Chapter 18 Multicomponent Polymers

Polymer blends Copolymers

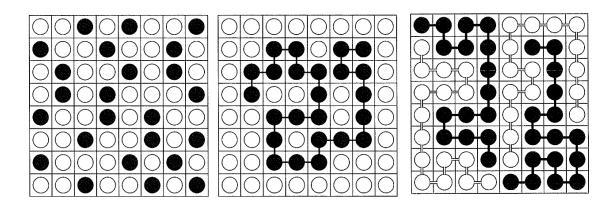
Multicomponent polymers

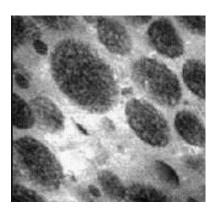
- = polymers with two or more components
 - copolymers ~ different repeat unit
 - 1-phase ~ random, alternating
 - phase-separated ~ block, graft
 - blends [alloys] ~ different polymer
 - miscible ~ very few
 - immiscible ~ most
 - composites ~ different material Chapter 24
 - carbons, ceramics, metals

for

- cost
- improving property
- special morphology

Polymer blends


Most polymer blends are immiscible.


 $\Delta G_{\rm m} = \mathbf{R} T[n_1 \ln \phi_1 + n_2 \ln \phi_2 + x_1 n_1 \phi_2 \chi]$

$$\Delta G_{\rm m} = \Delta H_{\rm m} - T \Delta S_{\rm m} \qquad \qquad \phi_{\rm l} = \frac{N_1 x_1}{(N_1 x_1 + N_2 x_2)}$$

 $\Delta G_{\rm m} = \Delta G_{\rm m}^{\rm contact} - T \Delta S_{\rm m}^{\rm comb}$

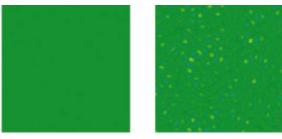
□ n_1 and n_2 very small $\rightarrow \Delta S_m$ (> 0) very small (≈ 0) □ ΔG_m dominated by χ (> 0)

Phase behavior

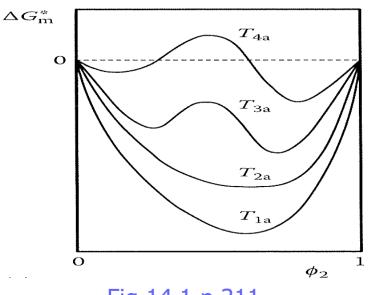
See §14.2 pp310-313 for polymer solution

 $\Box \Delta G_m^* vs \phi_2$ at different temp

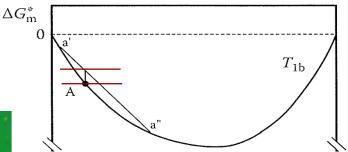
$$\Delta G_{\rm m}^* = \mathbf{R}T\left[\phi_1 \ln\phi_1 + \left(\frac{\phi_2}{x}\right)\ln\phi_2 + \chi\phi_1\phi_2\right]$$

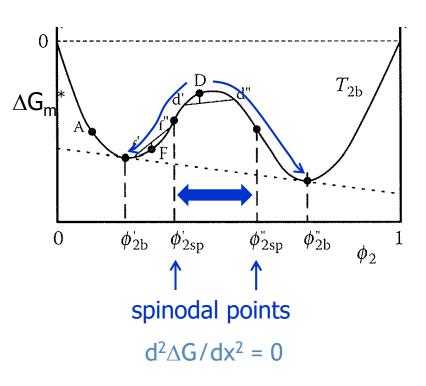

 $\Delta G_m^* = \Delta G_m / (n_1 + xn_2)$

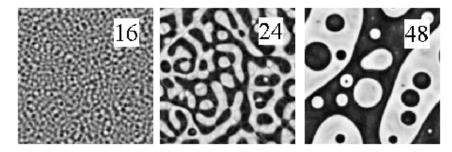
= ΔG_m per mole of lattice [segment]


