!'_ Ch8. Arrays and Matrices

© copyright 2006 SNU IDB Lab.

SNU
IDB Lab.

Bird's-Eye View

= In practice, data are often in tabular form
= Arrays are the most natural way to represent it
= Want to reduce both the space and time requirements by using a
customized representation
= This chapter
= Representation of a multidimensional array
= Row major and column major representation
= Develop the class Matrix
= Represent two-dimensional array
= Indexed beginning at 1 rather than 0
= Support operations such as add, multiply, and transpose
= Introduce matrices with special structures
= Diagonal, triangular, and symmetric matrices
= Sparse matrix

SNU
Data Structures p) IDB Lab.

i Table of Contents

= Arrays

= Matrices

= Special Matrices
= Sparse Matrices

SNU
Data Structures 3 IDB Lab.

i The Abstract Data Type: Array

AbstractDataTyp@rray
{
Instances
set of (index, value) pairs, no two pairs have theesiathex

operations
get(index): return the value of the pair with this index
set(index, value) add this pair to set of pairs, overwrite
existing one (if any) with the same index

SNU
Data Structures 4 IDB Lab.

i Indexing a Java Array

= Arrays are a standard data structure in Java

= The index (subscript) of an array in Java
= [i1] [i2] [is]... [ix]

= Creating a 3-dimensional array score
= int [][][] score = new int [u1][uz] [us]

= Java initializes every element of an array to the default value for the
data type of the array’s components

= Primitive data types vs. User-defined data types

SNU
Data Structures 5 IDB Lab.

| 1-D Array Representation in Java, C, C++

Memory

—

Start

= 1-dimensional array x = [a, b, ¢, d]

= X[0], X[1], X[2], X[3]
= Map into contiguous memory locations
= |ocation(x[i]) = start + i

SNU
Data Structures 6 IDB Lab.

i Space Overhead

Memory

—

start

= Space overhead = 4 bytes for start + 4 bytes for x.length
= 8 bytes
(Excluding space needed for the elements of x)

SNU
Data Structures 7 IDB Lab.

i 2-D Arrays

= The elements of a 2-dimensional array “a” declared as
« int[][]a = new int[3][4];

= May be shown as table
a[0][0] a[0][1] a[0][2] a[0][3]
a[1][0] a[1][1] a[1][2] a[1][3]
a[2][0] a[2][1] a[2][2] a[2][3]

SNU
Data Structures 8 IDB Lab.

‘L Rows of a 2-D Array

row 0
row 1
row 2

SNU
Data Structures 9 IDB Lab.

‘L Columns of a 2-D Array

0 a[0][2] 3
1][0 1 a[1][21 a[113
0 11 a[2][2] 3

Y

column O column 1l column?2 column 3

SNU
Data Structures 10 IDB Lab.

Array of Arrays Representation (1/5)

= Same in Java, C, and C++
= Two-dimensional array is represented as a one-dimensional array

= The one-dimensional array’s each element is, itself, a one-dimensional array

SNU
Data Structures 11 IDB Lab.

i Array of Arrays Representation (2/5)

= int[][]x = new int[3][5]
= A one-dimensional array x (length 3)
= Each element of x is a one-dimensional array (length5)

[O][1] [2][3] [4]
X[0]

X[1]

X[2]

SNU
Data Structures 12 IDB Lab.

Array of Arrays Representation (3/5)

= 2-dimensional array x

a, b, ¢ d

eI fl gl h

il jl I(I I

= View 2-D array as a 1-D arrays of rows

X = [row0, rowl, row2]
row 0 =[a, b, ¢, d]
rowl =g, f, g, h]
row 2 =i, j, k, 1]

= So, store as 4 1-D arrays which require contiguous memory of size 3, 4,
4, and 4 respectively

SNU
Data Structures 13 IDB Lab.

i Array of Arrays Representation (4/5)

X[]

