ps(X,y) PS(Y) N L ps(yl)

1. Monte Carlo approximation

2. Importance sampling



e Method

2. LADER: Label distribution DisEntangling Regularizer

2
1 pu()’t) . pu(J’t)
Liaper, = =3 2ie1 Ly=c * fo(x)c] —log( oL, e fe@%)[c]) - A(log( L, e efB(xl)[C]>>

LyapEr = § ¢ Liaper,

CES



e Method

2. LADER: Label distribution DisEntangling Regularizer

ps(y) . ef@(x)[y]
2cbs(c) - efo(x)lc]

Liape—ce(fo(x),y) = —log(ps(¥lx; 8) = —log( )

-4

LyapEr = E ¢ * Lraper,

CES

Lyape(fo(x),y) = Lpape—ce(fo(x),y) + a - Lpappr(fo(x),y)



Result

Causal Norm

Accuracy: 0.5200

o.g1 [ECE:0.1082

Accuracy

70 Ideal
I Outputs

0.6

0.8

1.0

Dataset CIFAR-100 LT
Imbalance ratio 100 50 10
Focal LossT 384 443 3558
LDAMT 420 466 387
BBNT 426 470 591
Causal Norm' 441 503 596
Balanced Softmax  45.1 499 616
Softmax 41.0 455 390
PC Sofimax 453 495 612
LADE 454 505 617

CIFAR-100LT

10 Balanced Softmax 10 PC Softmax
Accuracy: 0.5213 Accuracy: 0.5276
0.g] ECE:0.0615 0g{ ECE:0.0567
[ Ideal [ Ideal

0.6

I Outputs

0.2 04 06 0.8 1.0

0.6

I Outputs

0.2 0.4 0.6

Confidence

Method | Many  Medium  Few | Al
90 epochs

Focal Loss® 64.3 37.1 82 | 437
OLTRS 51.0 40.8 208 | 419
Decouple-cRTE ) 61.8 46.2 274 | 496
Decouple-T-norm® 59.1 46.9 307 | 494
Decouple-LWS 60.2 47.2 303 | 499
Causal Norm' 62.7 48.8 ile | 518
Balanced Softmax 62.2 48.8 208 | 51.4
Softmax 65.1 357 6.6 | 43.1
PC Softmax 60.4 46.7 238 | 489
LADE 62.3 493 312 | 519
180 epochs

Causal Norm 65.2 47.7 208 | 520
Balanced Softmax 63.6 48.4 329 | 521
Softmax 68.1 419 144 | 482
PC Softmax 63.9 49.1 343 | 528
LADE 65.1 48.9 334 | 53.0

ImageNet-LT

0.8

1.0

LADE

[ Ideal
0.6

Accuracy:
0g. [ECE:0.0346

I Outputs

0.5301

1.0 0.0 0.2 0.4 0.6 0.8 1.0

Method Top-1 Accuracy
CB-Focal' 61.1
LDAMT 64.6
LDAM+DRW 68.0
Decouple-r—nnrmT 69.3
Decouple-LWS T 69.5
BBEN™ 69.6
Causal Norm 63.9
Balanced Softmax 69.8
Softmax 65.0
PC Softmax 69.3
LADE 70.0

INaturalist 2018



Explaining in Style:
Training a GAN to explain a classifier in StyleSpace
ICCV 2021
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Goal

. Explain the classification of a given image by changing certain attributes in the image

AT, (;z«“ ; Attribute #1 Attribute #2 Attribute #N
> s s ' (”OpGﬂ/Closed Mouth”) (”Eye Shape”) (”DI’Opped/ Pointed Ear S”)

-» Classifier }»»

Cats/ Dogs

StylEx ' Automatically detected classifier attributes, and their counterfactual explanations



StyleSpace

w C(x) C(G(x))
rec ¢-L__J0] < Lets > |‘| StyleSpace
\ 1 \

U— BE

: | Classifier
E |\ fe

m
-~
0O
o
Q
o
Affine Transformation
[

" G(E().C(x))



Attribute Finding

* To Find Cat—specific attributes (P.,t = Probability of being classified as a cat)

1. For N Dog images, find attribute (s;) that best maximizes P.4;
2.  Removes all images that changing s; had a large effect to P,y
3. Remove s; from StyleSpace set

4. Do step 1,2,3 until sy, or there is no image left



StylEx Architecture

- L - )
- w C(x) C(G(x))
rec ("-, ll } * """ LCIS "') | I
| t 1 I‘
Encoder Classifier ) ,,.""Generatorll"-_l
' E ll'n.' "." C li"l ',"I G '

v

- ] l

"""""""""" Lr:':ec et et et @ > Lady

X G(E(x),C(x))




StylEx Architecture (same with StyleGAN2)

L,eg = PPL Regularization from styleGAN2

Loss = Lagy + Lyeg + Lyee

- “’.

IEG) —E@lly  Lrecet, Lrec = Ltec+LLpips*Ltec
! i ) = Ix' —xl;
| ’ | | | ‘_ + (LPIPS distance of x and x’)
' - | +|[E(x") — E®)l1
| Encoder | |Generator|

B/




StylEx Architecture

‘Ccis — DHL [C(*‘T;)“C(T)]

: KL-divergence between the classifier output
on the generated image, and the original input image.

=> Make them to be classified as same class

LGSS — ﬁud-u -+ Erﬁg + E']""Eﬂ + ‘EL‘ES

¥ v b
C(x) C(G(x))
:ﬁ;c = E! <---Lels > 1‘}
| Encoder | | Classifier | /Generator)
S e i S
-------------------- g =
x G(E(X),C(x)



(a) Perceived Gender Classifier

Perceived
More Female

Experiment

. Probability of being classified as male

Perceived
More Male

Attribute #1 Attribute #2
("Stubble Beard™) ("Moustache™)

Attribute #3

Perceived
More Female

Perceived
More Male

Attribute #4
("Lipstick™) ("Eyebrow Thickness”)



(b) Perceived Age Classifier

Perceived
Younger

Experiment

. Probability of being classified as old

Perceived
Older

Attribute #1 Attribute #2
("Skin Pigmentation”) ("Eyebrow Thickness”)

Perceived
Younger

Perceived
Older

Attribute #3 Attribute #4
("Add/Remove Glasses”) ("Dark/White Hair")



Summary

 Using Classifier-based training of a StyleGAN2 to explain the
classification of a given image

* Introducing counterfactual explanations

* Provide meaningful experiment results of Male/Female
classifier or Old/Young classifier



Thank you



ICLR 2020 (Spotlight Presentation)

CoPhy: Counterfactual Learning of Physical
Dynamics

Presentation: Jeongho Park (2020-22039)



Reasoning is the Key Ability of Intelligence

* Humans can understand causal relationships between objects. But Al?

"The ice cream is melting down due to the hot weather"

Images: https://www.youtube.com/watch?v=USZXsanFOg
\

Jeongho Park (ECE, SNU) p



Reasoning in Physical(Mechanical) Systems

e To predict the future, understanding of physical concepts are necessary

Mass of balls?

Confounders ‘ Velocity of the cue?

Friction qf the floor?

Jeongho Park (ECE, SNU)



Counterfactual Reasoning

e Counterfactual Reasoning
— To predict the effect of the Modification(of init. state) based on the given observations without explicitly

observing the effect of the modification on data.
— The Confounder values have to be learned in order to solve Counterfactual Reasoning problems well.

Counterfactual Future Prediction

e e S

v A WY | :INPUT
— Qoutcome_ _ | |

masses
gravity
frictions

Confounders

modified initial state_' counterfactual outcome

Jeongho Park (ECE, SNU) 4



CoPhyNet — Proposed Network

* CoPhy Dataset —
— “Counterfactual Physics(CoPhy) Dataset” e
C D |
* CoPhyNet B s
* Input:
— Observed Sequence (X = {X,, ..., X;})
— Modified Initial State (X;) .
— Ex) Object displacement, removal, etc.
* Output: " § i?'
— Counterfactual Sequence Prediction ({X4, ..., X;}) 5 S
C = do(Xp = Xop)
i
:;-_-:,.;:_ ‘—_;:.:;_} —_— ?
@

* No Direct supervision provided for the Confounders
modified initial state counterfactual outcome

— The network implicitly learns the confounder values.

Jeongho Park(ECE, SNU)



Overall Structure of CoPhyNet

- ~

U = {u*},
latent
representation
of the
confounders
(masses,
gravity,
friction
coefficients)

de-rendering ' h

visual features

«+ updated with context

IIII hidden states

[:]

concatenation

A

recurrent state
update

Jeongho Park (ECE, SNU)




Overall Structure of CoPhyNet

|

Jeongho Park (ECE, SNU)



How does CoPhyNet work

1.

RGB images in the Observed Sequence are passed into
De-renderer Network (Mask-RCNN) to get 3D positions
of each objects.

Using the estimated 3D positions, Graphs are
constructed where each node represent the objects.

Then, GCN (Graph Convolutional Neural Network)
converts the Graphs into Latent vectors.

visual features

* updated with context

recurrent state
Y update

IIII hidden states [E] concatenation

Jeongho Park (ECE, SNU)



How does CoPhyNet work

4. Latent vectors for each objects are
sequentially passed into RNN cells .

- ~

U= ‘{uk }s
latent
representation
of the

confounders 5. The Last hidden state of RNNs
(mas.ses, represents the confounders.
gravity,
friction
coefficients)

. grasernnasees . visual features _ . recurrent state
@ visual features : @@ @ @: BRRB hidden states [:] concatenation

............. updated with context v update

Jeongho Park (ECE, SNU)



How does CoPhyNet work

- ~

U= ‘{uk}s
latent 6. Now, we concatenate our Confounders
representation and X, , the modified initial state.
of the
confounders Again using De-renderer, GCN and RNN,
(masses, . :
. we estimate how the objects have
gravity, . _
friction moved in the X; compared to the
\ coefficients) previous X.
VU
@ visual features '...'.. up (l;i‘::? Lﬁ?tﬁ;e% BARR hidden states [:] concatenation | rmui;e:i:t:tate

Jeongho Park(ECE, SNU)



How does CoPhyNet work

8. Repeat the Process, and we get

the Counterfactual Sequence / U = {uk}, A

predictions. latent
representation
of the
confounders
(masses,
gravity,
friction
coefficients)

A

. -y . visual features X . recurrent state
@ visual features : @@ @ @: BRRB hidden states [i] concatenation

* updated with context v update

Jeongho Park (ECE, SNU)



How to Train CoPhyNet

Predicted Ground-Truth
Counterfactual sequence Counterfactual sequence

-
5

. . o . visual features . . recurrent state
@ visual features : @@ O @: BRPE nidden states [!] concatenation |

updated with context update

Loss

+»* Note that no supervision was provided for confounder values

Jeongho Park (ECE, SNU)



Experiments

 Comparison between CoPhyNet and baselines (Mean Squared Error)

Counterfactual: (A,B).C - D

s 5]

image A image B image C

o !
= — @ '. B

configuration (b)

O: Ground-Truth position
X: predicted position

Jeongho Park (ECE, SNU)

| |
Train—+Test |Copy C CopyB IN  NPE || CoPhyNet |I(N sup.

all—all 4.370 0665 0.701 0.697 0.173 0.332
sphere—cylinder | 4245 0481 0715 0.710 0.220 0.435
cylinder—sphere | 4.571 0932 0.720 0.699 0.152 0.586

Table 4: CollisionCF: MSE on 3D pose av-
erage over time. IN sup. methods in the last col-
umn exploit the ground truth confounder quanti-

ties as input and thus is not directly comparable
(still showing inferior performance).




