Chapter 20 Viscoelasticity

Mechanical models Superposition Transitions Entanglement

3 types of response (to small ϵ)

□ elastic [彈性]

- \Box instantaneous; $\sigma = E e \sim Hooke's$ law
- □ solid-like; $De = \tau/t > 1$

❑ viscous [粘性]

- \Box rate-dependent; $\sigma = \eta$ (de/dt) ~ Newton's law
- □ liquid-like; De < 1

□ viscoelastic [粘彈性]

- betw elastic and viscous
 - elastic at short time [high rate] and low Temp
- **u** time-dependent; $\sigma(t) = E(t) e$
- □ polymer-like; De \approx 1
- Every material is viscoelastic.

> De = $\tau/t \rightarrow$ elastic/VE/viscous depending on t

anelastic = VE that recovers

plastic = deformation at $\sigma > \sigma_v$

Ch 20 sl 2

Ch 20 sl 3

strain response to stress

1/E(t) = D(t)? No, if from different experiment

Mechanical models

elements

- \Box spring ~ elastic, σ = E e
- □ dashpot ~ viscous, $\sigma = \eta$ (de/dt)

Fig 20.2

Ch 20 sl 5

Ch 20 sl 6

stress relaxation

$$de/dt = 0 = \frac{1}{E} \frac{d\sigma}{dt} + \frac{\sigma}{\eta} \longrightarrow \frac{d\sigma}{\sigma} = -\frac{E}{\eta} dt$$

$$\sigma = \sigma_0 \exp\left(-\frac{Et}{\eta}\right) = \sigma_0 \exp\left(\frac{-t}{\tau_0}\right) \qquad \tau = \eta/E \quad \text{~relaxation time}$$

at $t = 0, \sigma = \sigma_0$
$$De = \tau/t$$

Voigt [Kelvin] model ~ parallel strain the same and stress additive

$$e = e_1 = e_2$$
 and $\sigma = \sigma_1 + \sigma_2$

$$\sigma_1 = Ee$$
 and $\sigma_2 = \eta \frac{\mathrm{d}e}{\mathrm{d}t} \longrightarrow \frac{\mathrm{d}e}{\mathrm{d}t} = \frac{\sigma}{\eta} - \frac{Ee}{\eta}$

 $\frac{\mathrm{d}e}{\mathrm{d}t} = \frac{\sigma}{\eta} - \frac{Ee}{\eta} \xrightarrow{\sigma} e = \frac{\sigma_0}{E} \left[1 - \exp\left(-\frac{Et}{\eta}\right) \right]$

 $= \frac{\sigma_0}{E} \left[1 - \exp\left(\frac{-t}{\tau_0}\right) \right] \qquad \tau = \eta/E \quad \sim \text{ retardation time}$ one relaxation time?

□ SR

□ creep

$$\frac{\mathrm{d}e}{\mathrm{d}t} = \frac{\sigma}{\eta} - \frac{Ee}{\eta} \longrightarrow \sigma = Ee_0 \quad \sim \text{ elastic only}$$

relaxation time

log t or T

SR modulus E(t) = $\sigma(t)/e_0$

at different time, one Temp or at different Temp, one time e_0

 \checkmark time-temp superposition

- > one relaxation time?
- > many relaxation times

Ch 20 sl 9

composite models

- □ 3-, 4, --- element models
- standard linear solid [SLS] model
- math improved, not physics

generalized Maxwell (or Voigt) model

- □ spectrum [distribution] of relaxation times
- physics improved, but not real

Boltzmann superposition principle

Ch 20 sl 10

In linear deformation [small strain] range, strains (and stresses also) at different times are additive.

$$e(t) = e_1(t) + e_2(t) + \dots$$

$$= \Delta \sigma_1 J(t - \tau_1) + \Delta \sigma_2 J(t - \tau_2) + \dots$$

$$= \sum_{n=1}^{n} J(t - \tau_n) \Delta \sigma_n$$

$$e$$

n=0

$$e(t) = \int_{-\infty}^{t} J(t-\tau) d\sigma(t)$$
$$e(t) = \int_{-\infty}^{t} J(t-\tau) \frac{d\sigma(\tau)}{d\tau} d\tau$$

t

Time-temperature superposition

Ch 20 sl 11

□ time-Temp equivalence

- □ Long time and high temperature is equivalent.
 - for chain motion and viscoelasticity
- □ Data can be superposed (log t and T) \rightarrow `master curve'

