
The Fundamental Data Types

Declaration, Expression, Assignment

 Variables and constants are the objects that a program
manipulates.

 All variables must be declared before they can be used.
#include <stdio.h>
int main(void)
{
 int a, b, c; /*declaration*/
 float x, y = 3.3, z = -7.7; /*declaration with initialization*/

 printf(“Input two integers: “); /*function call*/
 scanf(“%d%d”,&b, &c); /*function call*/
 a = b + c; /*assignment*/
 x = y + z; /*assignment*/
}

2

 Declarations
− associate a type with each variable declared
− This tells the compiler to set aside an appropriate

amount of memory space to hold values associated
with variables.

− This also enables the compiler to instruct the
machine to perform specified operation correctly.
b + c (integer addition)
y + z (real number addition)

Declaration, Expression, Assignment

3

 Expressions
− Meaningful combinations of constants, variables, operators,

and function calls.
− A constant, variable, or function call itself is also an expression

a+b
sqrt(7.333)
5.0 * x – tan(9.0 / x)

− Most expressions have a value.
i = 7 assignment expression

<Examples of statements>
i = 7;
printf(“The plot thickens!\n”);
3.777;
a + b ;

Perfectly legal, but they are not useful

Declaration, Expression, Assignment

4

 Assignment statement
variable = expr ;

<Mathematical equation> <Assignment expression>
 x + 2 =0 x + 2 = 0 /*wrong*/
 x = x + 1 (meaningless) x = x + 1

!! Although they look alike, the assignment operator in C
and the equal sign in mathematics are NOT COMPARABLE

Declaration, Expression, Assignment

5

The Fundamental Data Types
Fundamentl data types: long form

char signed char unsigned char
signed short int signed int signed long int
unsigned short int unsigned int unsigned long int
float double long double

Fundamentl data types

char signed char unsigned char
short int long
unsigned short unsigned unsigned long
float double long double

Integral types
char signed char unsigned char
short int long
unsigned short unsigned unsigned long

Floating types float double long double

Fundamentl types grouped by functionality

6

Characters and the Data Type char

 type char
− A variable of type char can be used to hold small

integer values.

− 1 byte (8 bits) in memory space
 28, or 256, distinct values

• including lower- and uppercase letters, digits,
punctuation, and special char.s such as % and +

• including white space blank, tab, and newline

7

Characters and the Data Type char
 Most machines use either ASCII or EBCDIC character

codes to represent a character in bits.

 ASCII character code
− a character encoding-scheme
− A character constant has its corresponding integer value.
 ‘a’ (97) ‘b’ (98) ‘c’ (99) …
 ‘A’ (65) ‘B’ (66) ‘C’ (67) …
 ‘0’ (48) ‘1’ (49) ‘2’ (50) …
 ‘&’ (38) ‘*’ (42) ‘+’ (43) …
− No particular relationship btwn the value of the character

constant representing a digit and the digit’s intrinsic integer
value. (Ex.) ‘2’ ≠ 2

8

Characters and the Data Type char

printf(“%c”, ‘\a’); or putchar(‘\a’); /* it causes the bell to ring */
printf(“\”abc\””); /* “abc” is printed */
printf(“%cabc%c”, ‘\’’, ‘\’’); /* ‘abc’ is printed */

Special Characters
Name of character Written in C Integer value

 alert \a 7
 backslash \\ 92
 double quote \" 34
 newline \n 10
 null character \0 0
 single quote \' 39

 Nonprinting and hard-to-print characters require an escape sequence.
 \ (backslash character)
− an escape character
− is used to escape the usual meaning of the character that follows it.

9

Characters and the Data Type char
 Characters are treated as small integers

char c = ‘a’;
printf(“%c”, c); /* a is printed */
printf(“%d”, c); /* 97 is printed */
printf(“%c%c%c”, c, c+1, c+2); /* abc is printed */

char c;
int i;
for (i = ‘a’; i<= ‘z’; ++i)

printf (“%c”, i); /* abc…z is printed */
for (c = ‘0’; c<= ‘9’; ++c)

printf (“%d ”, c); /* 48 49 … 57 is printed */

10

Characters and the Data Type char
char c = ‘a’;
 c is stored in memory in 1 byte as 01100001 (97)

 The type char holds 256 distinct values
− singed char : -128 ~ 127
− unsigned char : 0 ~ 255

11

The Data Type int
 type int

− the principal working type of the C language
− integer values
− stored in either 2 bytes (=16 bits) or in 4 bytes (=32 bits)

■ 64-bit OS: 4 bytes or 8 bytes
− holds 232 distinct states (in case of 4 bytes)

-231, -231+1, … , -3, -2, -1, 0, 1, 2, 3, … , 231-1
(-2,147,483,648) (2,147,483,647)

#define BIG 2000000000 /* 2 billion */
int main(void)
{
 int a, b = BIG, c= BIG;
 a = b + c; /* out of range? */
 …… integer overflow !!