Thank you!




End-to-End Semi-Supervised
Object Detection
with Soft Teacher



Data matters.

= Obtaining labels can be a bottleneck




Semi-Supervised Learning

Labeled data

Unlabeled data




Contribution

* End-to-End Pseudo-Labeling Framework
v’ Teacher gets better and better as the training goes on

= Soft Teacher
v’ Evaluate reliability of background box class during training

* Box Jittering
v' Evaluate reliability of box regression during training

= State-of-the-art
v" Soft teacher + Swin-L achieved mAP 61.3 in COCO test-dev set



Semi-Supervised Learning

= Consistency based methods
v The consistency based methods leverage the unlabeled images to construct a regularization loss
which encourages different perturbations of a same image to produce similar predictions
» Pseudo-labeling based methods

v The pseudo-label approaches annotate unlabeled images with pseudo labels by an initially trained
classification model, and the detector is refined by these pseudo labeled images

Unlabeled image Prediction after NMS Pseudo Label

Strong augmentation Detector output | gss (Augmented)
Pseudolabel




End-to-End Pseudo-Labeling Framework

Labeled Data

Soft

Teacher
/

—

EMA ! Update
|

Box Regression Variance Filter

Prediction After NMS

—

}
Student \ :e v
g l
J e

u

t




Soft Teacher

False
Positive

Precision -~
——— Recall -
0.8r
-
R=
(W]
o 0.6 7
i
o
0.4 r -
[l 1 1 [ | 1 1 '} 1 L 1
0.00.1020304050.60.70.80.9
Foreground score
True Positive True Positive
Precision = _— or
Actual Results True Positive + False Positive True
Positive
True Paositive True Positive
Recall = =

or
Predicted Results True Positive + False Negative

True
Negative




Soft Teacher

F" Fnd% 4
/ 1_ 9
/



Soft Teacher

Soft teacher

Student i |
=3 4

S © :
Background




Box Jittering

1.0f .! 1.0f
0.8r 0.8
0.6r 0.6
=2 =2
Qe o
0.4+ ’ 0.4+
0.2 0.2r
00 B 1 1 1 1 1 1 00 C 1 | 1
0.5 0.6 0.7 0.8 0.9 1.0 0.00 0.05 0.10 0.15 0.20
Foreground score Box regression variance

Weak positive correlation Strong negative correlation



Box Jittering

Soft teacher .




Box Jittering

Soft teacher




State-of-the-art

COCO Det AP

50.0
45.0
40.0
35.0
30.0
25.0
20.0
15.0
10.0

5.0

0.0

" Supervised
© STAC
w Qurs

1%

5% 10%
Proportion of used labeled data (%)

100%
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Contribution

* End-to-End Pseudo-Labeling Framework
v’ Teacher gets better and better as the training goes on

= Soft Teacher
v’ Evaluate reliability of background box class during training

* Box Jittering
v' Evaluate reliability of box regression during training

= State-of-the-art
v" Soft teacher + Swin-L achieved mAP 61.3 in COCO test-dev set



THANK YQOU!



Fast and Accurate Model Scaling

Facebook Al Research

Jun Young Park

GBS SEOUL
\\4\,\.\@@" NATIONAL

,.\A)x‘&\ UNIVERSITY VIRTUAL JUNE 19-25




Background

« Model Scaling
— 7|&2| Baseline networkE 0| &30 Model2| 37|E 7|%= A
— O®EX 2 2 Depth(Layer 7il5=), Width(Filter 7H==), Resolution(Input image sli&f ) S =

S
— Memory, G4t2F 50| A2 E|X| 2t Accuracy o2 g2 = UL
77777 '
wider -+
#channels
........... wider ;
T | |
= } deeper 5
I e deeper
- layer_i é l__L|
é I 1 o E
| igher ---higher
T resolution HXW ~ resolution W _+_resolution

(a) baseline b) width scaling (c) depth scaling (d) resolut|on scaling (e) compound scaling

Seoul National University, Pattern Recognition



Related Work

« AutoML(Neural Architecture Search)
— Neural Network2| Architecture2t Hyperparameterg A2 = XM 3}
— £73 setting(Dataset, Flop regime)0f &= Single model2 &7| 20 $HA 7 =X|SHCL
— Low or medium compute regimesOf &gt

« EfficientNet(2019)
— width, depth, resolution € SA|0f| 1250 7|2 = Compound scaling 7| 8l= At
— Accuracy0f| 3

« RegNet: Designing Network Design Spaces(2020)
- E2 452 71T 222 27| %t Design spaceE Designdt= S A ¢

- =20 A X2zl RegNetE Model scaling0fl &-2%t

Seoul National University, Pattern Recognition



Key point |

e Runtime& Activations @F & Azt A 7} QUCH

120 120 7

— fit [r=0.81] — it [r=0.56] e
® EN-dwr[r=1.00] 100 {1 @  EN-dwr [r=1.00]
® EN-dw [r=1.00] ® EN-dw [r=1.00]

EN-dWr [r=0.99] EN-dWr [r=0.99]

® EN-w [r=0.99] ® EN-w[r=0.99]

100

[o2]
(=)

o1}
(=)

epoch time (m)
[=)]
(=]

epoch time (m)
o
o

40 40
20 20
0 0
0 5 10 15 20 25 30 35 0 100 200 300 400 500
flops (B) parameters (M)
120 120
— fit [r=0.99] — fit [r=0.95]
’gloo ® EN-dwr [r=1.00] = 100 | @ EfficientNet [r=0.99]
~ g0 ® EN-dw [r=0.99] ® ~ g0 ® RegNetZ [r=0.99]
& EN-dWr [r=1.00] & RegNetY [r=0.99]
S 60 EN-w [r=0.99] o= 60 o
S s
g 40 g 40
(o] (o]
Y 20 Y 30
0 0
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140

activations (M) activations (M)

Flops, parameters= StLIS| 2RO 012 scaling 12 AFERUS M, runtime2 0|5}
7| &L}

— Activations= Scaling &8, Model architectureE H A3l = Runtime= 0| = 5}H7| &Lt

Seoul National University, Pattern Recognition



Key point I

« Width scalingO| Activations 37+ x| A 3|oHCt

dim scaling flops (f) params (p) acts (a)
none | d w r| dw®r? dw? dwr=
d sd w r | sdw?r? sdw? sdwr?
w d /sw r| sdw?r? sdw? |\/sdwr?
r d w  A/sr | sdw?r? 1dw? sdwr?
23 20
- - d
—-— W =
21 r Ess
é 20 —— dV\.Ir _GE_J
E 1 —— orig -Ié 10
18 8
v s
17
0.5 1 2 4 0.5 1 2 4
flops (B) flops (B)

— 523t FlopsOll CHSH Width scalingO| Activations, Runtime S7+& XA E SO}
— Accuracy EHO0|A Compound Scaling(dwr)0| &L},

Seoul National University, Pattern Recognition



Width ™9 2 depth, resolution Z0| =7}A|7|= Fast Scaling =
P 9

R ket

Key point lli

dims 0" ed Ew e f P a
1 —« 1 — to 2«

o B B
dr 0 0.5 0 05 | s Y20 100
dwr | 13 1/3 1/3 1/3 | s V67 5083
dWr |08 01 08 01 | s 9920 0.60
w 1 0 1 0 S g1-00 g0-50

— 75X o = 1€ M, widthTt scalingsty 7}& &2 activations & 7FLICH
— 7t5X| o = 0¥ M, depth@} resolution= scalingdtd 718 2 activations & 7F2ILCF
— 7t5X| o 7} 10| 7HF2 5 Fast scalingO| 2} St0, 0.8= default(dWr) &2 &=L}

Seoul National University, Pattern Recognition



Results

« dWr scaling yields good accuracy and speed

23
22
21

20

error

19
18

17

23
22
21

20

error

19
18
17

Seoul National University, Pattern Recognition

t

tt

a=1/3 (dwr)
a=2/3

a=4/5 (dWr)
a=1.0 (w)

0.5 1 2
flops (B)

Fast Scaling:

a=1/3 (dwr)
a=2/3

a=4/5 (dWr)
a=1.0 (w)

0.5 1 2
flops (B)

4

20

—8— a=1/3 (dwr)
’é‘ a=2/3
= 15 | —e— a=4/5 (dwr)
= == a=1.0 (w)
z 10
(@]
@]
o
v 5

0.5 1 2 4
flops (B)
EfficientNet
20

== a=1/3 (dwr)
€ a=2/3
—= 15 || —e= a=4/5 (dWr)
e —o— a=1.0 (w)
E 10
(@)
o
(o3
v 5

0.5 1 2 4
flops (B)

Fast Scaling: RegNetZ



« dWr scaling yields good accuracy and speec

Scaling by dwWr =

Seoul National University, Pattern Recognition

Results

flops params acts time schedule

(B) M) M) (min) I x 2% 4x
ResNet50 [9] 4.1 256 11.3 35 | 22.0+012 21.0+008  20.5+007
ResNeXt50 [32] 4.2 250 146 58 | 20.8+006 199+016 19.5+005
EfficientNet-B4 [31] 4.4 193 495 19.2 | 18.0+005 1744007 17.3+006
RegNetY-4GF 4.1 224 145 777 | 18.8+00s 18.0+007 17.7+000
RegNetZ-4GF 4.0 28.1 243 11.7 | 17.5+000 17.0+012 16.9+004
EfficientNet-BO—4GF 4.1 36.1 292 11.1 | 18440 17.7+007 17.4+011
RegNetY-500MF—4GF 4.1 36.2 133 7.2 | 19.1+007 18.6+000 18.3+005
RegNetZ-500MF—4GF 4.0 41.1 194 105 | 17.7+007  17.24007  17.0+005
EfficientNet-BO—16GF | 16.2 122.8 61.8 25.8 | 17.4+008 16.8+000 -
RegNetY-500MF—16GF | 16.2  112.7 294 17.8 | 17.8+01s 17.2400s 16.9+0.10
RegNetY-4GF— 16GF 155 723 307 164 | 17.3+000 16.8+011 16.6+003
RegNetZ-500MF—16GF | 16.2 134.8 426 29.4 | 16.6+00s 16.1+006 16.1+007
RegNetZ-4GF— 16GF 159 953 513 332 | 16.5+005 16.0+010 16.0+005



« dWr scaling yields good accuracy and speec

Scaling by dWr =

Seoul National University, Pattern Recognition

Results

flops params acts time schedule

(B) M) M) (min) I x 2% 4x
ResNet50 [9] 4.1 256 11.3 35 | 22.0+012 21.0+008  20.5+007
ResNeXt50 [32] 4.2 250 146 58 | 20.8+006 199+016 19.5+005
EfficientNet-B4 [31] 4.4 193  49.5 19.2 | 18.0+005 17.44007 17.3+006
RegNetY-4GF 4.1 224 145 777 | 18.8+00s 18.0+007 17.7+000
RegNetZ-4GF 4.0 28.1 243 11.7 | 17.5+000 17.0+012 16.9+004
EfficientNet-BO—4GF 4.1 36.1 292 11.1 | 18440 17.7+007 17.4+011
RegNetY-500MF—4GF 4.1 36.2 133 7.2 | 19.1+007 18.6+000 18.3+005
RegNetZ-500MF—4GF 4.0 41.1 194 105 | 177007 1724007 17.0+005
EfficientNet-BO—16GF | 16.2 122.8 61.8 25.8 | 17.4+008 16.8+000 -
RegNetY-500MF—16GF | 16.2  112.7 294 17.8 | 17.8+01s 17.2400s 16.9+0.10
RegNetY-4GF— 16GF 15,5 723  30.7 164 | 17.3+000 16.8+011 16.6+003
RegNetZ-500MF—16GF | 16.2 134.8 426 29.4 | 16.6+00s 16.1+006 16.1+007
RegNetZ-4GF— 16GF 159 953 513 332 | 16.5+005 16.0+010 16.0+005



Conclusion

» Runtime0f 7}y 2 &2 0[X|= 222 Activation 50| C}.
— Width scaling2 Activations 37}& %A 3}5HCt

« Width& &2 Z Scalingdt= Fast scaling M| ¢t
— Accuracy & Runtime 25 £2 84&5& 2t

Seoul National University, Pattern Recognition



GS-WGAN: A Gradient-Sanitized Approach for
Learning Ditferentially Private Generators

Dingfan Chen
NeurlPS 2020

Presentator: Chanwoong Park
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DP?

