Structures

Structures

=" Array

— A derived type used to represent homogeneous
data

= Structure
— provides a means to aggregate variables of different

types
a structure tag name
struct car/d { v This declaration creates the
: —— derived data type struct card.
INt pIPS; _
. v A user-defined type
char suit;

v Just a template, no storage
}; allocated

Structures

struct card {
int pips;
char suit;
1

struct card c1, c2;

struct card {
int pips;
char suit;

}cl,cz;

struct card {
int pips;
char suit;
1
typedef struct card card,
card cl, c2;

struct card {
int pips;
char suit;
} deck[52];

— The identifier deck is declared
to be an array of struct card

typedef struct{
float re;
float im;
} complex;
complex a, b, c[100];
— When using typedef to name

a structure type, the tag name
may be unimportant

Structure Assignment

= Structure assignment
cl=c2;

" Member access operator .

structure variable.member name

cl.pips =3;
cl.suit ='s’;

Structures

= Within a given structure, member names must be unique.
= Members in different structures can have the same name.

struct fruit {

char *name;
int calories;
struct vegetable {
char *name:
int calories;

struct fruit a;
struct vegetable Db;

a.calories = 100;
b.calories = 120;

Structures

= |f a tag nhame is not supplied, then the structure type
cannot be used In later declarations.

struct {
int day, month, year;
char day _name[4];
char month_name[4];

} yesterday, today, tomorrow;

VS.

struct date {
int day, month, year;
char day_name[4];
char month_name[4];
1

struct date yesterday, today, tomorrow;

Accessing Members of a Structure

[class_info.h]
#define CLASS_SIZE 100

struct student{
char *last_name;
int student_id;
char grade;

|3
[grade.c]

#include “class_info.h”
int main()

]
struct student tmp, class[CLASS SIZE];

tmp.grade = ‘A’;
tmp.last_name = “Hong”;
tmp.student_id = 910017,

Accessing Members of a Structure

/* Count the failing grades. */

#include “class_info.h”
int fail(struct student class|]) < int fail(struct student *class)

{

inti,cnt =0;

for (i=0; i<CLASS_SIZE; i++)
cnt += class[i].grade == ‘F’; < cnt += (class][i].grade == ‘F’);
return cnt;

Accessing Members of a Structure

= The member access operator ->
— access the structure members via a pointer

pointer_to_structure -> member_name
< (*pointer_to_structure).member_name

*pointer_to_structure.member_name
< *(pointer_to_structure.member _name)

Accessing Members of a Structure

[complex.h]

struct complex{
double re;
double im;

1

typedef struct complex complex;

[2_add.c]
#include “complex.h”
void add(complex *a, complex *b, complex *c)
{
a->re = b->re + c->re;
a->im = b->Im + c->im;

Operator Precedence and Associativity

Operator Associativity

0O 1[I - -> 4+ (postfix) -- (postfix) left to right
++ -- =

+ (fjpnr::;x)) - (ﬁprfzryx)) 8|L (addressslie*0 Id(zg]?e)rence) right to left
* % left to right
+ - left to right
<< >> left to right
< <= > >= left to right
= I= left to right
& left to right
. left to right
| left to right
&& left to right
| left to right
= right to left
= += -= *= = etc. right to left
, (comma operator) left to right

Accessing Members of a Structure

Declarations and Initializations

struct student{
char *last_name;
int student id;

}.char grade; tmp

s:truct student tmp, *p = &tmp; P —
tmp.grade ="'A’;

tmp.last name = "Hong";

tmp.student id =910017;

Expression Equivalent expression Value
tmp.grade p->grade A
tmp.last_name p->last_name Hong
(*p).student _id tmp.student id 910017
p->last_name - 1 ((p->last_name)) - 1 G

*(p->last_name + 2)

(p->last_name)[2]

n

Using Structures with Functions

= When a structure is passed as an argument to a function, it is
passed by value

— Alocal copy is made for use in the body of the function.
— If a structure member is an array, the array gets copied as well.
— relatively inefficient !!

struct dept {
char dept_name[25];

int dept_no;
}
typedef struct {
char name[25];
int employee id;

struct dept department;
struct home_address *a_ptr;
double salary;

} employee data,;

Using Structures with Functions

employee data update(employee_datar)

{

printf(“Input the department number: *);
scanf(“*%d”, &n);
r.department.dept_no = n;

< (r.department).dept_no = n;

returnr;

employee data e;

e = update(e);

void update(employee_data *p)

f

printf(“Input the department number: *);
scanf(“%d”, &n);
p->department.dept_no = n;

< (p->department).dept_no = n;

employee data e;

update(&e);

Initialization of Structures

= struct card {
int pips;
char suit;
1

typedef struct card card;
card c ={13, ‘h’};

= typedef struct{
float re;
float im;
} complex;

complex a[3][3] ={
{{1.0, -0.1}, {2.0, 0.2}, {3.0, 0.3}},
{{4.0, -0.4}, {5.0, 0.5}, {6.0, 0.6}}
}; [a[2][] is assighed zeros */

Unions g1/22

= union
— aderived type, following the same syntax as the structures
— have members that share storage
— defines a set of alternative values that may be stored in a shared portion of
memory
— The compiler allocates a piece of storage that can accommodate the largest of
members.

union int_or_float {
Int I
float f;

union int_or float a, b, c;

Unions (2/2)

= Bit Fields
— An int or unsigned member of a structure or union can be declared to consist
of a specified number of bits, i.e., a bit field member.

— Width (# of bits) is specified by a nhonnegative constant integral expression

following a colon (©).

#include <stdio.h>

typedef struct {
unsigned
} word_bytes;

typedef struct {

b0:8, b1:8, b2:8, b3:8

typedef union {
int i
word_bits bit;
word_bytes byte;
} word,;

unsigned bO0:1, b1:1, b2:1, b3:1, int main(void)

b4:1, b5:1, b6:1, b7:1, {
b8:1, b9:1, b10:1, b11:1, word w = {0};
b12:1, b13:1, b14:1, b15:1,
b16:1, b17:1, b18:1, b19:1, w.bits.b8=1;
b20:1, b21:1, b22:1, b23:1, w.byte.b0="a’;
b24:1, b25:1, b26:1, b27:1, printf(“%d\n”, w.i);
b28:1, b29:1, b30:1, b31:1 return O;

} word_bits; }

00000000 00000000 00000001 01100001 (353)

	Structures
	Structures
	Structures
	Structure Assignment
	Structures
	Structures
	Accessing Members of a Structure
	Accessing Members of a Structure
	Accessing Members of a Structure
	Accessing Members of a Structure
	Operator Precedence and Associativity
	Accessing Members of a Structure
	Using Structures with Functions
	Using Structures with Functions
	Initialization of Structures
	Unions (1/2)
	Unions (2/2)

