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Markovian Property

e Markovian Property

— Given past states and present state, conditional distribution of any
future state is independent of past states and depends only on the
present state.

e Markov Process

— A stochastic process that satisfies the Markovian property.
e Types

— Discrete time Markov chain (DTMC)

— Continuous time Markov chain (CTMC)
— Embedded Markov chain
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Discrete Time Markov Chain

event event event
Time index: m | | ll | + | | + | | time
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State duration

« The state duration has a geometric distribution.
¢ pl](m) — PI‘{Xm+1 =] | XO - il' X1 - iz, e Xm — l}

— Pr{Xm+1 =] |Xm = i}

- p;;(m) : one-step transition probability from state i to state |
at the m-th time index



Continuous Time Markov Chain

Event Event Event
Continuous ¢ ¢ ¢
time domain u A
t ks time
S
State X u X t X t+s
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State duration

» The state duration has an exponential distribution.
* pij(t,S) — Pr'{th+s =j |Xt =1, Xu = Xu O0<u< t}

= PriXy s =Jj | X =i}



Embedded Markov Chain

arrival departure
Original process * + + + + + + + + *
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distribution | State duration

I S S

EMC state i-1 i i-1 i-1 i-2

Exponential < >i< Si< >< >
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» The state duration of original process has general distribution; not Markov process.

* When observing the system only at departure epochs , the process has Markovian
property. Then, the process at observation times is called Embedded Markov chain.

» The original process and the embedded Markov chain have the same statistical
properties.



Mathematically analyzable process

« Markovian property
* Time homogeneity

o Homogeneous
» Ergodicity Ergodic
— Irreducible Markov Process

— Positive recurrent

— Aperiodic



Time homogenelity (1)

o |f the conditional probability, Pr{X,,,; =j | X,,, = i}, Is
Independent of m, the DTMC is said to be homogeneous.

Event : ¢ ¢ N # ¢
Observation |+1 m m
Time index

= pij =PriXpp =j 1 X =1} =PriXpng. = | X = i}
without respect to time index |, m

time

— The next state depends only on the current state and is independent of
observation times.



Time homogenelity (2)

The homogeneous DTMC is described with the state space, S,
and one-step transition probability matrix, P = [p;;],
or state transition probability diagram.

Example
— State space: S=1{1,2,3} 010,
1 1 1
— One-step transition probability matrix: P = | 4+ 4 2
1 1
| - 0 — ]
— State transition Probability diagram : 22

P12=1 l




Time homogenelity (3)

— One-step transition probability
pij = PriXpmy1 = j | X = i}

— N-step transition probability
Py™ = Pr{Xmin = j | Xm = i}

— Chapman-Kolmogorov equation
Py = Fes P ™ P
p (m+n) — p(m) o p M)



Ergodic Markov Chain (1)

* An ergodic Markov chain has a limiting distribution.

— State transition probability to state j converges to only one value
without respect to an initial state.

n—oo

— After a long period of time, an ergodic Markov chain has a distribution
Independent of the starting condition (limiting distribution).
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Ergodic Markov Chain (2)

v' Ensemble average distribution

— Let 7;("™ be the unconditional probability that DTMC is in state j at the
n-th time index, i.e., ;™ 2 Pr{X,, = j}

« Let I, (j,n) be an indicator representing that DTMC is in state j at the n-th
time index for the k-th sample path

: 1 ifbeingin statej
I,(j,n) =
- heGon) {O othewise

Yh—1 1 (jn)

nj(n) = lim : the average for innumerable sample paths
N—oo

7~ 0—>0—>0—>0—> - —>0—>0—>0—>0—> - —>0—>0—>0—>0—> - —> .
0—>1—>0—>2—> + —>2—>2—>1—>1—> - —=>2—>2—>1—>0—>  —> ..
0—>2—>0—>0—> - —>0—=>1—=>0—>0—> = —>0—>1—>0—>2—> = —> -
1—50-—>0-—>0—> + —>1-—30—>1->0—> - —>0-—>1-—>0—>2 —> = —> ..

N < 1>1—>0—>2—> — —>0—>2—>0—>2—>  —>2—=>0—=>2—>0—> - —> -
1—>2—>0—>0—> "+ —>2—>1—>0—>0—> " —>1>2>0—>1—>  —>-
2>0—>0—>1—> - —>1—>0—>2—>1—> - —>2—>1=>0—>1—> - —> .
2—>1—>0—>0—> " —>0—>2—>0—>0—> - —>0—>0—>0—>2—> " —> -
2—>2-—>0—>1—>  >1—>0—>2—>0—> - >1—>1—>1—>0—> - —> ..

(Ex.) Barbershop
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Ergodic Markov Chain (3)

T M) = Zie S T[i(o) P; j ("), where S is a state space

Ensemble average distribution at time limit : lim nj(")

n—>0o

lim ;™ = lim %7, P; ™

n—>0oo n—0o

- ZiES Tl,'i(o) lim Pl](n)

n—>0o

In an ergodic DTMC, since lim P;;™ =g,

n—>00

lim ;M= q; ¥;cem© = q;

n—>0o

When 7; denotes an ensemble average distribution of ergodic DTMC at
time limit, i.e., 7; £ lim ;"™

n—>0o
T —dj

Ensemble average distribution is the same as the limiting distribution
11




Ergodic Markov Chain (4)

— T[](n) — Zlesnl(n_l)Pl

lim T[j(n) = lim Ziesni(n_l)Pij

n—00 n—>00

= 7= Dies TiPyj

=ies ( lim ﬂi(n_l)) P;j

n—>0o

We can obtain the state distribution of ergodic DTMC, by
solving (1) and (2).