= Array length
= X.length =3
= x[0].length = x[1].length = x[2].length = 4

SNU
Data Structures 14 IDB Lab.

i Array of arrays representation (5/5)

X[]

= Space overhead = overhead for 4 1-D arrays
= 4 * 8 bytes = 32 bytes
= (num of rows + 1) x (start pointer + length variable)

SNU
Data Structures 15 IDB Lab.

i 2-D to 1-D: Row-Major Mapping

Example 3 x 4 array
a, b,cd
e f, gh
i, 3, k|
= Convert into 1-D array y by collecting elements by rows
= Within a row elements are collected from left to right
= Rows are collected from top to bottom

u We get Y[] = {al bI CI dl el fl gl hl II jl kl I}

SNU
Data Structures 16 IDB Lab.

i Locating Element x[i][j]
[rowo [rows [row2 [.. Jrowi | [|

= Assume x has r rows and c columns

= Each row has c elements

= There are i rows to the left of row i starting with x[i][0]

= Soi* celements to the left of x[i][0]

= So x[i][j] is mapped to position of i * ¢ + j of the 1D array

SNU
Data Structures 17 IDB Lab.

i Space Overhead for 2D array
lrowo [rowa [row2 | .. Jrowi|[[|

= Assume x has r rows and c columns
= 4 bytes for start of 1D array +
4 bytes for length of 1D array +
4 bytes for c (number of columns) = 12 bytes
= number of rows r = length / c
= Disadvantage: should have contiguous memory of size r * c

SNU
Data Structures 18 IDB Lab.

i 2-D to 1-D: Column Major Mapping

a, b, c d

e f, g, h

i, j, Kk, |
= Convert into 1D array y by collecting elements by columns
= Within a column elements are collected from top to bottom
= Columns are collected from left to right

= We gety = {al €, il bl fI jl C, g, kl dl hl I}

SNU
Data Structures 19 IDB Lab.

i Irregular Two-Dimensional Arrays

= Arrays with two or more rows that have a different number of elements
= Size[i] fori (i is the row number)

SNU
Data Structures 20 IDB Lab.

Creating and Using an Irregular Array

// declare a two-dimensional array variable
// and allocate the desired number of rows
int [][] irregularArray = new int [numberOfRows][];

// now allocate space for the elements in each row
for (inti = 0; i < numberOfRows; i++)
irreqularArray[i] = new int [size[i]];

// use the array like any regular array
irreqularArray[2][3] = 5;

irreqularArray[4][6] = irregularArray[2][3] + 2;
irreqularArray[1][1] += 3;

SNU
Data Structures 21 IDB Lab.

i Table of Contents

= Arrays

= Matrices

= Special Matrices
= Sparse Matrices

SNU
Data Structures 22 IDB Lab.

i Matrix

= Table of values

= has as rows and columns like 2-D array, but numbering begins at 1
rather than O

abcd row 1
ef gh row 2
i j k| row 3

= Use notation x(i, j) rather than x[i][j]

= Sometimes, we may use Java’s 2-D array to represent a
matrix

SNU
Data Structures 23 IDB Lab.

Pitfalls of using a 2D Array for a Matrix

= A[0,*] and A[*,0] of 2D array cannot be used

= Java arrays do not support matrix operations such as add, transport,
multiply, and so on

= i.e. Suppose that x and y are 2D arrays, we cannotdo x + vy, x —y, x * v,
etc. directly in java

= S0, need to develop a class Matrix for object-oriented support of all
matrix operations

SNU
Data Structures 24 IDB Lab.

i The Class Matrix

= Uses 1-D array element to store a matrix in row-major order
= The CloneableObject interface has clone() and copy()

public class Matrix implements CloneableObiject {
int rows, cols; // matrix dimensions
Object [] element; // element array

public Matrix(int theRows, int theColumns) {
rows = theRows;
cols = theColumns;
element = new Object [rows * cols];

¥
SNU
Data Structures 25 IDB Lab.

