
Lexical Elements & Operators

C Compiler

 Syntax of the language
− Rules for putting words and punctuation to make

correct statements

 Compiler
− A program that checks on the legality of C code
− If errors, compiler prints error messages and stops
− If NO errors, compiler translates the C code into

object code

2

C Program

 A sequence of characters that will be converted by
C compiler to object code

 Compilers first collects the characters of the C
program into tokens

 6 kinds of tokens
− Keywords
− Identifiers
− Constants
− String constants
− Operators
− Punctuators

3

Characters used in a C Prog.

 Lowercase letters

 Uppercase letters

 Digits

 Other characters + - * / = () { } [] < > ‘ ‘’
 ! # % & _ | ^ ~ \ . , ; : ?
 White space characters blank, newline, tab, etc.

4

Comments
 Arbitrary strings of symbols placed btwn /* and */

/* comment */ /** another comment ***/
/*******************************
 * If you wish, you can *
 * put commas in a box. *
 *******************************/

 The complier changes each comment into a single
blank character

 Used by programmer as a documentation aid for
explaining clearly
− how the program works
− how it is to be used

 5

Keywords

 Reserved words
− have a strict meaning as individual tokens in C
− cannot be redefined or used in other contexts

auto do goto signed unsigned
break double if sizeof void
case else int static volatile
char enum long struct while
const extern register switch
continue float return typedef
default for short union

Keywords

6

Identifiers (1/2)

 A token is composed of a sequence of letters, digits,
and the special character _ (underscore)

 A letter or underscore must be the first character of an
identifier

 Lowercase and uppercase are distinct

 < Examples > < NOT Examples>
 k not#m2
 _id 101_south
 iamanidentifier2 -plus
 so_am_i

7

Identifiers (2/2)

 Give unique names to objects in a program.
 Keywords can be thought of as identifiers that are

reserved to have special meaning
− e.g.) printf

 The identifier main is special.
 Choose names that are meaningful!!

tax = price * tax_rate

 Identifier beginning with an underscore
− Usually used for system names. (e.g. _iob)
− Please do NOT begin with an undescore!

8

Constants (1/2)
 Integer constants

0, 17

 Floating constants
1.0, 3.14159

 Character constants
− Written between single quotes

■ ‘a’, ‘b’, ‘c’
■ closely related to integers

− Special character constants
■ \n (newline)
■ Backslash is the escape character (“escaping the usual meaning of n”)

9

Constants (2/2)

 Integer constants
− Decimal integers 0, 17
− Octal integers 017
− Hexadecimal integers 0x17

− How about -49 ? Constant expression

10

String Constants

 A sequence of characters enclosed in a pair of double-
quote marks
− “abc”
− collected as a single token
− ‘a’ and “a” are NOT the same.

 <Examples > <wrong Examples>
 “a string of text” /*”this is not a string”*/
 “” “and
 “ ” neither is this”
 “/* this is not a comment */”
 “a string with double quotes \” within”
 “a single backslash \\ is in this string”

11

Operators & Punctuators (1/2)

 Arithmetic Operators
 + , - , * , / ,%
 (e.g.) 5%3 has the value 2.

 Operators can be used to separate identifiers
 a+b (or, a + b) /*an expression*/
 a_b /* a 3-character identifier*/

 Some symbols have meanings that depend on context
 printf(“%d”, a);
 a = b % 7;

12

Operators & Punctuators (2/2)

 Punctuators
− parentheses, braces, commas, and semicolons

 Operators and punctuators, along with white space, serve to
separate language elements

int main(void)
{

int a, b = 2, c = 3;
a = 17 * (b + c);
……

 Some special char.s are used in many different contexts
 a + b ++a a += b

The parentheses following main are treated as an
operator.
The symbols “{”, “}”, “,”, “;”, “(”, “)” are punctuators

13

Precedence and Associativity of Operators

 Precedence: 연산의 우선순위

 Associativity: 연산의 방향

 Parentheses can be used to clarify or change the order
in which operators are performed.

 1 + 2 * 3 ⇔ 1 + (2 * 3)
 (1 + 2) * 3

 1 + 2 – 3 +4 – 5 ⇔ (((1+2) – 3) + 4) -5

 Binary operators + and – have the same precedence,

the associativity rule “left to right” is used.

14

Precedence and Associativity of Operators

- a * b – c unary minus sign, binary subtraction
((- a) * b) – c

Operator Associativity

 () ++ (postfix) -- (postfix) left to right

 + (unary) - (unary) ++ (prefix) -- (prefix) right to left

 * / % left to right

 + - left to right

 = += -= *= /= etc. right to left

Operator precedence and associativity

15

Increment and Decrement Operators (1/3)

 ++ and –- are unary operators, and can be applied to
variables but not to constants or expressions

 <Examples> <wrong Examples>
 ++i 777++
 cnt-- ++(a * b -1)

16

 Difference btwn ++i and i++
− The expression ++i causes the stored value of i to

be incremented first, then taking as its value the
new stored value of i.

− The expression i++ has as its value the current
value of i; then the expression causes the stored
value of i to be incremented.

 int a, b, c = 0;
 a = ++c;
 b = c++;
 printf(“%d %d %d\n”, a, b, ++c); /* 1 1 3 is printed */

Increment and Decrement Operators (2/3)

17

 ++ and –- cause the value of a variable in memory to
be changed (side effect)

 Other operators do NOT do this (Ex. a + b)
 All three statements are equivalent.

− ++i; i++; i = i + 1;

Expression Equivalent expression Value

a * b / c (a * b) / c

a * b % c +1 (((a * b) % c) +1

++a * b - c-- ((++a) * b) -(c--)

7 - -b * ++d 7 - ((-b) * (++d))

Declarations and Initializations

int a = 1, b=2, c=3, d=4;

Increment and Decrement Operators (3/3)

18

Assignment Operators (1/2)

 Assignment expression: variable = right_side
− = is treated as an operator
− right_side is itself expression
− The value of right_side is assigned to variable

 b = 2;

 c = 3; ⇔ a = (b = 2) + (c = 3);

 a = b + c;

− “right to left” associativity
 a = b = c = 0; ⇔ a = (b = (c = 0));

19

Assignment Operators (2/2)

Assignment operators

= += -= *= /= %= >>= <<= &= ^= |=

variable op= expression ⇔ variable = variable op (expression)

 j *= k + 3; ⇔ j = j * (k+3); /* NOT j = j * k+3; */

 int i =1, j = 2, k = 3, m = 4;

 i += j + k; ⇔ i += (j + k); ⇔ i = i + (j + k); /* 6 */

 j *= k = m + 5; ⇔ j *= (k = (m + 5)); ⇔ j = j * (k = (m + 5)); /*18*/

20

	Lexical Elements & Operators
	C Compiler
	C Program
	Characters used in a C Prog.
	Comments
	Keywords
	Identifiers (1/2)
	Identifiers (2/2)
	Constants (1/2)
	Constants (2/2)
	String Constants
	Operators & Punctuators (1/2)
	Operators & Punctuators (2/2)
	Precedence and Associativity of Operators
	Precedence and Associativity of Operators
	Increment and Decrement Operators (1/3)
	Increment and Decrement Operators (2/3)
	Increment and Decrement Operators (3/3)
	Assignment Operators (1/2)
	Assignment Operators (2/2)

