Markov Decision Processes

Wha Sook Jeon

Mobile Computing & Communications Lab.

Contents

- Markov Process with Rewards
 - Discounted rewards
 - Expected discounted sum of rewards
- Markov Decision Process
 - Optimal policy
 - Value iteration
- Partially Observable MDP
 - Observation Process
 - Example

Markov Process

- Stochastic Process (Ransom Process)
 - Collection of random variables, X_t , which represents the system state at time *t*: { X_t , t = 0, 1, ...}
 - Describes the evolution through time of physical precess
- Makovian Property

$$\Pr\{X_{t+1} = s_k \mid X_0 = s_0, X_1 = s_1, \dots, X_t = s_i\} = \Pr\{X_{t+1} = s_k \mid X_t = s_i\} = p_{ik}$$

- Markov process
 - Stochastic process having Markovian property
 - defined as a tuple (S, P)
 - **S** : Set of feasible states
 - P: State transition matrix $[p_{ik}]$
 - is used to evaluate the system performance

Markov processes with rewards

- A MP with rewards is a tuple (S, P, R)
 - State space: $S = \{s_1, s_2, ..., s_N\}$
 - Transition probability matrix: P

$$P_{ij} = \Pr\{X_{t+1} = s_j \mid X_t = s_i\}$$

- Reward:
$$\mathbf{R} = (r_1, r_2, ..., r_N)$$

• Each state s_i has a reward r_i

Discounted Rewards

Y

- A reward in the future is not worth as much as a reward now.
- Discounting factor: β
- Discounted sum of future rewards

$$\sum_{t=0}^{\infty} \beta^t R_t$$

- R_t : reward in time t
- R_0 : immediate (now) reward

Expected Reward Sum: $J^*(s_i)$

γ

• $J^*(s_i)$: the expected discounted sum of future rewards, starting in state s_i

$$J^{*}(s_{i}) = r_{i} + \beta \sum_{j=1}^{N} P_{ij} J^{*}(s_{j})$$

- Matrix Inversion for solving $J^*(s_i)$
 - Using the vector (matrix) notation

$$J^{*} = \begin{bmatrix} J^{*}(s_{1}) \\ J^{*}(s_{2}) \\ \vdots \\ J^{*}(s_{N}) \end{bmatrix} \qquad R = \begin{bmatrix} r_{1} \\ r_{2} \\ \vdots \\ r_{3} \end{bmatrix} \qquad P = \begin{bmatrix} p_{11} & p_{12} & \cdots & p_{1N} \\ p_{21} & p_{22} & \cdots & p_{2N} \\ \vdots & \vdots & \vdots & \vdots \\ p_{N1} & p_{N2} & \cdots & p_{NN} \end{bmatrix}$$

$$J^* = R + \beta P J^*$$

Then, solve *J** using the matrix inversion

Value Iteration for solving $J^*(s_i)$ (1)

 J^k(s_i): the expected discounted sum of rewards during next k steps, starting at s_i

$$J^{0}(s_{i}) \leftarrow r_{i} \quad \text{for all } s_{i}$$

$$J^{1}(s_{i}) \leftarrow r_{i} + \beta \sum_{j=1}^{N} p_{ij} J^{0}(s_{j}) \quad \text{for all } s_{i}$$

$$\vdots$$

$$J^{k}(s_{i}) \leftarrow r_{i} + \beta \sum_{j=1}^{N} p_{ij} J^{k-1}(s_{j}) \quad \text{for all } s_{i}$$

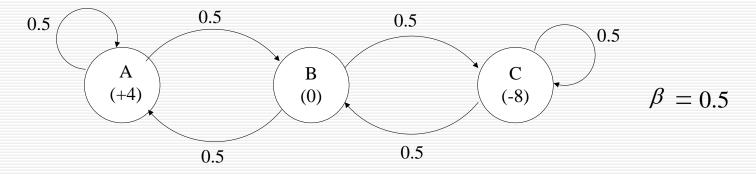
$$\vdots$$

$$\lim_{k \to \infty} J^{k}(s_{i}) = J^{*}(s_{i})$$

$$\bigcup_{i} U^{k+1}(s_{i}) - J^{k}(s_{i}) | < \zeta$$

Value Iteration for solving $J^*(s_i)$ (2)