clone() & copy() of Matrix

public Object clone() { // return a clone of the matix
Matrix x = new Matrix(rows, cols);
for (int i=0; i < rows * cols; i++)
x.element[i] = ((CloneableObject) element[i]).clone();
return Xx;

}

public void copy(Matrix m) { // copy the references in m into this
if (this '=m) {
FOWS = M.rows;
cols = m.cols;
element = new Object[rows * cols];
for (int i=0; i < rows * cols; i++)
element[i] = m.element[i]; // copy each reference

¥
SNU
Datg Structures 26 IDB Lab.

get() & set() of Matrix

@return the element thisl[i, j]
* @throws IndexOutOfBoundsException when i or j invalid */
public Object get(int i, intj) {
checkIndex(i, j); // validate index
return element[(i— 1) * cols + j -1];

[**set this(i, j) = newValue
* @throws IndexOutOfBoundsException when i or j invalid */
public void set(int i, int j, Object newValue) {
checkIndex(i, j);
element[(i — 1) * cols + j — 1] = newValue;

Data Structures 27

SNU
IDB Lab.

add() of Matrix

[**@return the this + m

* @throws IllegalArgumentException when matrices are incomputible */
public Matrix add(Matrix m) {
if (rows = m.rows || cols = m.cols)
throw new IllegalArgumentException(“*Imcompatible™);

// create result matrix w

Matrix w = new Matrix(rows, cols);

int numberOfTerms = rows * cols;

for (int i=0; i < numberOfTerms; i++)

w.element[i] = ((Computable) element[i]).add(m.element[i]));
return w;

SNU

Data Structures 28 IDB Lab.

i Complexity of Matrix operations

= Constructor: O(rows * cols)

= Clone(), Copy(), Add(): O(rows * cols)

= Multiply():
= Program 8.6 at pp 270

0 O(this.row * this.cols * m.cols)

SNU
Data Structures 29 IDB Lab.

i Table of Contents

= Arrays

= Matrices

s Special Matrices
= Sparse Matrices

SNU
Data Structures 30 IDB Lab.

i Special Matrix Definitions

= Diagonal = M(i,j)=0fori=]j

= Tridiagonal = M(,j)=0for|i—=j] > 1
= Lower triangular = M(i, j) = 0 fori < j
= Upper triangular = M(i, j) = 0 fori > j

= Symmetric = M(, j) = M(j, i) for all i,]

SNU
Data Structures 31 IDB Lab.

i Diagonal Matrix

000
00O
O0RO
000

An n x n matrix in which all nonzero terms are on the diagonal
X(i, j) is on diagonal iff i = j

Number of diagonal elements in an n x n matrix is n

Non diagonal elements are zero

Store diagonal only vs store n2 whole

SNU
Data Structures 32 IDB Lab.

The Class DiagonalMatrix

p class DiagonalMatrix {
int rows; // matrix dimension (no cols!)
Object zero; // zero element
Object [] element; // element array

public DiagonalMatrix (int theRows, Object theZero) {
if (theRow < 1)
throw new IllegalArgumentException(“row >0");
rows = theRows;
zero = theZero;
for (int i=0; i<rows; i++)
element[i] = zero; //construct only the diagonal elements

}

SNU
Data Structures 33 IDB Lab.

get() and set() for diagonal matrix

public Object get(int i, intj) {
checkIndex(i, j); // validate index
if (i == j) return element[i — 1]; // return only the diagonal element
else return zero; // nondiagonal element

public void set(int i, int j, Object newValue) {
if (i == j) element[i — 1] = newValue; // save only the diagonal element
else // nondiagonal element, newValue must be zero
if (1((Zero)newValue).equalsZero())
throw new IllegalArgumenetException(“must be zero”);

SNU
Data Structures 34 IDB Lab.

i Tridiagonal Matrix

= The nonzero elements lie on only the 3 diagonals
= Main diagonal: M(i, j) where i = j
= Diagonal below main diagonal: M(i, j) wherei=j + 1
= Diagonal above main diagonal: M(i, j) wherej =j -1

Data Structures 35

SNU
IDB Lab.

i Lower Triangular Matrix (LTM)

= An n X n matrix in which all nonzero terms are either on or below the
diagonal.