- T[i:ZjEST[iji forallieS ... (1)
- ZiEST[iz 1 (2)

12



Ergodic Markov Chain (5)

« Example

— State space S={1,2,3}
— State transition Probability diagram :
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Ergodic Markov Chain (6)

v Time average distribution

— Let I(j,n) be an indicator representing that DTMC is in state j at
the n-th time index for any one sample path
. I(,n) = {1 if being in state j

0 othewise
Z£=O I(],n)

— 1; = lim

J T—>o00

any onesample path: 2 —>2 —>0—>1 —> —~—>1—>0—>2—>0—> ——>1—>1—>1—>0—> - —>

nth
In Ergodic DTMC, the ensemble average distribution is the
same as the time average distribution.

3 : ZNz I .)n [ T: I ',Tl
- = lim lim k=11k(J,n) — lim 2n=0101)
n—-oo N—-oo N T — 0o
ensemble average at time limit time average

© Strong law of large numbers

— the probability that, as the number of trials n goes to infinity, the average of the
observations converges to the expected value, is equal to one.
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Ergodic Markov Chain (7)

* 7; can be interpreted as two aspects; one Is the time average, and
the other is the ensemble average.
— Time average

« 1; IS the long-run time proportion that the DTMC is in state j on any
sample path

— Ensemble average
- 1; IS the probability that the state of DTMC is i in steady state.

o {X(t)}isergodic in the more general sense if all its measures can
be determined or well approximated from a single realization of
the process.

e Itis often done in analyzing simulation outputs.
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Necessary Conditions for an Ergodic MC (1)

\/

s lrreducible

o State j is reachable from state i if there is an integer n > 1 such
that Pl](n) > 0.

« If state i is reachable from state j and state j is reachable from state i,
state i and j are said to communicate.

o |f all states in the Markov chain communicate to each other, the
Markov chain is called “irreducible”.

» QD an b

reducible irreducible
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Necessary Conditions for an Ergodic MC (2)

s Positive recurrent
* fi; : the probability of ever making a transition into state j, given that
Markov chain is in state i.
o Stateiissaidto berecurrent if f;; =1
» If the mean recurrent time is finite, state i is a positive recurrent state.

» If all states in the Markov chain are positive recurrent, the Markov
chain is called “positive recurrent”.

* Anirreducible Markov chain having the finite number of states is
positive recurrent.
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Necessary Conditions for an Ergodic MC (3)

»» Aperiodic

e State i is said to have a period of d, if P;;(™¥ = 0 whenever n is not
divided by d and d is the greatest integer with this property.

o A state with period 1 is an aperiodic state.

« If all states in the Markov chain are aperiodic, the Markov chain is

called “aperiodic™. aperiodic if there is
at least one self-loop

Periodic Aperiodic Aperiodic
GCD;(2,4,6,8,...) =2 GCD;(2,3,4,5,...) =1 GCD;(2,4,5,6,7,8,...) =1
GCD;(2) =2 GCD;(2,3,4,5,...)=1 GCD;(2,3,456,7,...)=1
GCD,(2,4,6,8,...) =2 GCD,(2,3,45,...) =1 GCD.(1,2,3,45,6,...)=1

GCDg(n4, ny, ... ) : the greatest common divisor of the state transition steps (n, n,, ...) for back to the state s.
18



Stationary ergodic DTMC

. nj(”) = Yics T[i(n_l)Pij- = =1 ®-Dp
e Inan ergodic DTMC, if the initial state distribution I1(®) is set to the
limiting distribution,
MW =mO@p =[P =11
N@ =mWp =MP =11
= MM =11, foralln
o = n<m Vp =np=1

The state distribution is invariant over time, m;= Pr{X,, = i} forall n
= stationary process

e Insummary, an ergodic DTMC of which the initial state distribution
IS set to the limiting distribution is stationary, and then the limiting

distribution is called the stationary distribution. y



Exercisel: DTMC

Of A AEIO| DAX|SO| B2 40| Z2MAC| Tt GIMIF & &2 q
2 CAGICE

B{IHO| 37| K O|CH, DI AQIQ ©f SAFSH: DIMKISQ AASICt
AKIO] R4S Of A2AGH (time slot) ARROIAGH DHe SHCH, DA X

R4OlIe & GHQIAIRIO| H3UCH, & HHO SHIQ| TIMXIGH Ri4&r & Qlct,

CIMRIOE 4PROE Re 8L pOICH FR R4S OINKIE CFg of
QI AI2HOl CHA] X4 6HOJOF &HCE,
SARISH: QIOjo| DIMKIDF A4AS Stg e stoiat

System state: the number of messages in the system at the beginning of each time slot

pa+(1-p)(1-q) pg+(1-p)(1-q)  Pg+(1-p)(1-0) pg+(1-p)(1-q)

qmy = p(1 —q)my
(1-p)qr;=p(1—-—q)mj;; for 1<i<K-2
(1 —p)qrk_1 = prg

o+t e =1 Solution: qmg
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Exercise2: DTMC

« A man goes for a run every morning. When he leaves his house for his run, he is
equally likely to go out either the front or the back door. Similarly, when he
returns home, he is equally likely to go to either the front or back door. The
runner owns five pairs of running shoes that he takes off after the run at
whichever door he happens to be. If there are no shoes at the door from which he
leaves to go running, he runs barefooted.

(1) Set this up as a Markov chain. Give the states and the transition probabilities
2 Determine the proportion of days that he runs barefooted

System state: the number of shoes in the front door at the start of a running

1/2 1/2 1/2
1/4 1/4 3/4
'0.0.0.6 0.
(f, f) (b,b): no change 1/4
(f,b): -1
(b, ): +1 %T[i _ %T[i+1 for 0<i<4
_ B B . 1 1 1
(1)7'[0: Ty =Ty =T3 =Ty =Ty =1/6 (Z)ETCO-I_E]TS :E 21
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