Differential Privacy: Quantify the level of privacy



DP?

Definition
A randomized mechanism M with range R is (€, 0)-DP if

PriM(S) € O] < e - PriM(S) € O] + 6

holds for any subset of outputs O € R and for any adjacent
datasets S and S’, where S and S’ differ from each other with only

one training example.



Just Example

29 A F7|DH) KT
Ak410] 30| 9lojL! D4 B 7| 2o
=




Just Example

S=(HM7|T S} N(S) = 100

S, =5— (87 KR} ks
S, =S —{h) /‘
3 50% 2
Xl = —— X = —
1% .
If one sample makes a big difference,

2 privacy is not guaranteed.

P(XHE|S,) = —

(TH2152) 29 Conversely, for privacy to be guaranteed,
probabilities should be bound.



Ditferential Privacy

Definition
A randomized mechanism M with range R is (€, 0)-DP if

PriM(S) € O] < e - PriM(S) € O] + 6

holds for any subset of outputs O € R and for any adjacent
datasets S and S’, where S and S’ differ from each other with only

one training example.



Mathmatical Background

: , logl/o
> (), €)-RDP is (¢ + 12 §)-DP.

> The Gaussian Mechanism M, (x) = f(x) + N(0,02/) is (),
A2y RDP.

202
> If M, is (A, €;)-RDP, the composition Mj o...o M is also
(A, Z;¢;)-RDP.

> If M is (¢, 0)-DP, F o M is also (¢, §)-DP for any function F.




GS-WGAN

« We want the DP-Generator.

« Just add Gaussian noise to the gradient of the generator in WGAN.

« The discriminator is trained normally.

Op
ngD = Ve, D(x

% g2 JooG(z)

lT 96:=Vo,, D(G(=))

= G(z) D(x)
G | | D | ¢
YG(z)D(G(Z))J VD(z)
T
z ~ N(0,I) z ~D serclizittzilve

—» non-private —» sensitive —»(g,J)-private

(a) Vanilla GAN
(Without privacy barrier)

ugc nga

x = G(z) D(x)
> —_— r
I MO’ C I up ;
g 9 VD(zx)
T gradient T
san1t1zat1on
~ ' Ny sensitive

z~N(0,1) x ~D data

accessible by
adversary

(b) GS-WGAN
(Ours, with privacy barrier)

not accessible by
adversary



Experiment

MNIST

Method

Fashion-MNIST
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Figure 3: Generated samples with (&, )



Simple and Principled Uncertainty Estimation
with
Deterministic Deep Learning via Distance
Awareness

Jeremiah Liu, Zi Lin, Shreyas Padhy, Dustin Tran, Tania Bedrax Weiss,
Balaji Lakshminarayanan

NeurlPS 2020

S3F X} B2

R _
(! Intelligent Data Systems Laboratory.



OOD(Out-Of Distribution) Detection

. St&elR| 2 HO[E 2K
. B2} domaindl S5 L2 domain TE

Training
L
e °, Deployment
[ [ ] o ®
5]
g ee ® o ° >
e © o
o

In-distribution samples

® Out-of-distribution samples

O|0|X| &X: https://medium.com/geekculture/out-of-

distribution-detection-in-medical-ai-b638b385c2a3

Inference




OOD Detection

« Optimal Training for OOD
- 20| CHSF uncertainty AlAt
* In-domain data:= SSSHHE X
« Qut-of-distribution data: uniform distribution output
p(y|x) = p(y[x,x € Zp) * p* (X € Z1w) + Puniforn(Y[X,X & Z1wp) * p* (X & Z1nD)

* Proposed method: SNGP X
. Q13 k& [|O|E| AFO| AHE| AAt Its o) -

- A2l 7|8t uncertainty ‘ .

(e) SNGP (Ours)




Input distance awareness

- 215 H|O[E{Qt KX == HIO[E AO] AHE|E &5 uncertaintyE X[zt
- Helo el Etx F7t
u(x) = v(d(x, ,%HD))

- DNNZ2| distance-awareness property

« Typical discriminative classifier: not input distance aware
« decision boundary2to| AHz2| 7|F

« Gaussian Process (RBF kernel): input distance aware

(a) Gaussian Process (b) Deep Ensemble




Spectral-normalized Neural Gaussian Process (SNGP)

e Distance-awareness for residual-based DNN
« Residual block: 20| AIEE|= X

* ResNet
« Transformer «— H(x) = F(x) +x
H(x) F(x) + X
relu 2l ide)r:tity
* How?

 Distance aware output layer

: : . X
 Distance preserving hidden layers “Plain” layers Residual block

0| 0| X| &X: https://itrepo.tistory.com/36

Pattern Recognition



Distance aware output layer

 Original concept

- Typical dense output layer& GP layerE WA
* Prior distribution
gnx1 ~ MVN(Oyx1, Kyxn), where Ki j = exp(—||h: —hj|[3/2)

e Posterior distribution

* p(Q): prior
« p(D|g): data likelihood for classification (cross-entropy loss)

p(g|Z) =< p(2|g)p(g)

Pt

- O

« Low-rank approximation for kernel matrix

Pattern Recognition



Distance preserving Hidden layers

 Spectral Normalization

« Residual architecture®| £
« h=hp 10...haohy; where hj(x) =x+g/(x), 0 <a <1
« Zt hidden layer2| residual output g0l 25 ||g/(x) —g/(x')||g < a||x—X||x OIH,
- h= Ot2ff A2 THESH= distance preserving®t output

Ly ||x—x'||x <||h(x) = h(X)|[n < La*||x—xX'||x, where L, = (1—a)-tand Ly = (1 +a)t!

e O _7F_Io'|
« Residual block: &i(x) = o(W;x+by)
« 0<a<10|7| flst =A:  ||[Wi]2 <1

e => BF&A] & stepOFCt weight matrixOf| spectral normalization &

Pattern Recognition



Reference

* Liu, Jeremiah Zhe, et al. "Simple and principled uncertainty estimation with
deterministic deep learning via distance awareness." arxXiv preprint
arXiv:2006.10108 (2020).
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Differentiable Convex Optimization Layers

Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond, J. Zico Kolter
33rd Conference on Neural Information Processing Systems

Presenter : Taeeon Park

Seoul National University
Machine INtelligence and Data science Laboratory

et 2021.11.20
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Preliminary

* Convex optimization problem (Lecture slide 5)
— A certain class of constrained optimization

minimize  fo(z)
subject to  f;(z) <0, i=1,...,m
Az = b,

with variable z € R".
(fo, ..., fm are convex in )

— Many problems can be formulated as convex optimizations

— Hard to solve this problem in general

mm M.IN.D Lab 2110
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Preliminary

* Convex optimization problem (Lecture slide 5)
— A certain class of constrained optimization

minimize  fy(z;0)
subject to  f;(z;6) <0, i=1,...,m
A(6)z = b(6),
with variable x € R" and parameters § € RP.
(fo, ---, fm are convex in z for each 6)

— Many problems can be formulated as convex optimizations

— Hard to solve this problem in general
=> This paper provides a differentiable neural network layer that solves
the convex optimization problem

mm M.IN.D Lab 210

Dy, 4



Preliminary

 CVXPY

— Python-embedded, high level language for convex optimization
— Transforms user-friendly form into solver-friendly form

— No connection with neural networks before this paper

— e.g,

minimize Y. , (y; — z)”

T

with variable x € R and parameters y € R".

The solution map is clearly: z* = % E?:l Y;

And the gradient is as follows: V,z* = 21

mm M.IN.D Lab 4110
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Preliminary

 CVXPY

- e.g',
minimize Y. , (y; — :13)2
" i=1 \Yi
import cvxpy with variable z € R and parameters y € R".
import numpy as np} |. Import packages p Yy
n=4
e 2. Define variables & parameters
y = cvxpy.Parameter(n)

3. Define objective and constraints

objective = cvxpy.sum_squares(y - x)
constraints = []

problem = cvxpy.Problem(cvxpy.Minimize(objective), constraints) } 4. Synthesize Prob|em

y.value = np.random.randn(n) } 5.Set parameter values

problem.solve() }H 6. Solve problem in one line

print('y:', y.value)
print("CVXPY solution:", "%.3f" % x.value)
print("Analytical solution:", "%.3f" % np.mean(y.value))

= Check the result

y: [1.764 0.4 0.979 2.241]
CVXPY solution: 1.346
Analytical solution: 1.346

5/10



Differentiating through CVXPY

* From CVXPY to CVXPYLAYERS (proposed)

— e.g,

import cvxpy
import numpy as np

n =4 2
7. Set grad|ent W.r.t X { x.gradient = np.array([1.])
X = cvxpy.Variable() . ] ] ] { problem.backward()
y = cvxpy.Parameter(n) 8. Differentiate in one line print("CVXPY gradient:", y.gradient)

print("Analytical gradient:", np.ones(y.size) / n)

objective = cvxpy.sum_squares(y - x) CVXPY gradient: [0.25 0.25 0.25 0.25]

constraints = [] Analytical gradient: [0.25 0.25 @.25 0.25]

problem = cvxpy.Problem(cvxpy.Minimize(objective), constraints)

y.value

np.random. randn(n)

problem.solve(requires_grad=True|)

print('y:', y.value)
print("CVXPY solution:", "%.3f" % x.value)
print("Analytical solution:", "%.3f" % np.mean(y.value))

y: [1.764 0.4 0.979 2.241]
CVXPY solution: 1.346
Analytical solution: 1.346 6/ 10



Differentiating through CVXPY

* From CVXPY to CVXPYLAYERS (proposed)
— In the previous slide, we saw the differentiation with CVXPY

— Convex optimization problems can also be embedded into
neural network layers

— Can use differentiable layers in PyTorch and TensorFlow 2.0

from cvxpylayers.torch import CvxpyLayer
from cvxpylayers.tensorflow import CvxpylLayer

$/
P

R
o 7
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How does it work ?

