Structure of polymers

chemical structure

- atomic structure (of repeat unit)
- □ isomers ~ configuration
 - cis-trans isomer
 - 1,2-, cis-1,4-, trans-1,4-PBD
 - tacticity Chapt 15
 - isotactic/syndiotactic/atactic
- skeletal structure
 - linear
 - branched
 - crosslinked

Ch 10 sl 24

physical structure

- single-chain structure
 - conformation
 - \rightarrow size and shape of single chain

- aggregation structure
 - amorphous state Chapt 16
 - \leftarrow unperturbed-state conformation
 - semicrystalline state Chapt 17
 - ← preferred conformation

can be

a chain in different times, a chain at different Temp's, different chains in the bulk, or different polymers

(different chain stiffness)

Modeling a polymer chain

 \Box chain dimension \leftarrow stiffness \leftarrow structure

- comparison of modeling and experiments
- a polymer chain with
 - n bonds of length l
 - □ n−1 bond angles θ
 - □ n−2 rotational angles ϕ
 - end-to-end distance r = a measure of dimension
 - contour length nl does not reflect structure

modeling

- □ freely jointed chain ~ I only fixed
- $\hfill\square$ freely rotating chain \sim I and θ fixed
- chain with hindered rotation $\sim I, \theta$ fixed; ϕ restricted

Freely jointed chain

bond length only fixed

□ random-flight analysis (← random-walk)

□ probability fining the end at (x,y,z) r away from O

$$W(x, y, z) = \left(\frac{\beta}{\pi^{1/2}}\right)^3 \exp\left[-\beta^2 (x^2 + y^2 + z^2)\right] = \left(\frac{\beta}{\pi^{1/2}}\right)^3 \exp\left[(-\beta^2 r^2)\right]$$
$$\beta = [3/(2nl^2)]^{1/2}$$

a Gaussian distribution function → 'Gaussian chain'
 highest at 0 'random coil'

probability fining the end at distance r

$$W(r)dr = W(x, y, z) \times 4\pi r^2 dr = 4\pi \left(\frac{\beta}{\pi^{1/2}}\right)^3 r^2 \exp(-\beta^2 r^2)$$

• max not at 0, but at $r = (2/3)^{\frac{1}{2}} n^{\frac{1}{2}} I = 0.82 < r^2 > \frac{1}{2}$

Fig 10 2.0 $W(x,y,z)/10^{-5} \text{ nm}^{-3}$ 0. Fig 10.4 0.5 0.0 0 10 20 30 40 50 60 (a) r/nm 4.0 $W(r)/10^{-2} \text{ nm}^{-1}$ 1.0 0.010 20 30 40 50 60 0 (b) r/nm

□ random-flight analysis (cont'd)
□
$$\langle r^2 \rangle = \int_{0}^{\infty} r^2 W(r) dr = \mathbf{n} l^2$$
 < > average (over time or chains)
□ $\langle r^2 \rangle_{\mathbf{f}}^{1/2} = n^{1/2} l$

- root-mean-square (RMS) end-to-end distance
- $n^{\frac{1}{2}}$ smaller than contour length [if $n = 10^4$, 1/100 smaller]

vector analysis

\Box e-to-e vector $\mathbf{\bar{r}} = \sum \mathbf{\bar{r}}_i$

• scalar magnitude of $\check{\mathbf{r}}$, $\mathbf{r} = (\check{\mathbf{r}} \cdot \check{\mathbf{r}})^{\frac{1}{2}}$

 $\Box r^{2} = \sum_{i=1}^{n} \bar{\mathbf{r}}_{i} \sum_{j=1}^{n} \bar{\mathbf{r}}_{j} = \sum_{i=1}^{n} \bar{\mathbf{r}}_{i}^{2} + 2 \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \bar{\mathbf{r}}_{i} \bar{\mathbf{r}}_{j}$

$$\Box \langle r^2 \rangle = nl^2 + 2 \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \langle \bar{\mathbf{r}}_i \bar{\mathbf{r}}_j \rangle = n |^2$$

 $0 \leftarrow$ random disposition of bond vectors

Freely rotating chain

bond length and bond angle fixed

- valence angle model'
- reduced artificiality from FJC

chain dimension

$$\left\langle r^{2}\right\rangle_{\mathrm{fa}} = nl^{2}\left(\frac{1-\cos\theta}{1+\cos\theta}\right)$$

□ FRC with sp³ atoms [θ =110°]

$$\left\langle r^{2}\right\rangle _{\mathrm{fa}}=2nl^{2}$$

■ FRC is 2^{1/2} times larger than FJC.