 \Box at T_{1b}

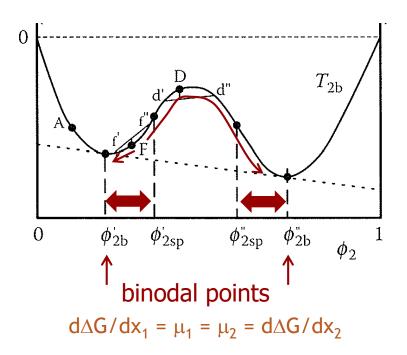
• $\Delta G_m^* < 0$ and no inflection point

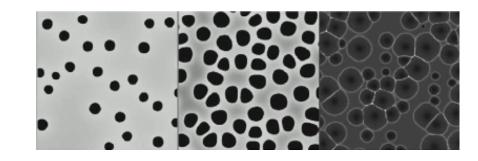

- ΔG for phase separation > 0
- miscible at all compositions



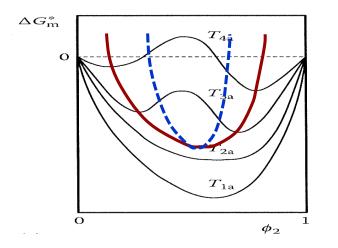


• at T_{2b} between ϕ'_{2sp} and ϕ''_{2sp}


- between the inflection points
- local minor composition fluctuation (D to d' and d")
 - lower the energy $[\partial^2 \Delta G / \partial x^2 < 0]$
 - ΔG for phase separation < 0
- phase unstable (to fluctuation)
 - phase-separate to ϕ'_{2b} and ϕ''_{2b}
- spinodal decomposition'
 - co-continuous to discontinuous
- $\Delta G_m < 0$ but immiscible?
 - necessary but not sufficient
- $(\partial^2 \Delta G_m / \partial \phi_i^2) < 0$
 - $(\partial^2 \Delta G_m / \partial \phi_i^2) > 0$ is another requirement for miscibility.

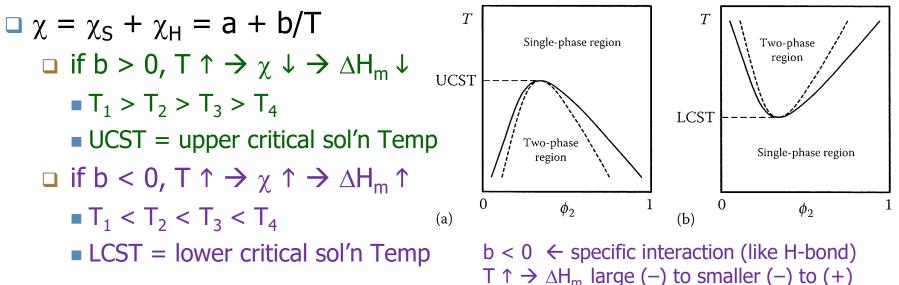


 $\Box \text{ at } \mathsf{T}_{2b} \text{ in } \phi'_{2b} - \phi'_{2sp} \text{ or } \phi''_{2sp} - \phi''_{2b}$


- betw spinodal and binodal points
- Iocal minor composition fluctuation
 - raise the energy $[\partial^2 \Delta G / \partial x^2 > 0]$
 - back to solution
- phase metastable (to fluctuation)
 - ΔG for phase separation (to ϕ'_{2b} and ϕ''_{2b}) > 0
 - need to overcome energy barrier
- \blacksquare major fluctuation like nucleation \rightarrow
 - phase separation
 - to binodal composition $[\phi'_{2b} \text{ and } \phi''_{2b}]$
 - by `nucleation and growth'

(Temp-comp) Phase diagram

by connecting binodal and spinodal points



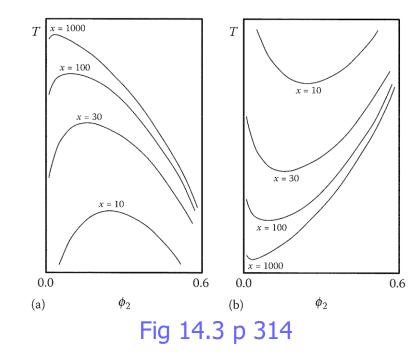
$$\Delta G_{\rm m}^* = \mathbf{R}T \left[\phi_1 \ln \phi_1 + \left(\frac{\phi_2}{x}\right) \ln \phi_2 + \chi \phi_1 \phi_2 \right]$$