12

The Integral Types short, long, unsigned

 The type int is “natural” or “usual” type for working with
integers

 The other integral types, such as char, short, and long,
are intended for more specialized use.
− short (2 bytes)

■ when the storage is of concern
− long (4 bytes or 8 bytes)

■ when large integer values are needed
− short ≤ int ≤ long

13

 Type int and unsigned are stored in a machine WORD.
− 2 bytes, 4 bytes (, or 8 bytes)

 unsigned u;
 0≤ u ≤ 2wordsize-1
 0≤ u ≤ 232-1 (+4294967295 , 4 billion)

 Suffixes can be appended to an integer constant to
specify its type.

Suffix Type Example

u or U unsigned 37U

l or L long 37L

ul or UL unsigned long 37UL

Combining long and unsigned

The Integral Types short, long, unsigned

14

The Floating Types

 3 floating types
− float, double, long double
− holds real values such as 0.001, 2.0, and 3.14159
− A suffix appended to a floating constant to specify

its type

− The working floating type in C is double.
■ the constants 1.0 and 2.0 : double
■ the constant 3 : int

Suffix Type Example
f or F float 3.7F
l or L long double 3.7L

Combining long and unsigned

15

The Floating Types
 Floating constant

− decimal notation: 123456.7
− exponential notation

1.234567e5
= 1.234567 × 105

= 123456.7 (decimal point shifted five places to the RIGHT)

1.234567e-3
= 1.234567 × 10-3

= 0.001234567 (decimal point shifted three places to the LEFT)

Integer Fraction Exponent
333 77777 e-22

Floating constant parts for 333.77777e-22

16

The Floating Types
 Floating constant

− may contain an integer part, a decimal point, a fractional
part, and an exponential part.

− MUST contain either a decimal point or an exponential
part or both.

− If a decimal point is present, either an integer part or
fractional part or both MUST be present.

<Examples> <Not Examples>
 3.14159 3.14,159
 314.159e-2 314159
 0e0 (⇔ 0.0) .e0
 1. -3.14159 (floating constant expr.)

17

The Floating Types
 Possible values of a floating type

− Precision
■ the # of significant decimal places that a floating value carries.

− Range
■ The limits of the largest and smallest positive floating values

that can be represented in a variable of that type

 type float
− stored in 4 bytes
− Precision of 6 significant figures & Range of 10-38 to 1038

0.d1d2d3d4d5d6 × 10n

[each di is a decimal digit (positive) and -38 ≤ n ≤ 38]

18

The Floating Types
 type double

− stored in 8 bytes
− Precision of 15 significant figures & Range of 10-308 to 10308

0.d1d2 … d15 × 10n

[each di is a decimal digit (positive) and -308 ≤ n ≤ 308]

x = 123.45123451234512345; /* 20 significant digits */
 0.123451234512345 × 103 (15 significant digits)

(1) NOT all real numbers are representable
(2) floating arithmetic operations need not be exact

19

The Use of typedef

 typedef
− allows the programmer to explicitly associate a type with an

identifier

typedef char uppercase;
typedef int INCHES, FEET;
typedef ungined long size_t;

int main(void)
{
 uppercase u;
 INCHES length, width;
 …
}

(1) abbreviating long declarations
(2) having type names that reflect the intended use

20

The sizeof Operator
 sizeof

− a unary operator to find the # of bytes needed to store an
object

− sizeof(object)
object can be a type such as int or float, or an expression such
as a+b.

/* Compute the size of some fundamental types. */
#include <stdio.h>
int main(void)
{
 printf(“The size of some fundamental types is computed.\n\n”);
 printf(“ char:%3u byte \n”, sizeof(char));
 printf(“ short:%3u bytes\n”, sizeof(short));
 printf(“ int:%3u bytes\n”, sizeof(int));
 printf(“ float:%3u bytes\n”, sizeof(float));
 printf(“ double:%3u bytes\n”, sizeof(double));
}

21

The sizeof Operator

 sizeof
sizeof(char) = 1
sizeof(char) < sizeof(short) ≤ sizeof(int) ≤ sizeof(long)
sizeof(signed) = sizeof(unsigned) = sizeof(int)
sizeof(float) ≤ sizeof(double) ≤ sizeof(long double)

− sizeof(…) looks that it is a function, but it is not. An Operator.
− The type returned by the operator sizeof is typically unsigned.

22

The use of getchar() and putchar()
 getchar(), putchar()

− macros defined in stdio.h
− getchar()

■ reads a character from the keyboard

− putchar()
■ prints a character on the screen

#include <stdio.h>
int main(void)
{
 int c;
 while ((c = getchar()) != EOF) {
 putchar(c);
 putchar(c);
 }
 return 0;
}

23

The use of getchar() and putchar()
 the identifier EOF

− Mnemonic for “end-of-file”
− What is actually used to signal an end-of-file mark is system-dependent.
− The int value -1 is often used.
− One line of the header file stdio.h
 #define EOF (-1)

 int c;
− c is an int, it can hold all possible character values as well as the

special value EOF.

