Chapter 22 Yield and Crazing

Large deformation behavior Ductile and brittle behavior

Large deformation behavior

- Upon large stress beyond (visco)elastic limit, a polymer experience either
 - □ yielding or crazing, the two competing plastic deformation processes.
 - □ yielding limits strength; helps necking to ductile failure
 - crazing to brittle fracture

yield and tensile strength

upon uniaxial tension test [UTT]

p513 yield point by Considere construction? useful for metals for polymers? just σ_{max}

cold-drawing = SS + SH

- □ yield strength [항복강도] ~ stress at yield σ_v
- □ tensile strength [TS, 인장강도] or ultimate stress σ_u
- □ elongation at break [EB, 파단신장률] or ultimate strain e_u

Ch 22 sl 4

σ TS σ_u brittle [취성] ductile [연성] σ_y yield *(glastomeric) (ey lastomeric)*

upon uniaxial tension test [UTT]

- ductility = ability to yield and be cold-drawn
- ➤ toughness [강인성] = resistance to crack propagation
- tensile toughness = area under s-s curve

- > stiff/flexible ~ E
- strong/weak ~ TS
- > ductile/brittle ~ yield or not, EB
- > tough/fragile ~ stress K_{Ic} or energy G_{Ic} before fracture
- ▶ hard/soft ~ surface hardness [경도]

Yield

□ yield = start of plastic [塑性] deformation \Box elastic/plastic ~ recoverable/permanent \Box yield strength [yield stress, σ_v] depends on temperature □ depends on strain rate de/dt

30

 $\sigma_{\rm y}/{\rm MPa}$

Yield criteria

 \Box yield criterion = stress conditions where yield can occur

Yield occurs only by shear deformation.

Fig 22.5

Pressure-dependent yield criteria

 $\Box \sigma_v$ of polymer affected by hydrostatic pressure p

$$p = \frac{1}{3} (\sigma_1 + \sigma_2 + \sigma_3) \qquad \begin{pmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & \sigma_3 \end{pmatrix}$$

Ch 22 sl 8

 $\sigma_{s} = \sigma_{s}^{o} - \mu p$ $\sigma_{v}(\text{comp}) = (1.1 - 1.3) \sigma_{v}(\text{tension})$

yield criteria = cone or hexagonal horn

Theories for yield (of glassy polymers) 22 51 9

 \Box adiabatic heating (to T_g)

 \Box reduction of T_g by strain (through free volume up)

□ what about yield by compression?

rate theory (by Eyring)

 $\hfill\square$ jump [motion or flow] frequency ν

$$v_0 = B \exp\left(\frac{-\Delta G_0}{\mathbf{k}T}\right)$$

 $\hfill\square$ bias of potential well by stress σ

$$v_{\rm f} = B \exp\left[\frac{-(\Delta G_0 - (1/2)\sigma Ax)}{\mathbf{R}T}\right]$$

□ yield when

• $\sigma = \sigma_y$ and

V[‡] = vol for plastic deformation [yield]

A = cross-sectional area of flow x = distance of flow A x = V[‡] = activation [Eyring] volume V[‡] is not real like V_f.

Ch 22 sl 10

 molecular theory (by Robertson)
conformational change by stress
from low-energy 'trans' to high-energy 'cis'

 \Box 'cis' population reaching T_g at yield

$$\geq \dot{e} \propto \left(v_{\rm f} - v_{\rm b} \right) = v_0 \exp\left(\frac{\sigma A x}{2\mathbf{k}T}\right) - v_0 \exp\left(\frac{-\sigma A x}{2\mathbf{k}T}\right)$$

→ strain-rate sensitivity of σ_y → estimation of V[‡] and ΔG

> energy difference trans and cis \rightarrow # of bonds for yield and T_g

Post-yield behavior

strain-softening

- drop in true stress
 - not for metals
- intrinsic softening
 - state of T_g at yield point
- strain-hardening
 - □ rise in stress
 - due to orientation of the chains
 - by stretching between entanglements

inhomogeneous deformation

- Iocalized instability due to softening, which interacts with restraints
- \Box with no restraint ~ necking
- \Box with restraint in 1 direction ~ inclined necking
- \Box with restraint in 2 directions ~ shear band

Fig 22.10 p542 PS under plane-strain compression

PMMA

more ductile than PS (with larger V⁺ and lower strain rate sensitivity)

Yielding of semicrystalline polymers Ch 22 5/ 13

yield of crystal

combination of slip, dislocation, twinning, matensitic transform'n

- sliding of chains
- plastic deformation of semicrystalline polymers
 - □ spherulite deforms, crystal intact
 - crystal yields
 - crystals reoriented
 - drawing of fiber

Fig 22.13

Craze/crazing

craze = long thin wedge of deformed polymer microfibrils

crazing

- Iocalized plastic deformation
- by dilatational stress
 - normal yielding vs (shear) yielding
- □ compete with shear yielding
 - brittle vs ductile

Craze criteria

craze initiation

- no crazing by compression
- critical-strain craze criterion

$$\sigma_1 - v\sigma_2 = X + \frac{Y}{(\sigma_1 + \sigma_2)}$$

- ductile-brittle transition
 - Both craze and yield criteria are dependent on temperature and strain rate.

σ_c, σ_y ↑ with T ↓ or de/dt ↑
ductile-brittle transition by relative σ_c and σ_y

Craze propagation

craze propagation

□ thicken by drawing new materials from bulk

□ lengthen by meniscus instability

Fig 23.10 p570

(a)

Environmental stress cracking [ESC] Ch 22 SI 17

- = environmental stress crazing
- = environmental fracture §23.4.4 p582
- Absorbed liquid or gas
 - \Box plasticizes polymer \rightarrow soften
 - \Box craze at a lower stress \rightarrow fracture
 - effective when solubility parameter difference is small

