Chapter 24

Polymer Composites

PRP

FRP

Nanocomposites

Composites [複合素材, 複合材料]

- dream: strength of steel with resilience of rubber
- goal: enhancing stiffness [modulus] and (tensile) strength
- composite = introducing 2nd phase of high modulus
 - composite vs blend vs toughened plastic
- matrix polymers
 - □ thermosets (crosslinked) ~ epoxy, unsaturated polyesters, --
 - □ thermoplastics ~ nylon, PP, PEEK, ---
- 2nd phase [reinforcement]
 - □ particulate ~ talc, mica, silica, -
 - often for low cost

□ fiber

glass fiber [GF], carbon [graphite] fiber [CF], Aramid, ---

Table 24.2

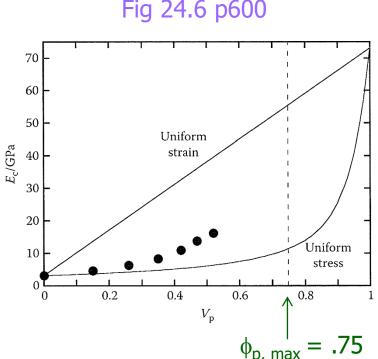
Fibre	Density $ ho_{\rm f}/{ m Mg~m^{-3}}$	Tensile Modulus E_f /GPa
E-glass	2.55	76
Aramid (Kevlar 49)	1.45	125
PBO (Zylon HM)	1.56	270
Carbon (high strength)	1.77	230
Carbon (high modulus)	1.90	360

Particulate composites

modulus

□ upper bound ~ uniform strain [parallel, rule of mixture]

$$e_{\rm p}=e_{\rm m}=e_{\rm c}$$
 $\sigma_{\rm p}=E_{\rm p}e_{\rm p}$ and $\sigma_{\rm m}=E_{\rm m}e_{\rm m}$ $\sigma_{\rm c}=\phi_{\rm p}\sigma_{\rm p}+\phi_{\rm m}\sigma_{\rm m}=\phi_{\rm p}E_{\rm p}e_{\rm p}+\phi_{\rm m}E_{\rm m}e_{\rm m}$ $\sigma_{\rm c}$


$$\frac{\sigma_{\rm c}}{e_{\rm c}} = E_{\rm c} = \phi_{\rm p} E_{\rm p} + \phi_{\rm m} E_{\rm m}$$

□ lower bound ~ uniform stress

$$\sigma_{\rm p} = \sigma_{\rm m} = \sigma_{\rm c}$$

$$E_{\rm c} = \frac{E_{\rm p} E_{\rm m}}{\phi_{\rm m} E_{\rm p} + \phi_{\rm p} E_{\rm m}}$$

- experimental? close to lower bound
 - why? low level of stress transfer → non-uniform strain
 - hard to get high E by particulate
 - higher E by FRP; PRP for cost

- fracture toughness
 - □ G_c actually enhanced
 - toughening mechanism
 - crack pinning
 - multiple crazing and cavitation-yielding also

 ϕ_p can be 75% p598 practically < 35%

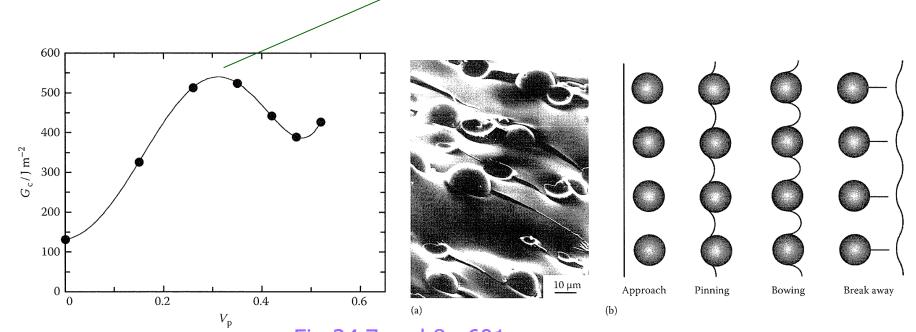
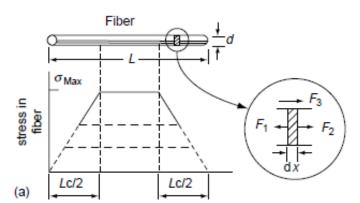



Fig 24.7 and 8 p601 glass-particle-filled epoxy

Fiber reinforced plastics [FRP]