Example



k	$J^k(\mathbf{A})$	$J^k(\mathbf{B})$	$J^k(\mathbf{C})$
0	4	0	-8
1	5	-1	-10
2	5	-1.25	-10.75
3	4.94	-1.44	-11

Markov Decision Process

Markov Decision Process (1)

- MDPs provide a mathematical framework for modeling decision-making
 - in situation where outcomes are partly random and partly under the control of the decision maker
- MDPs are useful for studying a wide range of optimization problems via dynamic programming
- A variety of areas including robotics, automated control, economics, etc.

Markov Decision Process (2)

- A discrete time stochastic control process
- Markov chain with rewards and actions
- defined as a tuple (S, A, P, R)
 - State space: $S = \{s_1, s_2, ..., s_N\}$
 - Action space: A
 - Transition probability matrix: P

$$P_a(i,j) = \Pr\{X_{t+1} = s_j \mid X_t = s_i, a_t = a\}$$

- Reward: $\mathbf{R} = (R(s_1), R(s_2), \dots, R(s_N))$
- A policy is a mapping from states to actions
- What's an optimal policy?

Finding the optimal policy: Value Iteration (1)

- Computing the optimal value function using value iteration.
- Optimal policy is the actions for the optimal value function
- Optimal Value function: $J^*(s_i)$
 - the expected discounted sum of future rewards, starting at state s_i , when the optimal policy is assumed to be used.
 - Computing the optimal value function
 - $J^k(s_i)$: the maximum possible expected discounted sum of rewards we can get, after *k* time steps starting at s_i

$$- \lim_{k \to \infty} J^k(s_i) = J^*(s_i)$$

Value Iteration (2)

Bellman's Equation $J^{k}(s_{i}) = \max_{a} [r_{i} + \beta \sum_{j=1}^{N} p_{a}(i, j) J^{k-1}(s_{j})]$

Using the dynamic programming

k=0 $J^{0}(s_{i}) \leftarrow r_{i} \text{ for all } s_{i}$ Repeat $k \leftarrow k+1;$ $J^{k}(s_{i}) \leftarrow \max_{a}[r_{i} + \gamma \sum_{j=1}^{N} p_{a}(i,j)J^{k-1}(s_{j})] \text{ for all } s_{i}$ $\text{until } (\max_{i} |J^{k}(s_{i}) - J^{k-1}(s_{i})| < \zeta)$

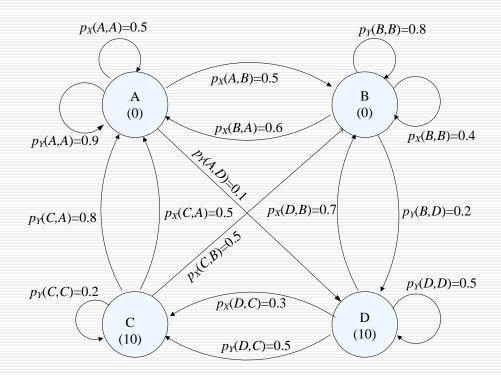
Value Iteration (3)

- Finding the optimal policy
 - Compute $J^*(s_i)$ for all s_i
 - Then, we can obtain the best action in state s_i \Box Optimal policy

$$\arg\max_{a} \left[r_{i} + \beta \sum_{j=1}^{N} p_{a}(i, j) J^{*}(s_{j}) \right]$$

Value Iteration (4)

Example



K	$\int J^{n}(A)$	$J^{n}(D)$	$\int J^{n}(C)$	$\int J^{n}(D)$
1	0	0	10	10
2	0.9	1.8	11.8	19
3	2.439	4.716	12.772	23.86
4	4.123	7.690	14.055	
5				
6				

 $Ik(\Lambda) = Ik(R) = Ik(C) = Ik(D)$

1-

 $J^{4}(C) = 10 + 0.9 \times \max\{$ $0.5 \times J^{3}(B) + 0.5 \times J^{3}(A),$ $0.8 \times J^{3}(A) + 0.2 \times J^{3}(C) \}$