§20.7 pp503-505

□ shifting

$\frac{E(T_1, t)}{\rho(T_1) T_1} = \frac{E(T_{S}, t/a_{T})}{\rho(T_{S}) T_{S}}$	~ horizontal shift ~ vertical shift ~ negligible	←	$E = \rho RT/M$ Chapt 21
$\log a_T = \frac{-C_1(T - T_s)}{C_2 + (T - T_s)}$	$a_T = shift factor$		
□ when T _S [T _{reference}] is T _g	\rightarrow WLF equation		
$\log a_{T} = \frac{-C_{1}^{g}(T - T_{g})}{C_{2}^{g} + (T - T_{g})}$			
• $C_1 = 17.44$ and $C_2 = 51.6$ K ~ 'universal constants'			

holds very well for most polymers

"T_a is an iso-free-volume state."

Dynamic mechanical test

oscillating stress and strain

 $e = e_0 \sin \omega t$

$$\sigma = \sigma_0 \sin(\omega t + \delta)$$

 $= \sigma_0 \sin \omega t \cos \delta + \sigma_0 \cos \omega t \sin \delta$

$$= e_0 E_1 \sin \omega t + e_0 E_2 \cos \omega t$$

in-phase with e elastic energy stored

 $\pi/2$ out-of-phase with e viscous energy dissipated

$$\sigma = \sigma_0 \sin \omega t$$

e = e_0 sin($\omega t - \delta$)

 δ = phase lag, phase angle loss angle, 'damping'

 $E_1 = (\sigma_0/e_0)\cos\delta$ storage modulus

$$E_2 = (\sigma_0/e_0) \sin \delta$$
 loss modulus

$$\tan \delta = \frac{E_2}{E_1}$$

loss tangent

more generally, E' and E'' instead of E_1 and E_2

Ch 20 sl 14

□ in complex expression

 $e = e_0 \exp i\omega t$

 $\sigma = \sigma_0 \exp i(\omega t + \delta)$

overall complex modulus $E^* = \sigma/e$

$$E^* = \frac{\sigma_0}{e_0} \exp i\delta = \frac{\sigma_0}{e_0} (\cos \delta + i \sin \delta) = E_1 + iE_2$$

$$\tan \delta = \frac{E_2}{E_1}$$

instruments

- torsion pendulum torsional braid analyzer
 - **I**og decrement Λ

$$\Lambda = \ln \left(\frac{\Theta_n}{\Theta_{n+1}} \right) \qquad \tan \delta \simeq \frac{\Lambda}{\pi}$$

□ dynamic mechanical (thermal) analysis [DM(T)A]

- tensile or bending strain
- temperature or frequency scan

tan $\delta = E''/E'$ is small \rightarrow E $\approx E^* \approx E'$ (in magnitude)

Transitions and relaxations in polymers 17

2ndary relaxation affects property at room temp.

- property like toughness
- especially with larger-scale motion
- T_q? heat resistance, use temperature

Entanglement

rubbery plateau region

 \square width of plateau $\propto\,$ molar mass

motion of chains between [inside] entanglements

С

□ level [plateau modulus G_N^0] depends on M_e , <u>not</u> on MM of chain

$$M_{\rm e} = rac{
ho {f R}T}{G_{
m N}^{
m o}} \qquad G_{
m N}^{
m o} \propto M^0$$

hapt 21 reptation

Ch 20 sl 19

Applying VE data to product design Ch 20 SI 20

- Correspondence principle
 - \Box viscoelastic equation \rightarrow elastic equation
 - $\Box \ \sigma(t) = \mathsf{E}(t) \ \mathsf{e} \ \rightarrow \sigma = \mathsf{E} \ \mathsf{e}$
- Pseudoelasticity
 - □ From creep, SR, or isochrone s-s curve,
 - estimate long-term stress-strain relation,
 - and design the product.

101, reproduced by permission of ICI Plastics Division)

□ An example

To design a pressure vessel that is required to be used for 1 year without yielding or fracture (say 5% maximum allowable strain),