entropic $[\Delta S_m]$

interaction $[\Delta H_m \text{ or } \Delta G_m^{\text{contact}}]$

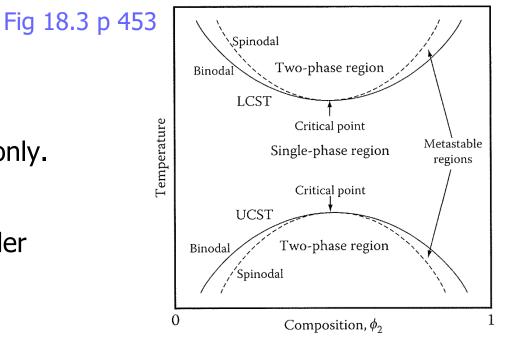
UCST and LCST behavior

UCST


common in solvent/solvent or solvent/polymer blends

LCST

- more common in (polymer/polymer) blends
- possible when specific interaction (like H-bonding) or
- when ΔV_m (and ΔS_m) < 0


at critical point,

$$\begin{pmatrix} \frac{\partial^2 \Delta G_m^*}{\partial \phi_2^2} \end{pmatrix} = \begin{pmatrix} \frac{\partial^3 \Delta G_m^*}{\partial \phi_2^3} \end{pmatrix} = 0$$

$$\phi_{2c} = \frac{1}{1+x^{1/2}} \qquad \chi_c = \frac{1}{2} \left[1 + \frac{2}{x^{1/2}} + \frac{1}{x} \right]$$

as $x \to \infty$, $\phi_{2c} \to 0$ and $\chi_c \to 1/2$

Phase behavior of polymer blends

- close to symmetrical
 similar mol wt
- UCST not usually found
 F-H theory predicts UCST only.
- LCST more common
 - □ F-H theory does not consider
 - volume change upon mixing
 - specific interaction
 - can be explained by equation of state [EOS] model
 - considers ΔV_m (< 0) with 'free volume'
 - $\Delta H_m < 0$ ($\leftarrow \Delta V_m < 0$) and $\Delta S_m < 0$ [less free volume]
 - at low temp, $\Delta H_m > T \Delta S_m \sim miscible$
 - at high temp, $T\Delta S_m > \Delta H_m \sim phase separates \rightarrow LCST$

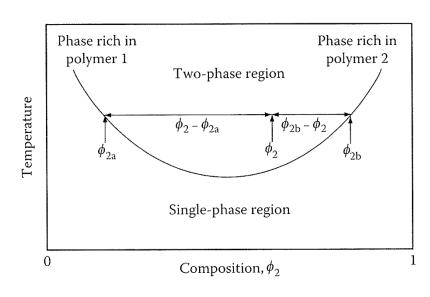
Miscible polymer blends

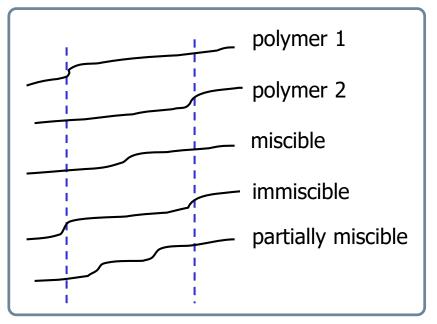
□ with specific interaction

- **D** PS/PPO ~ $\pi \pi$ interaction
- □ PEO/PAA ~ H-bonding

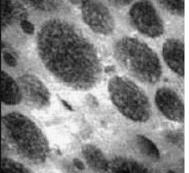
with similarity

Table 18.1 p 311

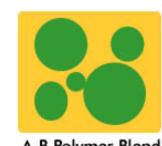

Polymer 1	Polymer 2	Miscible
Polystyrene	Poly(2,6-dimethyl-1,4-phenylene oxide)	1
Polystyrene	Poly(vinyl methyl ether)	1
Poly(methyl methacrylate)	Poly(vinylidene fluoride)	\checkmark
Poly(vinyl chloride)	Poly(butylene terephthalate)	1
Poly(ethylene oxide)	Poly(acrylic acid)	1
Polystyrene	Polybutadiene	×
Polystyrene	Poly(methyl methacrylate)	×
Polystyrene	Poly(dimethyl siloxane)	×
Nylon 6	Poly(ethylene terephthalate)	×