- types
 - continuous-fiber composite
 - stack of plies [prepregs]
 - unidirectional
 - crossply (0/90)
 - angle-ply (0/45/90---)
 - woven fabric
 - □ short-fiber composite
 - direction random
 - length important

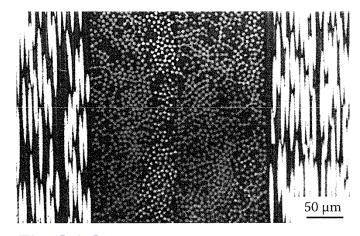


Fig 24.2 0/90/90/0 laminate

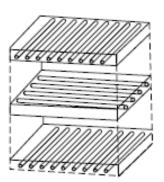
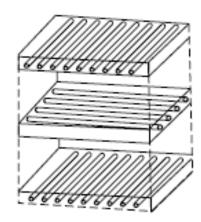


Fig 24.2 woven


modulus

- continuous fiber composite
 - axial (0°-ply) ~ uniform strain

$$E_1 = E_f \phi_f + E_m \phi_m = E_f \phi_f + E_m (1 - \phi_f)$$

■ transverse (90°-ply) ~ uniform stress

$$\frac{1}{E_2} = \frac{\phi_{\rm f}}{E_{\rm f}} + \frac{\phi_{\rm m}}{E_{\rm m}} = \frac{\phi_{\rm f}}{E_{\rm f}} + \frac{(1 - \phi_{\rm f})}{E_{\rm m}}$$

short-fiber composite

$$E_{\rm c} = K_{\rm e} E_{\rm f} \phi_{\rm f} + E_{\rm m} (1 - \phi_{\rm f})$$

- K_e = fiber efficiency factor
 - depends on fiber length [aspect ratio], orientation, interface

$$K_e = 0.1 - 0.6$$

- strength [fracture]
 - continuous fiber better in tension
 - tensile strength
 - short fiber better in compression or shear
 - flexural strength

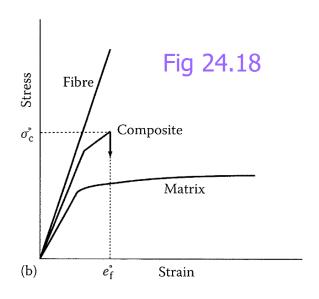


Fig 24.19

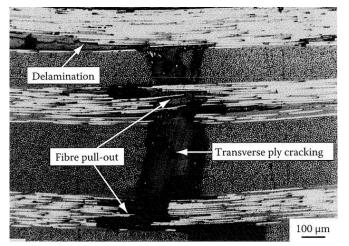
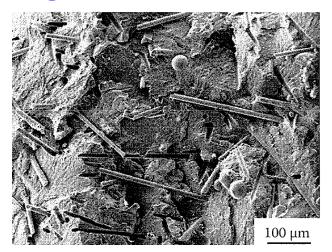
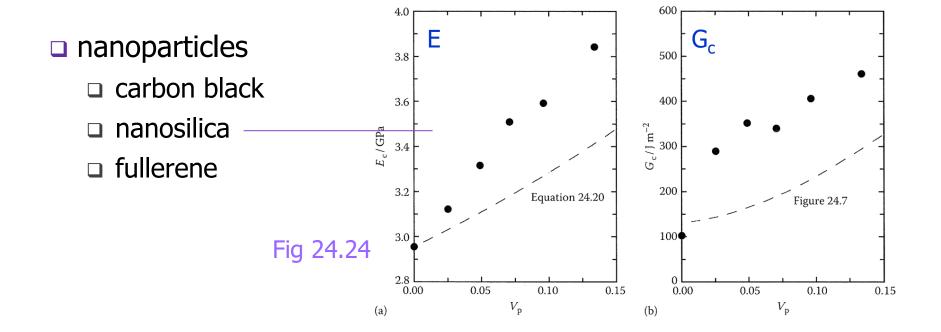
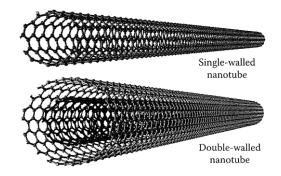
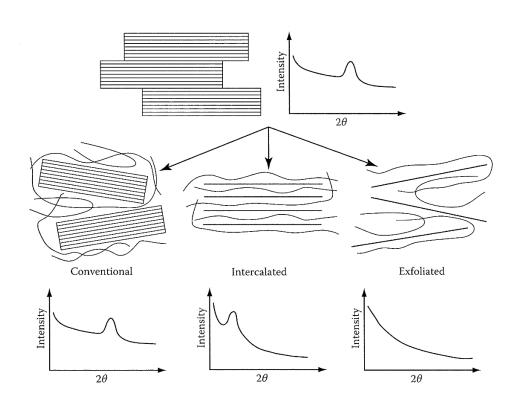
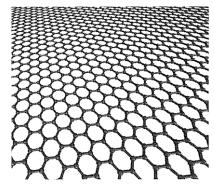




