
Structures

Structures
 Array

− A derived type used to represent homogeneous
data

 Structure
− provides a means to aggregate variables of different

types

struct card {
 int pips;
 char suit;
};

a structure tag name

 This declaration creates the
derived data type struct card.

 A user-defined type
 Just a template, no storage

allocated

2

Structures
 struct card {

 int pips;
 char suit;
};
struct card c1, c2;

 struct card {
 int pips;
 char suit;
} c1, c2;

 struct card {
 int pips;
 char suit;
};
typedef struct card card;
card c1, c2;

 struct card {
 int pips;
 char suit;
} deck[52];

− The identifier deck is declared

to be an array of struct card

 typedef struct{
 float re;
 float im;
} complex;
complex a, b, c[100];

− When using typedef to name

a structure type, the tag name
may be unimportant

3

Structure Assignment

 Structure assignment
c1 = c2;

 Member access operator .
structure_variable.member_name
c1.pips = 3;
c1.suit = ‘s’;

4

Structures
 Within a given structure, member names must be unique.
 Members in different structures can have the same name.

struct fruit {
 char *name;
 int calories;
};
struct vegetable {
 char *name;
 int calories;
};
struct fruit a;
struct vegetable b;

a.calories = 100;
b.calories = 120;

5

Structures
 If a tag name is not supplied, then the structure type

cannot be used in later declarations.

struct {
 int day, month, year;
 char day_name[4];
 char month_name[4];
} yesterday, today, tomorrow;

vs.
struct date {
 int day, month, year;
 char day_name[4];
 char month_name[4];
};
struct date yesterday, today, tomorrow;

6

Accessing Members of a Structure
[class_info.h]

#define CLASS_SIZE 100
struct student{
 char *last_name;
 int student_id;
 char grade;
};

[grade.c]
#include “class_info.h”
int main()
{
 struct student tmp, class[CLASS_SIZE];

 tmp.grade = ‘A’;
 tmp.last_name = “Hong”;
 tmp.student_id = 910017;
 …
}

7

/* Count the failing grades. */

#include “class_info.h”
int fail(struct student class[])
{
 int i,cnt = 0;

 for (i=0; i<CLASS_SIZE; i++)
 cnt += class[i].grade == ‘F’;
 return cnt;
}

⇔ int fail(struct student *class)

⇔ cnt += (class[i].grade == ‘F’);

Accessing Members of a Structure

8

 The member access operator ->
− access the structure members via a pointer

pointer_to_structure -> member_name

 ⇔ (*pointer_to_structure).member_name

 *pointer_to_structure.member_name
 ⇔ *(pointer_to_structure.member_name)

Accessing Members of a Structure

9

[complex.h]
struct complex{
 double re;
 double im;
};
typedef struct complex complex;

[2_add.c]
#include “complex.h”
void add(complex *a, complex *b, complex *c)
{
 a->re = b->re + c->re;
 a->im = b->im + c->im;
}

Accessing Members of a Structure

10

Operator Precedence and Associativity
Operator Associativity

 () [] . -> ++ (postfix) -- (postfix) left to right
 ++ (prefix) -- (prefix) | ~ sizeof (type)
 + (unary) - (unary) & (address) * (dereference) right to left

 * / % left to right
 + - left to right
 << >> left to right
 < <= > >= left to right
 == != left to right
 & left to right
 ^ left to right
 | left to right
 && left to right
 || left to right
 ?: right to left
 = += -= *= /= etc. right to left
 , (comma operator) left to right

11

Accessing Members of a Structure

Expression Equivalent expression Value
tmp.grade p->grade A
tmp.last_name p->last_name Hong
(*p).student_id tmp.student_id 910017
p->last_name - 1 ((p->last_name)) - 1 G
*(p->last_name + 2) (p->last_name)[2] n

Declarations and Initializations

struct student{
 char *last_name;
 int student_id;
 char grade;
};
struct student tmp, *p = &tmp;
tmp.grade = 'A';
tmp.last_name = "Hong";
tmp.student_id = 910017;

12

p
tmp

A H o n g 9110017

Using Structures with Functions
 When a structure is passed as an argument to a function, it is

passed by value
− A local copy is made for use in the body of the function.
− If a structure member is an array, the array gets copied as well.
− relatively inefficient !!

struct dept {
 char dept_name[25];
 int dept_no;
}
typedef struct {
 char name[25];
 int employee_id;
 struct dept department;
 struct home_address *a_ptr;
 double salary;
 ….
} employee_data;

13

Using Structures with Functions
employee_data update(employee_data r)
{
 ….
 printf(“Input the department number: “);
 scanf(“%d”, &n);
 r.department.dept_no = n;

 ….
 return r;
}

employee_data e;

e = update(e);

⇔ (r.department).dept_no = n; ⇔ (p->department).dept_no = n;

void update(employee_data *p)
{
 ….
 printf(“Input the department number: “);
 scanf(“%d”, &n);
 p->department.dept_no = n;

 ….
}

employee_data e;

update(&e);

14

Initialization of Structures
 struct card {

 int pips;
 char suit;
};
typedef struct card card;

card c = {13, ‘h’};

 typedef struct{
 float re;
 float im;
} complex;

 complex a[3][3] = {
 {{1.0, -0.1}, {2.0, 0.2}, {3.0, 0.3}},
 {{4.0, -0.4}, {5.0, 0.5}, {6.0, 0.6}}
}; /* a[2][] is assigned zeros */

15

Unions (1/2)
 union

− a derived type, following the same syntax as the structures
− have members that share storage
− defines a set of alternative values that may be stored in a shared portion of

memory
− The compiler allocates a piece of storage that can accommodate the largest of

members.

 union int_or_float {
 int i;
 float f;
 }

 union int_or_float a, b, c;

16

Unions (2/2)

#include <stdio.h>
typedef struct {
 unsigned b0:8, b1:8, b2:8, b3:8
} word_bytes;

typedef struct {
 unsigned b0:1, b1:1, b2:1, b3:1,
 b4:1, b5:1, b6:1, b7:1,
 b8:1, b9:1, b10:1, b11:1,
 b12:1, b13:1, b14:1, b15:1,
 b16:1, b17:1, b18:1, b19:1,
 b20:1, b21:1, b22:1, b23:1,
 b24:1, b25:1, b26:1, b27:1,
 b28:1, b29:1, b30:1, b31:1
} word_bits;

17

 typedef union {
 int i;
 word_bits bit;
 word_bytes byte;
 } word;

 int main(void)
 {
 word w = {0};

 w.bits.b8=1;
 w.byte.b0=‘a’;
 printf(“%d\n”, w.i);
 return 0;
 }

 Bit Fields
− An int or unsigned member of a structure or union can be declared to consist

of a specified number of bits, i.e., a bit field member.
− Width (# of bits) is specified by a nonnegative constant integral expression

following a colon (:).

00000000 00000000 00000001 01100001 (353)

	Structures
	Structures
	Structures
	Structure Assignment
	Structures
	Structures
	Accessing Members of a Structure
	Accessing Members of a Structure
	Accessing Members of a Structure
	Accessing Members of a Structure
	Operator Precedence and Associativity
	Accessing Members of a Structure
	Using Structures with Functions
	Using Structures with Functions
	Initialization of Structures
	Unions (1/2)
	Unions (2/2)