* Principles
— Every convex program can be canonicalized as a cone program

— Use derivative of a conic solver
* Implicit function theorem
* Optimality conditions (KKT conditions)

— Apply chain-rule for canonicalization

* Pipeline

— Backprop
cvxpy optimization layer

Inputs |[ > - > P [ > ove | > Loss

Zs.t. z € Cy(2)

Cone Program

argmin c’x Solution

Variables Objective
Constraints

> Original Problem C:>

Solution

L DParameters Canonicalized
; Problem Cone Program

x
Constants st. Ax <, b

8/10




How can we use !

* Usage

— All the users need is high-level description of problem

—— — Backprop
cvxpy optimization layer

gt [ o ([ 2= argmn ey |+ ED_ Lo
¥4

s.t. z € Cg(2;)

Applications
— Finance (e.g., portfolio optimization)
— Engineering design (e.g., device sizing in electronic circuits)
— Machine learning, statistics (e.g., data fitting)
— Signal & image processing

— Control

mm M.IN.D Lab 0/ 10
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Summary

* Contributions
— Existing layers are difficult to use

=>Possible to differentiate convex programs with high-level language
— Implement methodology in CVXPY 1.1

— Implement differentiable layers for convex programs in
PyTorch and TensorFlow 2.0

— Improve efficiency (batched inputs, parallelization)

* Expected to be utilized in many research areas

mm M.IN.D Lab 10/ 10
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Your Classifier is Secretly an Energy Based
Model and You Should Treat it Like One

Jimin Seo



Introducing the Research

* Paper published on ICLR 2020

* Contributions are:
1. Presented new framework of joint modeling of label and data
2. Outperforms previous SoTA hybrid models at both generative and discriminative modeling
3. Improvements on various tasks compared to hand-crafted methods



Main Idea

* Re-interpret the logit as probabilistic energy:

Input

Eo(x) = —LogSumExp, (fy (Oly]) = —log » exp(fo(0[y])
y

Classifier Model

Logit
fo (x)

—  Softmax(-)

—  Identity(-)

— LogSumExp(-)

o = YD)
o Yy exp(fa () [y

X0/ 1CO167)
p@ ;y - Z(Q)
_ Zyexp(faCo)lyD



Optimization

* We cannot compute/estimate Z(6)
 Estimation of normalized density is intractable and MLE of 6 is hard

Fo(x) = —log ) exp(fy()[y])
y

d d
Y o logpe(x) = E, (1 [69 Eg (X')] g Eo (x)

}

Stochastic Gradient Langevin Dynamics (SGLD) to draw sample from pg (x)



Experiments

* Hybrid Modeling

e Calibration

 Out-of-Distribution Detection

* Robustness to adversarial examples



Experiments

* Hybrid Modeling

Discriminative  Generative

Class Model Accuracy% T IST  FIDJ
Residual Flow 70.3 3.6 46.4

Glow 67.6 3.92 489

Hybrid IGEBM 49.1 8.3 37.9
JEM p(x|y) factored 30.1 6.36 61.8

JEM (Ours) 92.9 8.76 384

Disc. Wide-Resnet 05.8 N/A  N/A
Gen SNGAN N/A 8.59 235
) NCSN N/A 3.91 25.32

Table 1: CIFARI10 Hybrid modeling Results. Residual

Flow (Chen et al..|2019), Glow (

Kingma & Dhariwal, 2018),

IGEBM (

Du & Mordatchl 2019

), SNGAN (

2018)), NCSN (Song & Ermon

!

2019

Miyato et al.|

)

IS: Inception Score, FID

: Frechet Inception Distance



Conclusion and Limitation

 Conclusion:

* Proposed model of reinterpreted classifier architecture, combining strengths of discriminative and
generative models

* Limitation:
* Normalized likelihood cannot be computed
* Gradient estimators are unstable when hyperparameter is not tuned
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Paper Introduction

= Title

- A Simple Framework for Contrastive Learning of Visual Representations [1]

=  Author
- T. Chen, S. Kornblith, M. Norouzi and G. Hinton

- Google Brain

=  Publication
- ICML 2020

[1] T. Chen, S. Kornblith, M. Norouzi and G. Hinton, “A Simple Framework for Contrastive Learning of Visual Representations”, in ICML, 2020



SImCLR

= Main ldea

- contrastive learning (H| =2} Pair (positive pair)= 72 2|, CHE Pair (negative pair) = B o5

-T

7t
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SImCLR

=  Architecture

- for each training image, apply some data augmentation to create two different image

- minibatch of size N, we have 2N images. For each image, there are 1 positive and 2N-2 negatives

Negative pairs

Positive pairs

| B mE | momm| T 1|

T CI I Wrepresentation (LI L (W
.- v." i = : .4.;
a M~

augmentation




3 SImMCLR

o o 60
* Training 3 II Il
850 Projection
o . Linear
40 | === Non-linear
i N None
SimCLR Framework N " gl 1
\ Q'lh 0&%

‘ C U
Xj

hi L Pro;ect:on output dimensionality
< e ——Encoder [T T} pense Relu Dense »[ ] —

Data Maximize
Augmentation similarity =
| ¥ 4 ::.'.‘n;'}:
Original -‘ ——Encoder —_ I [ pense Relu Dense-"H:E]:l — s
Image hj . - R ¥4
. / z; t
T 3 | b, A
Transformed Base Encoder Projection Head ‘ 8’
Images f(.) a(.) e
. ."'.
Downstream P 2 -
tasks m L
- w?‘

(a) h (b) z = g(h)



SImCLR

Label fractionl

* Result
Method Architecture  Param (M) Top1 Top5
Methods using ResNet-50:
Local Agg. ResNet-50 24 60.2 -
MoCo ResNet-50 24 60.6 -
PIRL ResNet-50 24 63.6 -
CPC v2 ResNet-50 24 63.8  85.3
SimCLR (ours) ResNet-50 24 69.3 89.0
Methods using other architectures:
Rotation RevNet-50 (4 x) 86 55.4 -
BigBiGAN RevNet-50 (4x) 86 61.3 819
AMDIM Custom-ResNet 626 68.1 -
CMC ResNet-50 (2x) 188 68.4  88.2
MoCo ResNet-50 (4x) 375 68.6 -
CPC v2 ResNet-161 (%) 305 71.5  90.1
SimCLR (ours) ResNet-50 (2x) 94 742 92.0
SimCLR (ours) ResNet-50 (4x) 375 76.5 93.2

Method Architecture 1% 10%
Top 5

Supervised baseline ResNet-50 484 804
Methods using other label-propagation:

Pseudo-label ResNet-50 51.6 82.4
VAT+Entropy Min. ResNet-50 470 834
UDA (w. RandAug) ResNet-50 - 88.5
FixMatch (w. RandAug) ResNet-50 - 89.1
S4L (Rot+VAT+En. M.) ResNet-50 (4x) - 91.2
Methods using representation learning only:

InstDisc ResNet-50 392 774
BigBiGAN RevNet-50 (4x) 552 788
PIRL ResNet-50 572 83.8
CPC v2 ResNet-161(x) 779 91.2
SimCLR (ours) ResNet-50 13.5 87.8
SimCLR (ours) ResNet-50 (2x) 83.0 91.2
SimCLR (ours) ResNet-50 (4x) 85.8  92.6




A SImCLR

= Result

- fine-tuning

Food CIFARIO CIFARI00 Birdsnap SUN397 Cars Aircraft VOC2007 DTD Pets Caltech-101 Flowers

Linear evaluation:

SimCLR (ours) 76.9 95.3 80.2 48.4 659 600 61.2 84.2 78.9 89.2 93.9 95.0
Supervised 75.2 95.7 81.2 56.4 649 68.8 63.8 83.8 78.7 92.3 94.1 04.2
Fine-tuned:

SimCLR (ours) 89.4 98.6 89.0 78.2 68.1 92.1 87.0 86.6 77.8 92.1 94.1 97.6
Supervised 88.7 08.3 88.7 77.8 67.0 914 88.0 86.5 78.8 93.2 94.2 98.0

Random init 88.3 96.0 81.9 77.0 53.7 913 848 69.4 64.1 82.7 72.5 92.5




NORMFORMER: IMPROVED TRANSFORMER
PRETRAINING WITH EXTRA NORMALIZATION
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1 ° IntrOd UCtlon NORMFORMER: IMPROVED TRANSFORMER PRETRAINING WITH EXTRA NORMALIZATION

= original transformer architecture (Vaswani et al., 2017)" applies Layer Normalization after each sublayer’s r

esidual
connection (“Post-LN") PostLN(z) = LayerNorm(z + Sublayer(z))
xr — Elz]
LayerNorm(z) = -y +
d () VVar[z] + e T+5

= Post-LN transformers tend to have larger magnitude gradients in later layers compared to earlier lay

ers PreLN(z) = = + Sublayer(LayerNorm(z)).
= moving the LayerNorm operation to the beginning of each sublayer (“Pre-LN") (Xiong et al., 2020)?

= imporves stability over Post-LN

= but gradients at earlier layers tend to be larger than gradients at later layers

= propose NormFormer L.

1) Ashish Vaswgm Noa Sha r, Niki Parraar Jakob Uszkoreit,.Llion Jones, Aidan N ez tukaszézaer and Mlia Polosukhin;.Atteption is all you need. In Advances in ne ra/l/nformaz‘/on processm

g emscl ﬁVIa he gradient magnitude mismat c 1 by“adding 3 'normalization operations to each layer

~\ Y o ~SAANA



1. Introduction

NORMFORMER: IMPROVED TRANSFORMER PRETRAINING WITH EXTRA NORMALIZATION

= propose NormFormer

alleviates the gradient magnitude mismatch by adding 3 normalization operations to each layer

//:> Residual Connection*

/| Residual Connection

[ — ] [ Fe2 ) Headscale (:77)
(__FFN LayerNorm | A
(_Gelu ] Gl ) MatMul
[ FC1 ] [ FC1 ) A
[ LayerNorm | ([ LayerNorm |
/—> [ Residual Connection | /| _Residual Connection | MatMuI
[ Post Attn LayerNorm ]
[ Multi-Head J ( HeadScale ] l Llnear || Llnear l Linear
Attention MHA Scaled Attention Head
[ tayerNorm ] U | LayerNorm |
Pre-LN Layer NormFormer



2' ApproaCh NORMFORMER: IMPROVED TRANSFORMER PRETRAINING WITH EXTRA NORMALIZATION

2.1 NormFormer
1) Scaling Attention Heads
= head-wise scaling inside the attention module

= standard multi-head attention operation

MultiHeadAttention(Q, K, V) = Concat(hy, ..., h,)W?
h; = Attention(QWZ, KWK, VW)

Attention(Q, K, V) = softmax (QKT) V.
ention((Q, K, V) = softma, :
Vdy,

= propose scaling the output of each attention head via learned scalar coefficients y;

HeadScaleMHA(Q, K, V) = Concat(y1hy, ..., y,h,)W©



2' ApproaCh NORMFORMER: IMPROVED TRANSFORMER PRETRAINING WITH EXTRA NORMALIZATION

2) Additional Layer Normalization and Putting it All Together
= add LayerNorm operation after the attention module
= add LayerNorm operation after the first fully connected layer

= in the Pre-LN transformer each layer modifies an input as follows
;17" = FFN(MHA(z;))

where MHA (z) = ¢ + MultiHead Attention(LN(z), LN(z), LN(x))
FFN(CL‘) =x+ O'(LN(m)Wl + bl)Wz + bo
LN(z) = LayerNorm(zx)
= NormFormer instead modifies each input as
207" °7"¢" = NormFFN(NormScaledMHA (z;))

where NormScaledMHA (z) = z + LN(HeadScaleMHA (LN(z), LN(x),LN(z)))
NormFFN(z) = x + LN(o(LN(z)W; + b1))Ws + by

= introduce a small number of additional learnable parameters L.