Fig 24.20




Nanocomposites

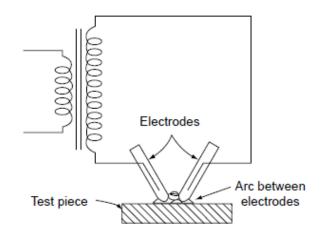

- □ nanosized (< 100 nm) reinforcement
 - compared to macro- or micro-composites;
 - smaller flaw
 - larger interfacial area
 - □ higher performance at much lower content (< 5%)
 - modulus, strength, heat resistance, transparency, processability

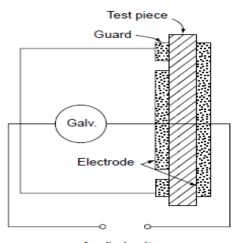
- nanoplatelets
 - nanoclay [nanosilicate]
 - graphene
 - □ graphene nanoplate [GNP]
 - > intercalated or exfoliated
 - barrier (and conducting) properties
- nanotubes
 - □ CNT ~ SWNT, MWNT
 - > conducting property

Chapter 25 + Extra 2

Electrical and Other Properties

Electrical properties


Permeability


Stability

Optical properties

Electrical properties

- at high electric field
 - electrical failure, treeing
 - arc resistance
 - arcing ~ forming carbonized conducting path across surface
 - No direct relation to chemical structure
- □ at low electrical field 1: resistivity
 - Polymers are insulators.
 - resistivity $\sim 10^8 10^{20} \ \Omega \text{cm}$
 - insulation resistance
 - composite of
 - volume resistivity ~ depends on material
 - surface resistivity ~ depends on surface finish
 - 3-electrode measurement

Applied voltage

Electrodes

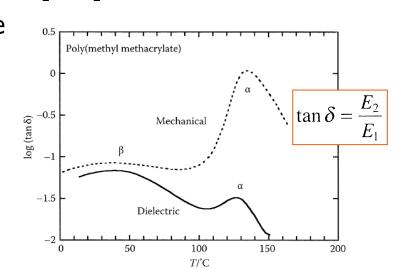
□ at low electrical field 2: dielectric

- \Box dielectric constant, $\varepsilon = C / C_0$
 - $\varepsilon \propto$ polarizability [α] \propto refractive index
 - non-polar polymers, $\varepsilon = n^2$

p624

- polar polymers, $\varepsilon > n^2 \leftarrow$ electronic + orientational (dipole) polarization
- \bullet ϵ (α and n also) related to chemical structure

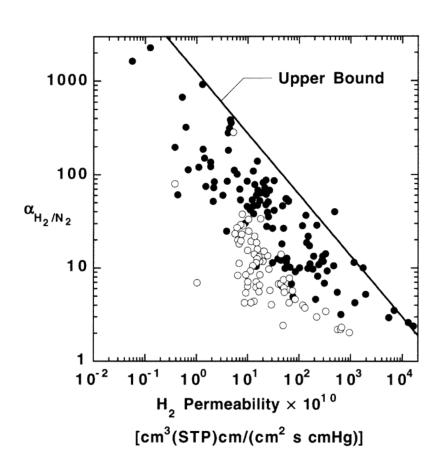
$$\epsilon = \delta / 7.0$$


- dielectric strength
 - max V that produce dielectric breakdown [leak]
 - depends on thickness, temp, structure
- dielectric relaxation

$$\varepsilon^* = \varepsilon' - i\varepsilon''$$

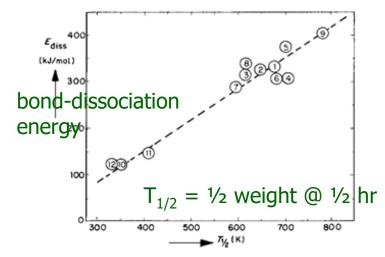
$$\frac{\varepsilon''}{\varepsilon'} = \tan \delta \propto \frac{\text{energy dissipated per cycle}}{\text{energy stored per cycle}}$$