= 14.055

Action set = {X, Y} $\beta = 0.9$

Partially Observable MDP

POMDP (1)

- Defined as a six-tuple (S, A, P, O, Q, R)
- Core process
 - A finite state Markov chain $\{X_t, t \in T\}$, where $T = \{0, 1, ...\}$.
 - State space: $S = \{1, 2, ..., N\}$
 - Transition probability matrix: $p_{ij}(a) = \Pr\{X_{t+1} = j \mid X_t = i, a_t = a\}$
 - cannot be directly observable
- Observation process: $\{Y_t, t \in T\}$, where $T = \{0, 1, ...\}$.
 - By observing Y_t at time *t*, information regarding the true value of X_t is obtained
 - The probabilistic relationship between the core process and observation process when action *a* is chosen: $q_{ij}(a) = \Pr\{Y_t = j \mid X_t = i, a_{t-1} = a\}$

POMDP (2)

Random variables

- m_t : the observable value of Y_t
 - a_t : the action taken at time t

 d_t : the data available for decision making at time t

 $d_t = (\pi(0), m_1, a_1, m_2, a_2, \cdots, a_{t-1}, m_t)$

Information vector: $\pi(t) = (\pi_1(t), \pi_2(t), \dots, \pi_N(t))$

$$- \pi_i(t) = \Pr\{X_t = i \,|\, d_t\}$$

Transformation of information vector

$$- \pi_{i}(t+1) = \Pr\{X_{t+1} = i \mid d_{t+1} = (d_{t}, a_{t}, m_{t+1} = j)$$

$$= T_{i}[\pi(t), a_{t}, j]$$

$$= \frac{q_{ij}(a_{t}) \sum_{k \in S} \pi_{k}(t) p_{ki}(a_{t})}{\sum_{l \in S} q_{lj}(a_{t}) \sum_{k \in S} \pi_{k}(t) p_{kl}(a_{t})}$$

POMDP (3)

_

Immediate reward:

$$r_{i}(a) = \sum_{j \in S} \sum_{k \in \Theta} R(i, j, k, a) p_{ij}(a) q_{jk}(a)$$

- R(i, j, k, a) : immediate reward when action a is taken, the core process is in state i, moves to state j, and observation is k
- Value function

$$- V_{\beta}^{n}(\pi) = \max_{a \in A} \left\{ \pi \cdot r(a) + \beta \sum_{j \in O} V_{\beta}^{n-1} \big(T[\pi, j, a] \big) \eta(j \mid \pi, a) \right\}$$

•
$$\eta(j \mid \pi, a) = \Pr\{Y_{t+1} = j \mid \pi(t), a_t = a\}$$

An Example of POMDP

A POMDP-based Cognitive Radio Senor Networks

J. A. Han, W. S. Jeon, and D. G. Jeong, "Energy-efficient channel management scheme for cognitive radio sensor networks," *IEEE Transactions on Vehicular Technology*, vol. 60, no. 4, pp. 1905-1910, May 2011