 (c = getchar()) != EOF;
− The subexpression c = getchar() gets a value from the keyboard and

assigns it to the variable c, and the value of the subexpression takes
on that value as well.

 c = getchar() != EOF ⇔ c = (getchar() != EOF)

24

The use of getchar() and putchar()
 ‘a’ ⇔ 97
 ‘a’+1 ⇔ ‘b’
 ‘z’ – ‘a’ ⇔ ‘Z’ – ‘A’ ⇔ 25
 A lowercase letter, c :
 c + ‘A’ – ‘a’ has a value of the corresponding uppercase letter.

#include <stdio.h>
int main(void)
{
 int c;
 while ((c = getchar()) != EOF)
 if (c>= ‘a’ && c<= ‘z’)
 putchar(c + ‘A’ – ‘a’);
 else
 putchar(c);
 return 0;
}

 25

Assignment Conversions

 For assignment operations, the value of the right side
is converted to the type of the left
− double to float conversion is implementation-

dependent (rounded or truncated)
− float to int causes truncation of any fractional part
− Longer integers are converted to shorted ones or

chars by dropping the excess high-order bits

 int i; char c;

 c=i;

26

Usual Arithmetic Conversions
 For binary operations with operands of different types, the “lower”

type is promoted to the “higher” type before operation proceeds.

 Conversion Rules
1. If either operand is long double, convert the other to long double
2. Otherwise, if either operand is double, convert the other to double

3. Otherwise, if either operand is float, convert the other to float
4. Otherwise (just integral type operands)
 ♦ If there is no unsigned operand

■ Convert char and short to int
■ Then, if either operand is long, convert the other to long

27

Usual Arithmetic Conversions

♦ If there is unsigned operand(s)
− If either operand is unsigned long int, the other is converted to

unsigned long int
− Otherwise, if one operand is long and the other is unsigned int,

the effect is system-dependent
■ If a long int can represent all values of an unsigned int in the system,

the unsigned int operand is converted to long int;
■ Otherwise, both are converted to unsigned long int

− Otherwise, if one operand is long, convert the other to long
− Otherwise, if either operand is unsigned int, the other is converted to

unsigned int
− Otherwise, both operands have type int.

28

Conversions and Casts

d = i; Widening
− The value of i is converted to a double and then assigned to d
i = d; Narrowing
− Loss of Information. The fraction part of d will be discarded.

Expression Type Expression Type

c - s / i int u * 7 - i unsigned

u * 2.0 - i double f * 7 - i float

c + 3 int 7 * s * ul unsigned long

c + 5.0 double ld + c long double

d + s double u - ul unsigned long

2 * i / l long u - l system-dependent

char c; short s; int i;
long l; unsigned u; unsigned long ul;
float f; double d; long double ld;

Declarations

29

Conversions and Casts
 Casts

− Explicit conversions

(double) i
− converts the value of i so that the expr. has type double
− The variable i itself remains unchanged.

 <Examples> <NOT Examples>
l = (long) (‘A’ + 1.0); (double) x = 77; /* ((double) x) = 77, Error*/

f = (float) ((int)d + 1);
d = (double) i / 3;

− The cast operator (type) is an unary operator.
(float) i + 3 ⇔ ((float) i) + 3

30

Hexadecimal and Octal Constants
♦ Octal Constants:
 075301 ⇔ 7 × 84 + 5 × 83 + 3 × 82 + 0 × 81 + 1
♦ Hexadecimal Constants:
 0x2A ⇔ 2 × 161 + 10 = 42
 0x5B3 ⇔ 5 × 162 + 11 × 161 + 3 = 20659

 Hexadecimal digits and corresponding decimal values
 Hexadecimal digit : 0 1 … 9 A B C D E F
 Decimal value : 0 1 … 9 10 11 12 13 14 15

31

#include <stdio.h>
int main(void)
{
 printf(“%d %x %o\n”, 19, 19, 19); /* 19 13 23 */
 printf(“%d %x %o\n”, 0x1c, 0x1c, 0x1c); /* 28 1c 34 */
 printf(“%d %x %o\n”, 017, 017, 017); /* 15 f 17 */
 printf(“%d\n”, 11 + 0x11 + 011); /* 37 */
 printf(“%x\n”, 2097151); /* 1fffff */
 printf(“%d\n”, 0x1FfFFf); /* 2097151 */
 return 0;
}

	The Fundamental Data Types
	Declaration, Expression, Assignment
	Declaration, Expression, Assignment
	Declaration, Expression, Assignment
	Declaration, Expression, Assignment
	The Fundamental Data Types
	Characters and the Data Type char
	Characters and the Data Type char
	Characters and the Data Type char
	Characters and the Data Type char
	Characters and the Data Type char
	The Data Type int
	The Integral Types short, long, unsigned
	The Integral Types short, long, unsigned
	The Floating Types
	The Floating Types
	The Floating Types
	The Floating Types
	The Floating Types
	The Use of typedef
	The sizeof Operator
	The sizeof Operator
	The use of getchar() and putchar()
	The use of getchar() and putchar()
	The use of getchar() and putchar()
	Assignment Conversions
	Usual Arithmetic Conversions
	Usual Arithmetic Conversions
	Conversions and Casts
	Conversions and Casts
	Hexadecimal and Octal Constants

