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: : : . 1-20A
Plasma Heating by Adiabatic Compression

* By suddenly increasing the vertical

magnetic field B, tokamak plasma

can be compressed in major radius.

: : 1
* As aresult, plasma moves toward stronger B field region (B « E)

and volume shrinks.

— Both temperature and density increase!
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Plasma Heating by Adiabatic Compression

This has been demonstrated in Adiabatic Toroidal Compressor (ATC)
in Princeton Plasma Physics Laboratory (1972-1975).

Compression in minor radius without shift in major radius is also

possible by changing Br,,-.

- This has been demonstrated in
TUMAN experiment in USSR around

the same period.
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4.1. Review of Single Particle Motion in a Strong Magnetic Field
4.1.1. Adiabatic Invariant

When magnetic field varies in space smoothly (i.e. p; < Lg = |VIn B|_1), we can
identify approximate constants of motion.
*Adiabatic” in here means slow variation in time and space. This is well illustrated

from the point of view of Quantum Mechanics (QM).
Let’s consider a Simple Harmonic Oscillator (SHO): Schrédinger Equation is

R 92 1
H(z) = ( aw + Eﬂlmgig)ﬁ','(;r) = Ev(r)

Here the eigenvalues are

E= hw,;.(ff + %)

where N is the quantum number (N =0,1.2,...).
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E = hay (N + %)

where N is the quantum number (N =0,1,2,...).

Suppose that potential well characterized by wp(t) is changed very slowly in the
time with a scale 7 (7 > 1/wp).

In this adiabatic process, what remains constant is “N” (eigenstates are pre-
served ).

While the energy (eigenvalue) changes in time. *N7” is an example of adiabatic
invariant.

In classical limit, N = E /wyp.



4.1.2. Adiabatic Invariant in Classical Limit
In Classical Mechanics (CM), the Hamiltonian of SHO is given by
2
H(p,q) = ;; + %mwﬁqg =F

e

Adiabatic invariant in CM is related to the conservation of the volume in the phase
space for appropriate action-angle variables.

Iz%dqp

This is also called *Action Invariant”.

For SHO the action invariant is

/ 2F E
I=7nLl4ly,=m 2?’?1E—2 = 2mr—
MW W

Thus except for a numerical factor 27, we recover N = E'/wg from SHO in QM.
(The useful formula N = E/wg represents the “Duality of Wave and Particles”.)
This illustration of geometric meaning of action invariant can be extended to
quasi-periodic motion (recall 7> 1/wp).

|.-24.
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4.1.3. Gyromotion in Slowly Varying Magnetic Field

Consider the gyrating motion of charged particles in slowly varying magnetic field
in time (1/w) and space (Lp).

For this gyration, the corresponding action invariant is the magnetic moment (the
Ist adiabatic invariant).

e Energy corresponding to gyration: F| = -miﬁ_;’ 2

e Frequency corresponding to gyration: (). = eB/mec
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= o 9/('53) (”ﬂi) This is not t constant
oL —Tnv — | O | —= 15 15 NNOL all exXaclt COIstal
ML e 2B

What is the error or precision of the statement?

What is the expansion parameter or smallness parameter describing this motion?
Ife, =w/Q. <« 1and eg = p;/Lp < 1,
the adiabatic invariant is good up to any order!

-t .t
Error = @( exp (— o ), exp (—C{mb ))
€ER €y



4.5. Second Adiabatic Invariant : | -26A

* Guiding center motion of mirror-trapped particles:

This is also periodic in nature.

] = 7€ v - ds : the loop integral of the parallel velocity

(a.27) alongatrapped particle trajectory.

where U" = \/Z(E;LMB)
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* This 2"d adiabatic invariant (J conservation) is not only useful in
magnetic mirror geometry, but also in tokamak configuration and in

the earth’s magnetic field (dipole field).

Banana-shape
orbit trapped
in low B field

e Note that this is also an “Action”:

1
J = f V) ds = E% P dq) No contribution to integral