3' Resu Its NORMFORMER: IMPROVED TRANSFORMER PRETRAINING WITH EXTRA NORMALIZATION

= report pretraining perplexities for CLMs and MLMs as a function of training wall-time

= NormFormer trains significantly faster and achieves better validation perplexities for a given training com

pute
budget Causal LM (1.3B) Masked LM (125M)
-~ GPT-3 Replicated —— Baseline
GPT-3 High LR NormFormer
16 1 —— NormFormer 4.4 —— NF + A_resid
>‘ NormFormer + A_resid >‘
= =
X % a2
O 2
o o
= & 4o
Q. [« B
£ 4] c
o ° 3.8 1
Fe) -
1] (]
-E 13 -E 3.6 1
L] C
> >
3.4 -
12 4
160 26‘0 3(‘]0 460 2b 4‘0 ﬁh Bb ldD 12'0 l&O lé-D
A100 Days A100 Days RN



3. Results

NORMFORMER: IMPROVED TRANSFORMER PRETRAINING WITH EXTRA NORMALIZATION

= similar trend on downstream tasks

1) zero shot accuracy for causal LMs using the tasks and prompt from Brown et al. (2020)

= NormFormer outperforms GPT-3 at all sizes

€] LR  Relu’ Apesia Steps | PPL | HS PI WG SC OB | Avg
Random Baseline - - - - | - 250 500 500 500 250|400
GPT3-125M (paper) 1244 6e-4 - - 572K - 337 646 520 633 356|498
GPT3-125M (replicated) 1244  6e-4 - - 572K | 21.11 | 33.7 66.5 522 66.1 354 | 508
GPT3-125M (HighLR) 1244 3e-3 - - 572K | 21.09 | 353 675 505 663 350|509
NormFormer-125M 124.5 3e-3 - - 540K | 2034 | 349 67.1 523 663 38.0 | 51.7
NormFormer-125M 124.5 3e-3 - v’ 539K | 20.11 | 349 659 534 675 400 | 523
GPT3-355M (paper) 354.7 3e-4 - - 572K - 436 702 521 685 432|555
GPT3-355M (replicated)  354.7 3e-4 - - S72K | 1541 | 46.1 70.8 546 71.1 412 | 56.8
GPT3-355M (HighLR)  354.7 le-3 - - 572K | 14.85 | 484 717 538 733 434 | 581
NormFormer-355M 355.0 le-3 - - 552K | 1454 | 497 718 560 738 43.6 | 59.0
NormFormer-355M 355.0 le-3 - v’ 550K | 1452 | 49.7 720 56.7 732 43.8 | 59.1
GPT3-1.3B (paper) 13135 2e4 - 286K - 547 751 580 734 46.8 | 61.6
GPT3-1.3B (replicated)  1313.5  2e-4 - - 286K | 12.56 | 585 746 581 768 494 | 635
GPT3-1.3B (HighLR)  1313.5 6e-4 - - 286K | 12.21 | 575 743 593 763 50.8 | 63.6
NormFormer-1.3B 13140 6e-4 - - 275K | 11.94 | 60.5 745 60.1 77.5 50.8 | 64.7
GPT3-2.7B (paper) 2648.7 1.6e-4 - - 286K - 628 756 623 772 53.0 | 66.2
GPT3-2.7B (replicated) 2648.7 1.6e-4 - - 286K | 1092 | 659 766 614 782 496 | 663
NormFormer-2.7B 2649.5 6e-4 v’ - 277K | 10.55 | 68.1 78.1 644 79.4 534 | 68.7
GPT3-2.7B-Relu 26487 1.6e-4 v - 230K | 1099 | 659 76.1 632 793 494 | 66.8
GPT3-2.7B-Relu 2648.7 6e-4 v’ - 28K diverged
NormFormer-2.7B 2649.5 6e-4 v - 222K | 10.73 | 674 712 644 789 52.6 | 68.1

2) for MLM models, fine-tuned accuracy on GLUE

= NormFormer MLM models outperform their Pre-LN counterparts on every task

Model Size  Aresig | PPL | COLA MNLI MRPC QNLI QQP RTE SST-2 | Avg
Baseline 125.42 - 342 | 743 859 84.6 91.6 907 664 929 | 83.77
NormFormer 125.50 - 331 | 82.6 86.3 86.0 91.9 913 679 938 | 85.69
NormFormer 125.51 N 3.29 | 809 86.2 85.3 91.5 912 628 942 | 84.59




4. Analysis

NORMFORMER: IMPROVED TRANSFORMER PRETRAINING WITH EXTRA NORMALIZATION

= average L1 norm of the gradients to the second fully connected weight in various layers for a 12 layer, 12

5M

parameter CLM model at the beginning of training

= NormFnrmer hrinnc the averane aradient narmc rlacer tnnather far different laverc in the netwnrk
NormFormer

Post-LN
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[ J
4' AnaIySIS NORMFORMER: IMPROVED TRANSFORMER PRETRAINING WITH EXTRA NORMALIZATION

= One result of reducing the gradient mismatch is the ability to train stably with larger learning rates
= train it on a learning rate schedule with a very large peak learning rate, so that the learning rate increases
a little

each step until the loss explodes

* NormFormer mod Stability Test Results line
Architecture
® Baseline
NormFormer
® NormFormer + A_resid

300

250

200 -

150

100

Updates before Explosion

T T T
125.0M 355.0M 1.3B 2.7B 6.7B 13B |:

Model Size 177)



5. Ablations

NORMFORMER: IMPROVED TRANSFORMER PRETRAINING WITH EXTRA NORMALIZATION

= removing any of our additions to the transformer block degrades performance on language modeling tas

ks Architecture Valid PPL
NormFormer+ResScale 15.88
- Post-Attn LN 15.92
- FFN LN 16.14
- Head Scale 16.22
- Res Scale 16.20
+ 3 More LN 15.88
Baseline 16.37




[ J
6' ConCI US|on NORMFORMER: IMPROVED TRANSFORMER PRETRAINING WITH EXTRA NORMALIZATION

mismatch in the gradients of Pre-LN transformer weights

= earlier layers receive much larger gradients than later layers

propose NormFormer, which alleviates these issues by adding 3 extra operations to each transformer laye
;

» help the gradient mismatch for fully connected parameters

= improve validation perplexity

= downstream task performance for both causal and masked language models

None can be removed without degrading performance back towards the baseline

adding more normalization does not improve performance



Thank you
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Deblurring using Analysis-
Synthesis Networks Pair

CVPR 2020 paper
ISPL 2 FZI

Intelligent Signal Processing Lab
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Analysis Network

Feature
Extraction

e B=1xk Cross
* If we know k, it is non-blind deblurring i::imm
» If we do not know k, it is blind deblurring Reconstruction
= Feature pairs cross correlation
* Recover the blur-kernel k (estimated) O~ 0000

= Cony 5%5, Siride 2, RelU

n u 1 8
& Decanv 5x5, Stride 2, ReLU r.pr.pr.pr-o(

=p Conv 1x1, Stride 1, RelU = Conv 3x3 , Stride 1, ReLU

Utilizes d novel lcrOSS_CO rrelatlon Iaye r’ Figure 2. Analysis Network Architecture. The first stage con-

sists of extracting features (activations) at multiple scales by ap-
plying convolution layers, and pooling operations. At the second
stage, the cross-correlation between the resulting activations are
Feeds the output kernel to the synthesis network computed at all scales. Finally, the estimated blurkemel is re-
constructed from coarse to fine by means of un-pooling and con-
( _ 5 ’ volution steps. The pooling and up-pooling operations apply x2
to make the prObIem non bllnd scaling. We use 64 filters in the feature extracting step, and re-
duce them to 32 channels before computing the cross-correlation
stage. This illustration shows only two spatial scalings, whereas
our implementation consists of three.

Deblurring using Analysis-Synthesis Networks Pair (CVPR 2020) 1 -
N

Seoul Nat’l Univ.,
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Cross-correlation layer

e Auto-correlation of blurry images can be utilized to estimate blur-kernels
-> incorporate this knowledge into layers of the neural network

1) Compute cross-correlation between activation maps
Cij(s,t) = Xuy filx — — t)f;(x,y) at activation maps f; at spatial range —27'm < s,t < 27'm,
where m is the spatlal dlmen5|on of the kernel grid, and [ is the scale level of the neural net v

- -:»[-[-[@[-b[-»[
2) Reduce channel size to 32 | ’ r ( I ﬂ
Coreiation l. ’ T
3) Concatenated and integrated to finest scale — ” o W=t
) integ | g \i
g

Deblurring using Analysis-Synthesis Networks Pair (CVPR 2020)

2022-01-13 Intelligent Signal Processing Lab
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Synthesis Network

Kernel Guided Convolution 7 =7 @ (1 + m(k)) + b(k), incorporates the kernel information in the synthesis

network as a prior and dictates the network’s actions

m Conv block
= Conv 3x3 , Stride 1, ReLU

= Conv 3x3, Stride 2, ReLU

Conv block ﬁ) Deconv 5x5. Stride 2, ReLU
‘ -‘ “ 4 =) Conv Ix1, Stride 1, ReLU Configuration PSNR
" " ﬂ Kernel Guided Convolution S}’ﬂthﬁSiS + GT Kernels
Kernel Guided Convolution No gu idance 24.80
’ #ql # Additive guidance 28.58
0 Rell Multiplicative guidance 28.41

: pese e ReLD Additive+Multiplicative guidance  28.73
Dense Layer, no activation
|::> Conv 3%3 (no activation) + ﬁ

Learnable bias (f(x;) = x; + a;)
* a[5 are trainables and initialized to 1

Figure 3. Synthesis Network Architecture. A standard U-Net is augmented with kernel guided convolutions at all its layers. As shown in
the red schematic, the activations in these convolutions are modulated and biased by vectors derived from the blur-kernel using FC layers.
Each convolution layer consists of 3 successive convolutions using 128 filters, separated by ReLU activations.