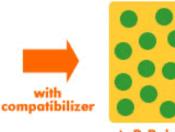

T_g of polymer blend

 \Box miscible [compatible] blends ~ 1 T_g

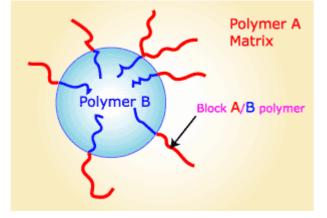

$$\frac{1}{T_{\rm g}^{\rm blend}} = \frac{w_1}{T_{\rm g}^1} + \frac{w_2}{T_{g}^2}$$

immiscible [incompatible] blend ~ 2 T_g
 partially miscible blend

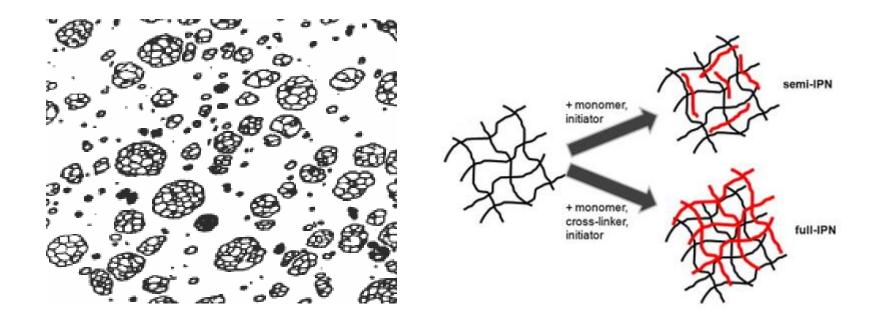




Compatibilization

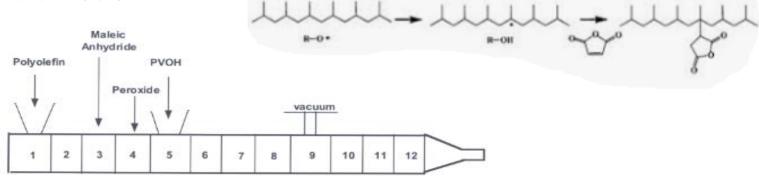


A-B Polymer Blend

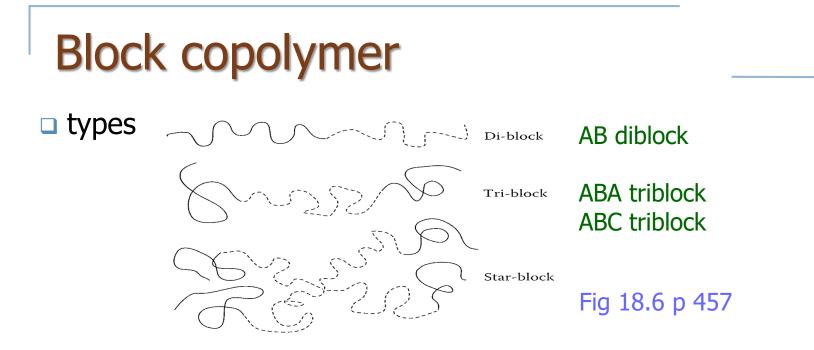

A-B Polymer Alloy

- □ alloy = compatibilized blend? no. alloy = blend
- compatibility = miscibility? no
- addition of compatibilizer
 - monomeric
 - polymeric ~ block or graft copolymer
 - not have to contain A or B
 - not have to be long or much
 - MM > M_e [entanglement mol wt] is enough.
 - A few wt% is enough.