 C_0 = capacitance of vacuum

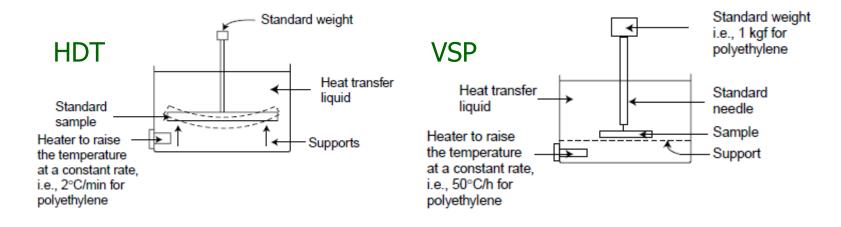


Properties of Polymers

- Material properties
 - chemical properties
 - stability, solubility, permeability, flammability
 - electrical properties
 - optical properties
 - thermal properties
 - mechanical properties
- Processing properties
- □ Product properties ~ product design
- 'There are <u>no</u> bad materials, but only bad articles.'


Permeability

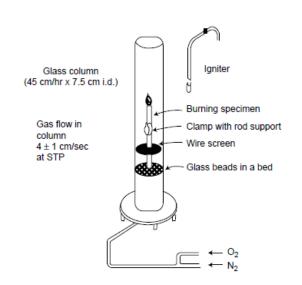
- > in membranes ~ permeability
- > in packaging ~ barrier property
- diffusion-solution model
 - □ absorption-diffusion-desorption
 - \square P = D S
 - Diffusivity
 - T_q of polymer
 - size of gas
 - Solubility
 - boiling point of gas
 - polarity of gas and polymer [Δδ]
- permeability vs selectivity



Stability

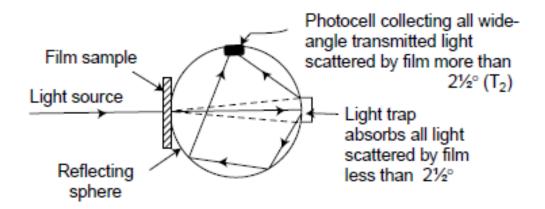
- thermal stability
 - depends on the dissociation energy of the weakest bond
 - □ measurement ~ thermal gravitational analysis [TGA]
- light [UV] stability
 - □ 300 nm ≈ 400 kJ/mol
 - depends on absorption wavelength
- oxidation stability
 - thermal and photochemical
 - → related to thermal/light stability
- hydrolysis stability
 - depends on constituent groups
- ➤ weatherability [내후성]
- usually covered by addition of stabilizers

- □ thermal stability [열안정성] vs heat resistance [내열성]
 - □ thermal stability ← bond strength
 - □ heat resistance \leftarrow T_g or T_m
 - □ different property, but related usually
- heat resistance evaluation
 - □ heat distortion [deflection] temperature [HDT]
 - = deflection temperature under load [DTUL]
 - Vicat softening temperature [VSP]



Flammability

- □ burning = 2-step process
 - □ pyrolysis [decompose] \rightarrow gas + char Q₁
 - \square combustion [ignite-flame] \rightarrow combustion product + Q₂
- for fire resistance [flame retardation]
 - high thermal stability
 - □ low gas (Q_2) and high char \leftarrow low H/C (like ring)
 - □ inhibiting gas like halogen; e.g. PVC
- evaluation ~ limited oxygen index [LOI]


$$LOI = \frac{[O_2]}{[O_2] + [N_2]} \times 100$$

□ high LOI ~ high flame retardancy [난연성]

Optical properties

- Light upon interaction with polymer
 - □ reflected ~ gloss ← surface roughness
 - □ absorbed ~ color ← chromophore
 - □ refracted, scattered, transmitted ~ clarity ← 2nd phase
- optical clarity
 - transparent < 30% haze < translucent < opaque
 - haze ~ fraction of light 2.5° deviated by scattering

- opaque due to
 - scattering by heterogeneity [different refractive index]
 - □ larger than wavelength of visible light [340 nm]
 - impurity
 - 2nd phase
 - crystallite
- for a semicrystalline polymer to be transparent
 - small crystallites

 - biaxial orientation
- refractive index
 - optical lenses
 - □ optical fibers ~ total reflection