Deblurring using Analysis-Synthesis Networks Pair (CVPR 2020) 1 :

\)
Seoul Nat’l Univ.,



Decision Transformer:

Reinforcement Learning via
Sequence Modeling

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch

NeurlPS 2021

CESE

939
gﬁ@?\ DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING R I.LA\ :_25

% SEOUL NATIONAL UNIVERSITY http://rllab.snu.acskr



Problems of RL RLLAB

http://rllab.snu.ac.kr

e Bootstrapping problem
Q(s,a) + Q(s,a) + a(Ri1 +7Q(s',a’) — Q(s,a))

* Credit assignment problem

Songhwai Oh (ECE, SNU) RLLAB (http://rllab.snu.ac.kr)



Offline RL RLLAB

http://rllab.snu.ac.kr

 Train in collected dataset

e Unlike other RLs, it does not interact(high-cost) with the
environment.

* because of the distribution shift between polices, it is difficult to

train
reinforcement learning offline reinforcement learning
_ e i S ’ train for
‘ 4 T iy, 3 many epochs
this is done \ big d?taset ff°m
. past interactions
many t|me§

Songhwai Oh (ECE, SNU) RLLAB (http://rllab.snu.ac.kr)



Transformer — GPT model RLLAB
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Output
Probabilities

Causal Language Modeling

o] J D ( A i o ( \
Guessing the next word in a sentence R

Feed
Forward

Add & Norm

My name s Sylvain ’ Nx

Masked
Multi-Head
Attention

AT

L —

Positional
Encoding

@ Positional
Encoding

Output
Embedding

I

Outputs
(shifted right)

Songhwai Oh (ECE, SNU) RLLAB (http://rllab.snu.ac.kr)



Decision Transformer RLLAB
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=y

o causal transformer E
] ] | | ]
Cs)m ®. ® @ c%)t

"
O

ry : reward of time t 7
t

S¢ : state of time t

= X/,_,ry : returns-to-go

a; : action of time t

Songhwai Oh (ECE, SNU) RLLAB (http://rllab.snu.ac.kr)



Algorithm RLLAB
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main odel
def Dec151onTransformer(R 8, &y B
compute embe j'}_r_:: for tokens

pos_embedding = embed_t(t) # per-timest tep (note: not per-token
s_embedding = embed_ s(s) + pos_ embeddlng
a_embedding = embed_a(a) + pos_embedding
R_embedding = embed_R(R) + pos_embedding

B -
er.eave ¢O n_N

1nput embeds = stack(R embeddlng, s_eﬁbedding; a_eﬁsedding)

use transiormer to get hidden states

hldden states = transformer (input_embeds=input_embeds)

select hidden states for action preaiction Toxens

a_hidden = unstack(hidden_states).actions

predict action

AL LiIUl

return pred_a(a_hidden)

_|.

training loo

for (R, 8, a, t) in dataloader: # dims: (ba
a_preds = DecisionTransformer(R, s, a, t
loss = mean((a_preds - a)#**2) # L2 s for continuocus actiomn
optimizer.zero_grad(); loss.backward(); optimizer.step()

tch_size, K, dim)
)

1

—'\-I'\_

Songhwai Oh (ECE, SNU) RLLAB (http://rllab.snu.ac.kr)



Algorithm RLLAB
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malin model
def DecisionTransformer(R, s, a, t):
# compute embeddings for tokens
pos_embedding = embed_t(t) # per-timest tep (note: not per-token)
s_embedding embed _ s(s) + pos_ embeddlng
a_embedding = embed_a(a) + pos_embedding

R_embedding embed _R(R) + pos_embedding

. + o - T nke - - = { } 4 — . | - 4 | -
# 1nterleave t ns Aas R - g R

input_embeds = stack(R embeddlng, s_embedding;'é_eﬁsedding)

112 transforme + 0 TeT hdq
uo L a ) YmerTr .o FEL ni

hldden states = transformer(lnput embeds=input_embeds)

£

w

n states

select hidden states for action prediction tokens

a_hidden = unstack(hidden_states).actions

AL LiIUl

return pred a(a_hidden)

# evaluation loop
target _return = 1 # for 1imnstance expert -level return
R, s, a, t, done = [target_ return] [env reset ()], [J, [1], False
wvhile not done: # autoregressive generation/sampling
# sample next action
action = DecisionTransformer(R, s, a, t)[-1] # for cts actions
new_s, r, done, _ = env. step(action)
# append new tokens to sequence
R=R + [R[-1] - r] # decrement returns p-go with reward
s, a, t = s + [new_s], a + [action], t + [len(R)]
R, s, a, t = R[-K:], ... # only keep context length of

Songhwai Oh (ECE, SNU) RLLAB (http://rllab.snu.ac.kr)
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* |t showed good performance in most datasets and
environments(SOTA in offline RL).

* This method performed better than other methods in key-to-door
problems where long-term credit assignment is important.

Songhwai Oh (ECE, SNU) RLLAB (http://rllab.snu.ac.kr)
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Learning Continuous Image Representation with

Local Implicit Image Function

Yinbo Chen, Sifei Liu, Xiaolong Wang
CVPR 2021



Super-resolution

* Producing high-resolution(HR) images from a corresponding low-resolution(LR)
Image.
* |ll-posed problem

A 4

Low-resolution image

High-resolution image



Related Work

« EDSR (Lim et al., 2017)
[

N

High-resolution image (output)
BN "N BN NN NN BN =N

rZ channels

Conv
ResBlock

_ 3 Upsample

A

Shuffle g5

Shi et al., 2016

v

Lim et al., 2017




Summary

« Super-resolution method for arbitrary resolution
* Previous methods had fixed high resolution for each model. (x2,x3,x4,...)

« Takes an image coordinate and surrounding deep features to predict the pixel at a
given coordinate.

—— —_— LIIF I loss




Method

(a) Data preparation Ground-truth

To pixel
samples ~ *hrs Shr

A Random i
Training image down-sample

(b) Training
Shr
— Ep, —— uF — l'OSS ‘
—fg—'spred It (2q) = fo(2",2qg — V")

Chen et al., 2021



Method

|
Z00 :
® :
: f(Z, x) fcell(z; [x! C])
oy | N ... . VR A A
:
O i
Z10 : @ Ch C = [Ch! CW]
———————— l— R C
| w
|
|
E no cell decoding cell decoding
: Cell decoding

LIIF representation with local ensemble



Results

Results on benchmark datasets (PSNR(dB))

Dataset Method In-distribution Out-of-distribution
X2 X3 x4 X6 X 8
RDN [51] 38.24 3471 3247 | - 3

Set5 RDN-MetaSR? [15] | 38.22 34.63 32.38 | 29.04 26.96
RDN-LIIF (ours) | 38.17 34.68 32.50 | 29.15 27.14
RDN [51] 34.01 30.57 28.81 - -
Set14 RDN-MetaSR? [15] | 33.98 30.54 28.78 | 26.51 24.97
RDN-LIIF (ours) | 33.97 30.53 28.80 | 26.64 25.15
RDN [51] 3234 2926 27.72 - -
B100 RDN-MetaSR? [15] | 32.33 2926 27.71 | 25.90 24.83
RDN-LITF (ours) | 32.32 2926 27.74 | 25.98 2491
RDN [51] 32.80 28.80 26.61 - -
Urban100 | RDN-MetaSR* [15] | 32.92 28.82 26.55 | 23.99 22.59
RDN-LIIF (ours) | 32.87 28.82 26.68 | 24.20 22.79




Conclusion

 LIIF learns continuous representation in 2D image.

 LIIF representation can produce high-resolution images in arbitrary scale with high
fidelity.
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EfficientNet ( Version 1)

« Tan, Mingxing, et al. “EfficientNet: Rethinking Model Scaling for convolutional

Neural Networks." International conference on machine learning. PMLR, 2019

* https://arxiv.org/pdf/1905.11946.pdf

« “Compound Scaling”

depth: d = o?
width: w = 3¢

resolution: r = 7%

st.a-fB%2-y2~2
(1217521’721

3)



https://arxiv.org/pdf/1905.11946.pdf

Main idea of EfficientNetV2

* Progressive Learning : Main Topic, to be discussed.

 Fused MBConv.

* Non-uniform Scaling :

Llaqi A VA
! 1
HW.C HW.C
i convix1 i convix1 i
[}
SE SE
HW.4C f H.W.4C
7
depthwise /
conv3x3 /
[y
Conv3x3 /
\
Conv1x1 \ /
./
HW.C HW.C ]
MBConv Fused-MBConv

Figure 2. Structure of MBConv and Fused-MBConv.

Slightly modify the compound scaling rule at later stages




Progressive Learning

« The accuracy drop comes from the unbalanced regularization

« When training with different image sizes, we should also adjust the

regularization strength accordingly

Table 5. ImageNet top-1 accuracy. We use RandAug (Cubuk et al.,

2020), and report mean and stdev for 3 runs.

r Size=128  Size=192  Size=300
RandAug magnitude=5 M78.3 +0.16] 8124006 82.5 +0.05
RandAug magnitude=10 78.0 £0.08 81.6 ~0.08 82.7 +0.08
RandAug magnitude=15 77.7 £0.15 81.5 £0.05 |83.2 £0.09

)

Communications & Machine Learning Lab



Adaptive Regularization

-_. .
epoch=100

Bigger Image size

—

Strong Regularization
( RandAugment, Dropout, Mixup )

@ SNUCML

Communications & Machine Learning Lab

Algorithm 1 Progressive learning with adaptive regularization.

Input: Initial image size Sy and regularization {¢ }.
Input: Final image size S. and regularization {cf)f;’}
Input: Number of total training steps N and stages M.
fori =0to M — 1do _
Image size: Si <— So + (Se — So0) - 57—
Regularization: R; < {qﬁf‘ = pf + (¢F — pf) - ﬁ}
Train the model for % steps with S; and R;.
end for

Table 6. Progressive training settings for EfficientNetV2.

S M L
min max | min max | min max
Image Size 128 300 | 128 380 | 128 380
RandAugment 3 15 5 20 5 25
Mixup alpha 0 0 0 0.2 0 0.4
Dropout rate 01 03 |01 04 |01 05




Results

 Better Training/Parameter efficiency

- EffNetV2-XL(21k)
o
9
> 86
8 mm——mm—mm—— T ‘NFNet-F4
3 _-"F3
8 § v VIT-L/16(21K)
‘é_ 85 Eh‘Net‘-.B?(repro}
= —
< _ ===~ EfiNet-B7
5 - -
& -~“Be
£ 84 _- -
/'55
83 P
B4
1 2 3 | 5] G
Training time (TPU days)
(a) Training efficiency.
EfficientNet ResNet-RS DeiT/ViT | EfficientNetV2
(2019) (2021) (2021) (ours)
Top-1 Acc. 84.3% 84.0% 83.1% 83.9%
Parameters 43M 164M 36M 24M

(b) Parameter efficiency.

CML

Communications & Machine Learning Lab

* Progressive learning for other networks

Table 12. Progressive learning for ResNets and EfficientNets —
(224) and (380) denote inference image size. Our progressive train-
ing improves both accuracy and training time for all networks.