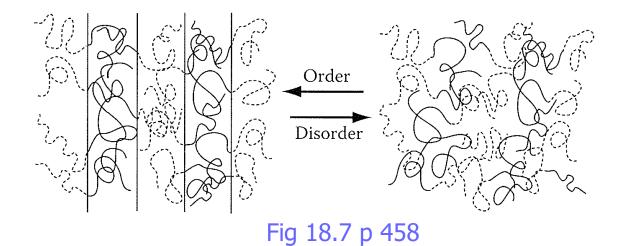
in-situ polymerization


- □ HIPS, ABS ~ polym'n of ST or SAN with unsat'd rubber
- □ interpenetrating polymer network [IPN] ~ crosslinking-polym'n

Reactive compatibilization


compatibilizer [copolymer] formed in situ during mechanical blending

reactive extrusion



Reactive Extrusion of Polyolefin/PVOH Blends

- through trans reaction
 - (polymer-polymer) exchange reaction
 - ester exchange betw PEsters, PC, ---
 - amide exchange betw PAs
 - amide-ester exchange

order-disorder transition by temperature

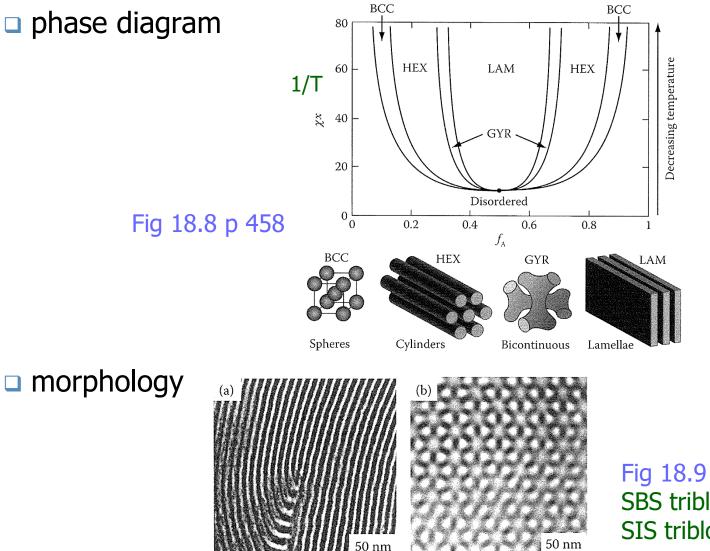
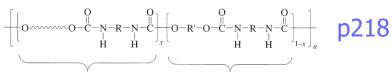
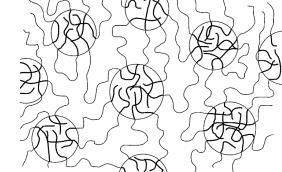


Fig 18.9 p 459 SBS triblock (ϕ_A = .45) SIS triblock (ϕ_A = .33)

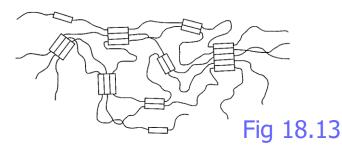
Thermoplastic elastomers [TPE]


elastomer = rubber

- □ rubber ~ (chemically) crosslinked (\rightarrow thermosetting)
- □ TPE ~ physically crosslinked \rightarrow thermoplastic
- (tri)block copolymers
 - SBS, SIS


- Fig 18.14 p463 SBS with $\phi_A = .2$
- glassy/rubbery block at use temp
 - glassy S domain (physically) crosslinks
- rubbery/rubbery at high temp
 - thermoplastic ~ processable
- thermoplastic polyurethane [TPU]
 - hard and soft segments

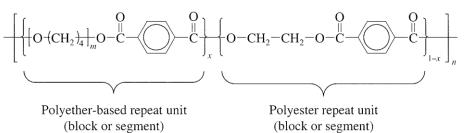
Prepolymer-based soft segment

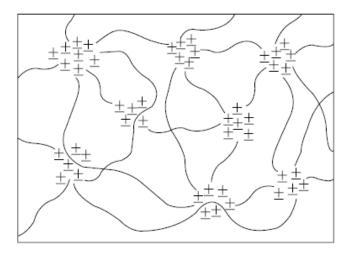

urethane (hard) and polyether (soft)

Polyurethane hard segment

Ch 18 sl 17

Virtually crosslinked/extended network of polymer primary chains


♦ ↓ Heat or solvent


Soft Hard Soft Hard Soft Hard Soft Hard Soft

Polymer primary chains

□ TPE with crystallizable block

- polyester TPE
 - polyester/polyether
- thermoplastic polyolefin [TPO]
 - PP/EPDM ~ PP+P crystallize
- ionic elastomers
 - a type of `ionomer'
 - □ EPDM-SO₃⁻ ~ crosslinked by M⁺