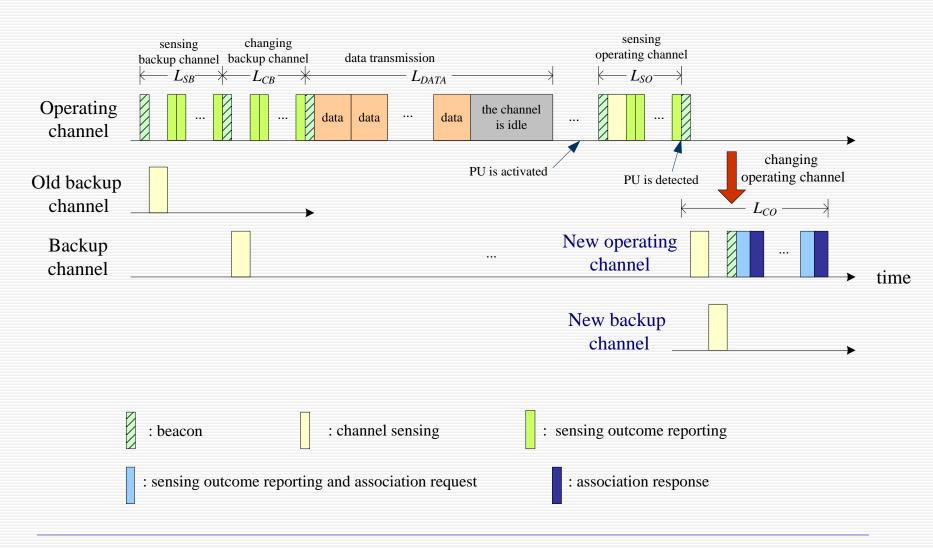
System Description

- Channel pool
 - each channel is licensed to a primary user (PU)
- CR sensor network
 - Cluster with star topology
 - One cluster header (CH) and (*N*-1) cluster members (CMs)
 - The sensor nodes (CM) opportunistically access to a vacant channel under the control of CH
 - CRSN control of CH: POMDP-based Decision
 - One operating channel and one backup channel

Operation Modes of CRSN

- *DATA* mode
 - The sensor nodes transmit data to CH
 - according to the transmission schedule given by CH
- SO mode
 - Sense the operating channel and report the sensing result to CH
- SB mode
 - Sense the backup channel and report the sensing result to CH
- *CO* mode
 - Switch to the backup channel (new operating channel)
 - Sense the new operating channel and the randomly selected backup channel
 - Report the sensing result and send new association message
- *CB* mode
 - CH randomly chooses new backup channel
 - All sensor nodes sense the backup channel and report their results

An Example Scenario



Sensing Model

- PU activation model on a channel:
- Operating channel: channel 1
 Backup channel: channel 2
- Sensing model: Energy detection
 - Each cluster member reports the received energy to CH
 - $s_t^{(m)}$: Sum of the sensing results on the channel *m* at decision epoch *t*

λ

μ

0 vacant 0 Occupied

- *Chi-square* distribution
- Quantize $s_t^{(m)}$ into *K* levels with thresholds $\gamma_0, \gamma_1, \dots, \gamma_K$
- Probability that the quantized value (observation value) is k
 - H_0 : Channel *m* is empty

$$- v_0(k) = \Pr\{\gamma_{k-1} < s_t^{(m)} < \gamma_k \mid H_0\}$$

• H_1 : A PU exists on channel m

$$- v_1(k) \equiv \Pr\{\gamma_{k-1} < s_t^{(m)} < \gamma_k \mid H_1\}$$

POMDP Model (1)

- A six-tuple (X, A, O, P, Q, R)
 - X: State space of the core process

•
$$X_t = (x_t^{(1)}, x_t^{(2)})$$

- $x_t^{(i)} = 0$ (vacant) or 1 (occupied)

- A: Action space

• $\{DATA, SO, SB, CO, CB\}$

- O: State space of the observation process

•
$$O_t = (o_t^{(1)}, o_t^{(2)})$$

- If the channel *m* is sensed, $o_t^{(m)} \in \{1, ..., K\}$

- Otherwise, $o_t^{(m)} = 0$

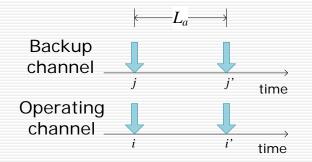
- *P*: Transition probability matrix

$$p_{(i,j)(i',j')}(a) = \Pr\{X_{t+1} = (i',j') \mid X_t = (i,j), A_t = a\}$$

POMDP Model (2)

- Transition probability of core process
 u_{i,i}(a): prob. that a channel transits from state *i* to *i*'
 w_i(a): prob. that a randomly selected channel is in state *i*
 - DATA, SO, SB

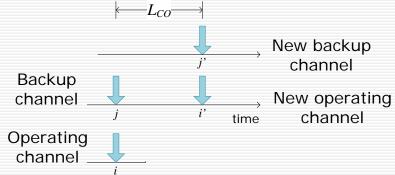
$$p_{(i,j)(i',j')}(a) = u_{i,i'}(a) \times u_{j,j'}(a)$$



POMDP Model (3)

P: Transition probability of core process

- CO:
$$p_{(i,j)(i',j')}(a) = u_{j,i'}(a) \times w_{j'}(a)$$



i

- CB:
$$p_{(i,j)(i',j')}(a) = u_{i,i'}(a) \times w_{j'}(a)$$

Backup $\downarrow j' time$ New backup channel
Operating $\downarrow j' time$ $\downarrow j' time$