Baseline Progressive
Acc.(%) TrainTime | Acc.(%) TrainTime
ResNet50 (224) 78.1 4.9h 78.4 3.5h (-29%)
ResNet50 (380) 80.0 14.3h 80.3 5.8h (-59%)
ResNetl152 (380) 82.4 15.5h 82.9 7.2h (-54%)
EfficieniNet-B4 82.9 20.8h 83.1 0.4h (-55%)
EfficientNet-B5 83.7 42 .9h 84.0 |15.2h (-65%)
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Introduction — problem statement

«VVI"
ERsn
o

<L'—‘ff

N

I

7

X

A
HESS
/e

Gradient starvation(GS)

Gradient starvation : Capturing only a subset of features, when using cross entropy loss = fail to discover other predictive features

Reason : Neural networks focus on low-level superficial correlations

- Given strongly-correlated & fast to learn features in training data, gradient descend is biased towards them : feature imbalance

Consequence : Lack of robustness, Excessive invariance for classification applications

response to feature

v A

(¢) A = 0.1 with SD

(d) iterations

SHRM

shrm.snu.ac.kr



Methodology : Spectral Decoupling

Spectral Decoupling

» In Neural Tangent Kernel regime(NTK regime) output of the neural network can be approximated as 1%t order linear functions of its parameters
y(X,0) = ®,0
Taining set : D = {X,y},y € {—1,+1}", 0 : vectorized weight matrix

« Definition of GS : Feature i starves the gradient for feature j if

dzj
e <0

Y = diag(y),Y®, = USVT,z =U"YY
- Where s : strength of the feature z : neural network’s response to a feature
«  Spectral decoupling : Introduce simple regularizer(SD) to decoupling the features
- Use SD (= ||§1||2) instead of general L2 penalty(= ||0||2) (a : variational parameter defined for each training example)
- Leaving «a; independent of other aj #; by cancel out matrix U, § which makes coupling terms

1 1
Orignial : mlnL(B) =1-log[1+ exp(=Yy)] + = ||0|| - max(l H(a) — —AaYd)O(DOTYT T) - = 77( loga + log(1 — a) —iaUSZUT>

1 l1-a 1
SD : mlnL(B)—l log[1 + exp(—Y¥)] —||y|| S a= n( loga+log(1—a)_iaUSZS—ZUT>=n<log - _Za>

SHRM
shrm.snu.ac.kr
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Experiment

Mnist with color bias

« Task : predict binary labels y = —1 for digits 0 to 4 and y = +1 for digits 5 to 9

« A color channel(red, green) is artificially added to each example to deliberately impose a negative correlation between the color & the label
- Color : Superficial, not robust feature

«  Empirical Risk Minimization(ERM) vs SD : ERM was biased by color feature but SD wasn't = SD is more accurate and robust

(Rex and IRM requires additional multiple training environment)

ERM SD IRM
grayscale  colored grayscale  colored grayscale  colored
! ! ! ! ' ' 100
Method Train Accuracv Test Accuracv digitH 633% || il digit-| 683% || 672% | digit-| 669% || 66.6% [30 -
L 60 [#]
grayscale  colored é
ERM (Vanilla CrOSS Emmpy) I1.1 % (0. 4J237% (£0.8) 1 ' blank -  49.9 % 94 % blank -| 50.0% |MCEEAM blank -| 497 % || 49.6% v
REX (Kriegeretal 2000) 77154 (F10) 76875 (£09) an Srpmedeomie " 7" |Gl " 7 . R
IRI\’I (AI'_]OVSky 3t a 20] 9) 705 % [iU 6)671% [i] 4] i | graylscalc col?rcd graylscalc c:)hl)r-:d graylscalc col(lzrcd 0
S (this work) 700G (£09) 6847 (£17) MHH 1 i
digit 4 0.54 0.44 digit -|  0.66 0.63 digit -|  0.60 0.59
Oracle - (grayscale images)  735% (£02)  73.0% (£04) s o ) g "
Random Guess 50 % 50% ' g
blank 4 0.63 0.00 blank -|  0.66 < 041 lank -|  0.65 0.64 I 02 -~
0.0 Eétr)l?i(;lmt-
SHRM... " P —— 4
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Ensemble Learning

Uncertainty estimation and out-of-distribution robustness.
Many real-world applications require these properties.

Usually achieved by using a distribution over neural networks.
Classic Bayesian and ensemble learning literature.

BatchEnsemble and extensions.
Achieve the properties.
Lead to a significant computational cost.

A multi-input multi-output configuration.
The insight comes from sparsity of neural network.



MIMO Configurations

- Only requires two changes to a neural network architecture.
- Replace the input layer.
- Replace the output layer.

y,: P(Dog)=91% y,: p(Cat)=97%

Avg.
' y: p(Cat)=61%

. 1 - 0,
y,: P(Firetruck)=71% ¥, p(Cat)=81%

(a) Training (b) Testing

Figure 1: In the multi-input multi-output (MIMO) configuration, the network takes M = 3 inputs and gives M
outputs. The hidden layers remain unchanged. The black connections are shared by all subnetworks, while the
colored connections are for individual subnetworks. (a) During training, the inputs are independently sampled
from the training set and the outputs are trained to classify their corresponding inputs. (b) During testing, the
same input is repeated M times and the outputs are averaged in an ensemble to obtain the final prediction.



[llustration of MIMO on a Synthetic Regression

-1.20
— member 0 0.06 t t — M
1.0 !
w—member 1 -1.221+ 0.04 — M=2
w—member 2 . .‘ ' e M3
0.51 = = target (no noise) -1.241{4 0.02 } { — M =4
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epochs epochs epochs

Figure 2: Illustration of MIMO applied to a synthetic regression problem. (left) Example of MIMO learning
M = 3 diverse predictors. As M increases, predicting with MIMO comes with a higher bias but a smaller
variance (two middle panels respectively). Despite the slight increase in bias, the decrease in variance translates
into an improved generalization performance (right).



Loss-Landscape Analysis

MIMO architecture
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Naive multihead architecture
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Figure 3: Accuracy landscape and function space landscape comparison of individual subnetworks for MIMO
(top row) and the naive multiheaded architecture (bottom row). (left): The test accuracy in the weight space
section containing M = 3 trained subnetworks and the origin. For the MIMO architecture, the individual
subnetworks converge to three distinct low-loss basins, while naive multihead leads to the same mode. (middle-
left to right): The blue, red and green panels show the disagreement between the three trained subnetworks for
the same section of the weight space. For the MIMO architecture, the subnetworks often disagree, while for the
naive multihead architecture they are all essentially equivalent.



Function Space Analysis and a Separation of
Subnetworks
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Figure 4: Analyzing the subnetworks on the CIFAR 10 dataset. (left): Histogram of the conditional variances
of the pre-activations w.r.t. each input (M = 2, ResNet28-10). (middle-left): Scatter plot of the conditional
variances of the pre-activations w.r.t. each input. Almost all the pre-activations only have variance with respect
to one of the inputs: the subnetwork they that are part of (M = 3, ResNet28-10). (middle-right): Training
trajectories of the subnetworks. The subnetworks converge to different local optima (M = 3, SmallCNN).
(right): Diversity of the members (D p) in different efficient ensemble models (ResNet 28-10).



The Optimal Number of Subnetworks

Test Accuracy (%) Test Log-likelihood Test Accuracy (%) Test Log-likelihood
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Figure 5: The performance of the subnetworks and the ensemble of the subnetworks as the number of subnetworks
(M) varies. M = 1 is equivalent to a standard neural network (ResNet-28-10).



Input and Batch Repetitions
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Figure 6: (a) Performance of MIMO (M = 2) as a function of p on ImageNet. At p = 0, the subnetworks
are independent and they are limited by the network capacity. With p > 0, the subnetworks are able to share
features and better utilize the network capacity. Wide ResNet has 2x more filters. (b) Repeating examples in the
same batch improves convergence and yields a slight boost in performance.



Experimental Results

Prediction  # Forward
Name Accuracy (1) NLL(]) ECE()) cAcc(f) <c¢NLL(]) <cECE() time (}) passes (1)
Deterministic 96 0.159 0.023 76.1 1.050 0.153 0.632 1
Dropout 95.9 0.160 0.024 68.8 1.270 0.166 0.656 1
Naive mutlihead (M = 3) 95.9 0.161 0.022 76.6 0.969 0.144 0.636 1
MIMO (M = 3) (This work) 96.4 0.123 0.010 76.6 0.927 0.112 0.639 1
TreeNet (M = 3) 95.9 0.158 0.018 75.5 0.969 0.137 0.961 1A
BatchEnsemble (M = 4) 96.2 0.143 0.021 77.5 1.020 0.129 2.552 4
Thin Ensemble (M = 4) 96.3 0.115 0.008 77.2 0.840 0.089 0.823 4
Ensemble (M = 4) 96.6 0.114 0.010 77.9 0.810 0.087 2.536 4

Table 1: ResNet28-10/CIFAR10: The best single forward pass results are highlighted in bold.

Name Accuracy () NLL(]) ECE(]) cAcc(f) ©¢NLL(|) <¢cECE(]) P:i‘::;‘(ll‘;n :ai(:er??f:
Deterministic 79.8 0.875 0.086 51.4 2.700 0.239 0.632 1
Monte Carlo Dropout 79.6 0.830 0.050 42.6 2.900 0.202 0.656 1
Naive mutlihead (M = 3) 79.5 0.834 0.048 52.1 2.339 0.156 0.636 1
MIMO (M = 3) (This work) 82.0 0.690 0.022 53.7 2.284 0.129 0.639 |
TreeNet (M = 3) 80.8 0.777 0.047 53.5 2.295 0.176 0.961 1.5
BatchEnsemble (M = 4) 81.5 0.740 0.056 5.1 2.490 0.191 2.552 4
Thin Ensemble (M = 4) 81.5 0.694 0.017 53.7 2.190 0.111 0.823 4
Ensemble (M = 4) 82.7 0.666 0.021 5.1 2.270 0.138 2.536 4

Table 2: ResNet28-10/CIFAR100: The best single forward pass results are highlighted in bold.

Name Accuracy (1) NLL(}) ECE(}) cAcc(f) eNLL(}) cECE()) Pl‘lf:“:(‘l‘;“ : i‘:\wt‘i‘:
Deterministic 76.100 0.043 0.030  40.500 3.200 0.105 0.640 I
Naive mutlihead (M = 3) 76.611 0.929 0.043 40.616 3.250 0.122 0.638 |
MIMO (M = 2) (p = 0.6) (This work) 77.500 0.887  0.037  43.300 3.030 0.106 0.635 1
TreeNet (M = 2) 78.130 0.852 0.017  42.420 3.052 0.073 0.818 135
BatchEnsemble (M = 4) 76.700 0.944 0.049  41.800 3.180 0.110 2.592 4
Ensemble (M = 4) 77.500 0.877 0.031  42.100 2,990 0.051 2.624 4
“Wide Deterministic T1.880 0.038 0.072 15.000 3.100 0.150 1674 [
Wide MIMO (M = 2) (p = 0.6) (This work) 79.300 0.843 0.061 45.791 3.048 0.147 1.706 1

Table 3: ResNet50/ImageNet: The best single forward pass results are highlighted in bold.
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SituatedQA

. Answers to the same question may change depending on the
extra-linguistic contexts (when and where the question was asked)

Context Type: Temporal
Question: Which COVID-19 vaccines have been
authorized for adults in the US?