For PE with 10000 bonds, $n = 10^4$, l = .15 nm contour length nl = 1500 nm or $nl \cos 35^\circ = 1230$ nm $r_{FJC} = 15$ nm $r_{FRC} = 21$ nm

Chain with restricted rotation

 I and θ fixed, and <u>not</u> all rotational angles allowed
 only some discrete states allowed.
 rotational isomeric state [RIS] model

for butane

Dimension of chain with 1st-order interaction

$$\left\langle r^{2}\right\rangle_{0} = nl^{2}\left(\frac{1-\cos\theta}{1+\cos\theta}\right)\left(\frac{1+\overline{\cos\phi}}{1-\overline{\cos\phi}}\right)$$

 $\overline{\cos \phi} = \frac{u(t) \cos 0^\circ + u(g^+) \cos (120^\circ) + u(g^-) \cos (-120^\circ)}{u(t) + u(g^+) + u(g^-)}$ $u(\phi) = \exp \left[-E(\phi)/kT\right]$

□ for PE at 400 K

•
$$u(t) = 1$$
, $u(g) = .5 \rightarrow \overline{\cos \phi} = .25 \rightarrow \left(\frac{1 - \cos \theta}{1 + \cos \theta}\right) \left(\frac{1 + \overline{\cos \phi}}{1 - \overline{\cos \phi}}\right) = 3.4$

• experiments (light scattering, neutron scattering) $\rightarrow 6.8$

why the difference?

2nd-order [4-bond] interaction

- □ for pentane, 2-bond rotation
- 9 RIS's
- \Box g⁻g⁺ and g⁺g⁻ are <u>not</u> allowed (due to very high energy)
- pentane interaction, 'short-range interaction'
- Bond rotation should be considered pairwise.

□ RIS calculation Nobel prize 1974

- taking pairwise potential
 - u(φ_i,φ_{i+1}) not u(φ)
- tensor transformation and calculation

$$\Box \langle r^2 \rangle_0 = \sigma^2 n l^2 \left(\frac{1 - \cos \theta}{1 + \cos \theta} \right) = \sigma^2 \langle r^2 \rangle_{\text{FRC}}$$

• σ = steric parameter ~ rarely used

$$\Box \langle r^2 \rangle_0 = C_{\infty} n l^2 \qquad C_{\infty} = \frac{\langle r^2 \rangle_0}{n l^2} = \langle r^2 \rangle / \langle r^2 \rangle_{FJC}$$

 $\langle r^2 \rangle = nl^2 + 2 \sum_{i=1}^{n-1} \sum_{j=i+1}^n \langle \bar{\mathbf{r}}_i \bar{\mathbf{r}}_j \rangle$

• C_{∞} = characteristic ratio ~ a measure of chain stiffness \leftarrow structure

Polymer	Temperature / °C	σ	C_{∞}	
Polyethylene	140	1.8	6.8	$C_{\infty} = 5 - 10$
Isotactic polypropylene	140	1.6	5.2	$C_{\infty}^{1/2} = 2 - 3$
Poly(vinyl chloride)	25	1.8	6.7	
Polystyrene	25	2.3	10.8	
Polystyrene	70	2.1	9.2	Table 10.3

Quantities characterizing chain

dimension

- □ RMS end-to-end distance, $< r^2 > \frac{1}{2}$
- □ RMS radius of gyration, $<s^2>^{\frac{1}{2}}$
 - RMS distance from center of mass

 $\left\langle r^2 \right\rangle^{1/2} = \frac{\left\langle s^2 \right\rangle^{1/2}}{6^{1/2}}$

- contour length
 - nl or nl sin (θ/2)

stiffness

- \Box characteristic ratio, C_{∞}
- □ Kuhn length, b = C_{∞} l or C_{∞} l / sin (θ /2)
 - Kuhn chain = statistically equivalent FJC
- □ persistence length, a = $[(C_{\infty}+1)/2]$ |

Chain with excluded volume

intrachain volume exclusion
 = 'long-range interaction'
 makes chain larger

$$\Box \langle r^2 \rangle^{1/2} = \alpha_r \langle r^2 \rangle_0^{1/2}$$

- $\alpha \sim \text{expansion parameter}$
- □ in a good solvent
 - repulsion(polymer-polymer) > repulsion(polymer-solvent)
 - chain expands, $\alpha > 1$
- □ in a poor solvent
 - repulsion(polymer-polymer) < repulsion(polymer-solvent)</p>
 - chain shrinks, $\alpha < 1$
 - Actually, $\alpha \approx 1$ and chain precipitates.

$$\Box \langle r^2 \rangle^{1/2} = \alpha_r \langle r^2 \rangle_0^{1/2} \text{ (cont'd)}$$

 \Box in a certain poor solvent with $\alpha = 1$

- repulsion(polymer-polymer) = repulsion(polymer-solvent)
- polymer = solvent; solution behaves ideally
- Chain neither expands nor shrinks.
- `phantom' or `ghost' chain
- theta [Θ] condition
 - in a theta solvent/temperature

$$\boldsymbol{\beta}_{e} = C_{e} \left[\left(\frac{\theta}{T} \right) - 1 \right] = \boldsymbol{0}$$

• β_e = excluded volume integral = volume excluded by segment

- 'unperturbed state' or unperturbed dimension [<r²>₀]
 - unperturbed by environment [solvent] or EV effect

• $< r^2 > = < r^2 >_{EV} = < r^2 >_{RIS} = < r^2 >_0$ at theta [Θ] condition

Real chain in bulk

in bulk amorphous state

- □ The neighbor is the polymer chain with the same type.
 - instead of solvent
- repulsion(polymer-polymer, intra)
 - = repulsion(polymer-polymer, inter)
- □ Chains are in unperturbed states.
- proposed by Flory
- proved by SANS exp't later
- valid for melt and semicrystalline states

- RIS model describes the state of single chain in bulk (melt, amorphous, semicrystalline).
 - chain in crystal ~ conformation with the lowest energy