POMDP Model (4)

-

• Q: Probabilistic relation between X and O

$$- q_{(i,j)(k,l)}(a) = \Pr\{O_t = (k,l) \mid X_t = (i,j), A_{t-1} = a\}$$

Action <i>a</i>	$q_{(i,j)(k,l)}(a)$
DATA	$n(k) \times n(l)$
SO	$v_i(k) \times n(l)$
SB	$n(k) \times v_i(l)$
СО	$v_i(k) \times v_i(l)$
CB	$n(k) \times v_j(l)$

- $v_i(k)$: Prob. that $o_t^{(m)} = k$ when the channel *m* in state *i* is sensed
- n(k): Prob. that $o_t^{(m)} = k$ when the channel *m* is not sensed

POMDP Model (5)

- **R**: Rewards
 - Control parameter for getting the required performance
 - Penalty on unnecessary energy consumption
 - ex) CO/CB by false alarm
 - Positive reward on protecting PU
 - $r_{(i,j)(i',j')}(a)$: reward by taking the action *a* in state (*i*,*j*) which results in the transition (*i'*,*j'*)
 - Example

$$r_{(1,\cdot)(\cdot,\cdot)}(DATA) = -10,$$
 $r_{(0,\cdot)(\cdot,\cdot)}(DATA) = 10$
 $r_{(0,\cdot)(\cdot,\cdot)}(SO) = r_{(\cdot,0)(\cdot,\cdot)}(SB) = -1$

$$R_{(i,j)}(a) = \sum_{i'=0}^{1} \sum_{j'=0}^{1} r_{(i,j)(i',j')}(a) p_{(i,j)(i',j')}(a)$$

Decision Making (1)

- Information vector: $\Pi(t) = (\pi_{(0,0)}(t), \pi_{(0,1)}(t), \pi_{(1,0)}(t), \pi_{(1,1)}(t))$
 - $\pi_{(i,j)}(t)$: Prob. that the core process is in state (i,j) at decision epoch *t*.
 - summarizes all information required for the decision-making
 - Update of information vector

$$\begin{aligned} \pi_{(i,j)}(t+1) &= T_{(i,j)}(\Pi(t), a, (k,l)) \\ &= \Pr\{X_{t+1} = (i,j) \mid \Pi(t), A_t = a, O_{t+1} = (k,l)\} \\ &= \frac{q_{(i,j)(k,l)}(a) \sum_{i'=0}^{1} \sum_{j'=0}^{1} p_{(i',j')(i,j)}(a) \pi_{(i',j')}(t)}{\sum_{\tilde{i}=0}^{1} \sum_{\tilde{j}=0}^{1} q_{(\tilde{i},\tilde{j})(k,l)}(a) \sum_{i'=0}^{1} \sum_{j'=0}^{1} p_{(i',j')(\tilde{i},\tilde{j})}(a) \pi_{(i',j')}(t)} \end{aligned}$$

Decision Making (2)

Optimal value function

$$V^{*}(\Pi) = \max_{a \in \mathbf{A}} \left(\sum_{i=0}^{1} \sum_{j=0}^{1} \pi_{(i,j)} R_{(i,j)}(a) + \beta \sum_{k=0}^{K} \sum_{l=0}^{K} V^{*}(T(\Pi, a, (k,l)) \times \Pr\{(k,l) \mid \Pi, a\} \right)$$

Optimal policy

$$\delta^*(\Pi) = \arg\max_{a \in \mathbf{A}} \left(\sum_{i=0}^{1} \sum_{j=0}^{1} \pi_{(i,j)} R_{(i,j)}(a) + \beta \sum_{k=0}^{K} \sum_{l=0}^{K} V^*(T(\Pi, a, (k,l)) \times \Pr\{(k,l) \mid \Pi, a\} \right)$$

Conclusion

- The solution to a MDP is an optimal policy, which gives the action to take for a given state
- When the action is fixed to each state, the resulting MDP behaves like a Markov process
- A POMDP is a generation of a MDP which permits uncertainty