9 Int rOd uce SituatEd QA’ an open- Previous Answer: Current Answer:
Moderna, Pfizer Moderna, Pfizer, J&J
° Q e N\ N e e
retrieval QA dataset where systems & & G
— : ——
mUSt prOduce the CorrECt answer to d Conte:t: Dec 18, 2014 Context: A:)r 10, 2021
Answer: Answer:
q ue St | on g |Ve N Motlefna, Pfizer Mosdefna, Pfizer, J&J
Context Type: Geographical
te m pO ra I (Wh e n) Que:ti:n:y\l;’hich CgVI;D-IS‘ vaccine was the first to be
authorized by our government? Context:
O r South Kf)rea
. A e ish’aZe;eca
Geographical (where) context
Context: USA </~ Context: Australia
Answer: Pfizer Answer: Pfizer

Figure 1: Examples of questions with answers that
change depending on the temporal or geographical con-
text.



SituatedQA

. For a given question q, a; is answer when asked in the context
c;(consists of a type c,,, and a value c¢,,)

. For temporal: each context value is timestamp(date or year)
. For geographical: each context value is geopolitical entity

Question g Context Type ¢;  Context Value c, Answer a

Who composed the music for the first Harry Potter film? - - -
What’s the biggest country in Europe excluding Russia? - - -

How many seasons are there for American Horror Story? TEMP gzg :g %gig 18
Who made the most three point shots in the NBA? TEMP %gég Renggh?illllgll'
When was the last time states were created? GEO Unitecl;légt;t[:-z I October }ggg
Where do we rank among the world’s largest cities? GEO Sh;;fg?;; 311_53

Table 1: Examples of how questions interact with geographical and temporal context in SITUATEDQA. The first
two questions are not identified as geographically nor temporally dependent.



SituatedQA : Data collection

collecting answers from alternate contexts

1. ldentification

N

3. Validation

{Context / Answer} collection

Data collection = identifying context-dependent questions +

Input Question (Q):

Who is the vice president?
1

2. {Context / Answer} Collection

3. Verification

dependent? N

}

L >

pairs for Q

1. Identification Retrieve a
timeline of
f _1 ﬂ.
Is Q temporally Yes answers to Q
dependent?
*1 No l r
L ’ Identify
( ) location/answer
Is Q geographically = Y¢S J=T"]

Retrieval w/

Googl

e AP

Q

-

o

WikieEDLA
Tar Frec Encyclapedi

——

v

N

Previous Answer:
Mike Pence
January 20, 2017

Is this answer
timeline for Q

Current Answer:
Kamala Harris
January 20, 2021

Location: China
Answer: Wang Qishan

)

50

Yes

correct?
No
[ . Yes
Is this location/
answer pair for
Q correct?

‘e

Figure 2: Data collection pipeline: Crowdworkers are first asked to identify context dependent questions. We

then collect brief answer timelines for temporally dependent questions and location/answer pairs geographically
dependent questions, each of which is then verified by another worker.



SituatedQA : Temporal data example

{"question": "when did england last get to the semi final of a world cup", "id": -7924170207595297549,
"edited_question": "when did england last get to the semi final of a world cup as of 2021", "date": "2021",
"date_type": "sampled_year", "answer": ["2018", "2018"], "any_answer": ["1990", "2018"]}

{"question": "when did england last get to the semi final of a world cup", "id": -7924170207595297549,
"edited_question": "when did england last get to the semi final of a world cup as of 2019", "date": "2019",
"date_type": "sampled_year", "answer": ["2018", "2018"], "any_answer": ["1990", "2018"]}

{"question": "when did england last get to the semi final of a world cup", "id": -7924170207595297549,
"edited_question": "when did england last get to the semi final of a world cup as of 2015", "date": "2015",
"date_type": "sampled_year", "answer": ["1990", "1990"], "any_answer": ["1990", "2018"]}

{"question": "when did england last get to the semi final of a world cup", "id": -7924170207595297549,
"edited_question": "when did england last get to the semi final of a world cup as of 1998", "date": "1998",
"date_type": "sampled_year", "answer": ["1990", "1990"], "any_answer": ["1990", "2018"]}

{"question": "when did england last get to the semi final of a world cup", "id": -7924170207595297549,
"edited_question": "when did england last get to the semi final of a world cup as of 2018", "date": "2018",
"date_type": "start", "answer": ["'2018", "2018"], "any_answer": ["1990", "2018"]}

{"question": "when did england last get to the semi final of a world cup", "id": -7924170207595297549,
"edited_question": "when did england last get to the semi final of a world cup as of 1990", "date": "1990",
"date_type": "start", "answer": ["1990", "1990"], "any_answer": ['1990", "2018"]}



SituatedQA : Geographical data example

{"question": "what is the legal amount of weed", "id": 9188546442463987107, "edited_question": "what is
the legal amount of weed in maryland", "location": "maryland”, "answer": ["10 grams or less"],
"any_answer": ["less than 14 g (0.49 oz)", "2 ounces", "0 - illegal for recreational use", "10 grams or less", "7

grams of less"]}

{"question": "what is the legal amount of weed", "id": 9188546442463987107, "edited_question": "what is
the legal amount of weed in texas", "location": "Texas", "answer": ["0 - illegal for recreational use"],
"any_answer": ["less than 14 g (0.49 oz)", "2 ounces", "0 - illegal for recreational use", "10 grams or less", "7

grams of less"]}

{"question": "what is the legal amount of weed", "id": 9188546442463987107, "edited_question": "what is
the legal amount of weed in connecticut", "location": "Connecticut"”, "answer": ["less than 14 g (0.49 0z)"],
"any_answer": ["less than 14 g (0.49 oz)", "2 ounces", "0 - illegal for recreational use", "10 grams or less", "7

grams of less"]}

{"question": "what is the legal amount of weed", "id": 9188546442463987107, "edited_question": "what is
the legal amount of weed in washington state", "location": "washington state", "answer": ["7 grams of less"],
"any_answer": ["less than 14 g (0.49 oz)", "2 ounces", "0 - illegal for recreational use", "10 grams or less", "7

grams of less"]}

{"question": "what is the legal amount of weed", "id": 9188546442463987107, "edited_question": "what is
the legal amount of weed in washington d.c.", "location": "washington d.c.", "answer": ["2 ounces"],
"any_answer": ["less than 14 g (0.49 oz)", "2 ounces", "0 - illegal for recreational use", "10 grams or less", "7

grams of less"]}



Experiments

Query  Fine- TEMP GEDQ
Mod, ned | Swic (400)  Samp. (1472} S (923) Total | Comm. (263)  Rare (2400 Total
Retricw 44.2 16.0 142 194 9.1 29 6.1
hased iy 28.8 15.9 185 186 275 221 250
' v g 30.8 17.2 249 230 27.9 250 26.5
Cloed 27.2 15.3 129 162 9.4 4.6 7.1
B “"": Ny 19.5 12.4 157 145 19.2 92 145
o vy vy 26.0 16.2 183 183 21.5 11.7 168
Huiman® | - - - 570 | - - 34.0

Table 5: Results situated question answering, reporting exact match score on the test set. In addition to reporting
overall EM for each context type, we also report EM for partitions of the test set. For TEMP, we partition the test
set based on how the example’s context value was generated. For GEO, we split on whether the context-value is a
location 1s common (Comm. ) or uncommon { Rare), which 15 determined by whether the location appears at least
five times in our dataset as a geographical context.

Exact match score
. Retrieval based : DPR
. Closed book : BART-large

- Lag behind human-level performance



Conclusion

Propose the first study of how extra-linguistic contexts affect
open retrieval QA

Reveal that current system fail to adapt to shifts in the
temporal or geographical context

Propose the tasks and create a dataset for training and
evaluating QA systems on modeling how facts change across
contexts
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Out of Distribution (OOD) Detection

» What is OOD detection ? e
* Distinguish between in- and out-of-distribution data

 General OOD detection Methods

* Distance-based Methods

* Density-based Methods
» Generative Models(VAE, Flow, PixelCNN...)
* Likelihood-based score



Out of Distribution (OOD) Detection

* A challenge in density-based methods
* They often assign higher likelihoods to OOD data than to in-distribution data.

0.0035 2
0.0025 -

 Why?

0.0015 -

* Recent Hypothesis :ﬁf.;fl 1

* Low-level local features, learned by probabilistic models, are common =~ e e
to images and dominate the likelihood _ <Good Performance>

* Inductive bias of the model (e.g. CNN-based).
* Likelihood score alone is not enough for OOD detection.

0.0003

0.0001

—6000

10000 —8000
log p(X)

 OOD using Product of Experts < ad performance >
« Decompose a model into two parts: Local expert & Non-local expert.
* A new likelihood-ratio score for OOD detection.



Proposed Method

* Main Hypothesis

« Low-level local features, learned by probabilistic models, are common
to images and dominate the likelihood

* Proposal

 Directly model the in-distribution dataset, using only local feature
iInformation.

« A non-local(semantics) model can then be considered as the
complement of a local model, from a respective full model.



Proposed Method

* Product of Experts [1]

« Combination of multiple models of the same data by multiplying their
probabillity distributions together and then renormalizing.

« Two Experts: p;(x)(local expert), p,,; (x)(non-local expert)

pi(x) * ppy(x)
YA

Pf(x) =

 The unnormalized likelihood of a non-local model - Proposed Score !!!

pf (x) R » Full Autoregressive Model
= P (x)
p1(x) n

P (x)

A 4

Local Autoregressive Model

* [1] Hinton, Geoffrey E. "Training products of experts by minimizing contrastive divergence." Neural computation 14.8 (2002): 1771-1800.



Proposed Method

* PixelCNN
 Full Autoregressive Model (full model)
* Pf(x) = p(xy) H3=2 p(xk|x1,..., xq-1)

 Local Autoregressive Model (local model)

* pi(x) = Hi,j p(xij|x[i—h:i—1,j—h:j+h]:x[i,j—h:j—l])

1

(a) Full Autoregressive Model (b) Local Autoregressive Model



Experiment

« AUROC (Area Under ROC curve)

« A common measure for the OOD detection task
« Formulate a curve with respect to FPR & TPR

* The larger the better

* Result using the new score.

FashionMNIST
MNIST  Omniglot

ID dataset:
OO0D dataset:

WAIC (model ensemble) [8] 0.766 0.796
Glow diff to PNG [43] - -
PixelCNN diff to PNG [43] -

Likelihood Ratio in [40] 0.997

MSMA KD Tree [34] 0.693 -

S using Glow and FLIF [44] 0.998 1.000
S using PCNN and FLIF [44] 0.967 1.000
Full PixelCNN likelihood® 0.074 0.361
Our method 1.000 1.000

CIFARI10
SVHN CelebA
1.000
0.754
0.823
0.912
0.991 .
0.950 0.736
0.929 0.535
0.113 0.602
0.969 0.949

AUROC: https://en.wikipedia.org/wiki/Receiver_operating_characteristic

Perfect

classifier
1.0e

= ,
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False negative

-§ T True positive (TP), (FN),
= hit type Il error, miss,
g underestimation
g False positive (FP), _
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ROC curve
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https://en.wikipedia.org/wiki/Receiver_operating_characteristic
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