100 0
239 0
4560

= X(i, j) is part of lower triangular iff i>=j
= Number of elements in lower triangle is 1+ 2+ 3+ ... + n=n(n+1) / 2
= Store only the lower triangle

SNU
Data Structures 36 IDB Lab.

i LTM: Array of Arrays Representation

X[]

= Use an irregular 2D array: length of rows is not required
to be the same

SNU
Data Structures 37 IDB Lab.

i Map LTM into a 1D Array

= Use row-major order, but omit terms that are not part of
the lower triangle

= For the matrix
1000
2300
456 0
/78910
= We get
1,2,3,4,5,6,7,8,9, 10

SNU
Data Structures 38 IDB Lab.

i LTM: Index of Element[i][j]

= Suppose we store the LTM using 1D array
= Orderis: row 1, row 2, row 3, ...
= Row iis preceded by rows 1, 2, ..., i-1
= Sizeof rowiisi
= Number of elements that precede row i is
1+2+3+ ..+ (1) =i(-1)/2
= So element (i,j) is at position i(i-1)/2 + j -1 of the 1D array

SNU
Data Structures 39 IDB Lab.

i Table of Contents

= Arrays

= Matrices

= Special Matrices
= Sparse Matrices

SNU
Data Structures 40 IDB Lab.

i Sparse Matrices

= Sparse matrix = Many elements are zero
= Dense matrix = Few elements are zero

= The boundary between a dense and a sparse matrix is not
precisely defined

= Structured sparse matrices
Diagonal
Tridiagonal
Lower triangular

= May be mapped into a 1D array so that a mapping function
can be used to locate an element

SNU
Data Structures 41 IDB Lab.

Unstructured Sparse Matrices (USM) (1/2)

= Airline flight matrix
= airports are numbered 1 through n (say 1000 airports)
« flight(i,j) = list of nonstop flights from airport i to airport j
= 1000 X 1000 matrix =» 1 million possible flights
= N x n array of list references = need 4 million bytes
= However, only total number of flights = 20,000 (say)
= need at most 20,000 list references =» at most 80,000 bytes
= We need an economic representation!

SNU
Data Structures 42 IDB Lab.

Unstructured Sparse Matrices (USM) (2/2)

= Web page matrix

= Wweb pages are numbered 1 through n

= Millions of trillions of web pages

= web(i,j) = number of links from page i to page j

= The number of links is very very smaller than the number of web pages
= Web analysis

= authority page ... page that has many links to it

=« hub page ... links to many authority pages

SNU
Data Structures 43 IDB Lab.

i Facts of Web Page Matrix

= n = 2 billion (and growing by 1 million a day)

= nXxnarray of ints = 16 * 1018 bytes (16 * 10° GB)
= Each page links to 10 (say) other pages on average
= On average there are 10 nonzero entries per row

= Space needed for nonzero elements is approximately 20 billion
X 4 bytes = 80 billion bytes (80 GB)

SNU
Data Structures 44 IDB Lab.

i Representation of USM

= Single linear list in row-major order
= Scan the nonzero elements of the sparse matrix in row-major order
= Each nonzero element is represented by a triple
(row, column, value)
= The list of triples may be an array list or a linked list (chain)

SNU
Data Structures 45 IDB Lab.

i USM is viewed as Single Linear List

00304 list =
00570 row |11224l4
00000 column 35 3 4 2|3

02600 value |3457 216

SNU
Data Structures 46 IDB Lab.

USM is implemented

i using Array Linear List
row 1122414

list = coumn 3 5342 3
value 3457 26

element[] 0 12 345
row| 112244
column| 353423
valuee 3457 28

SNU
Data Structures 47 IDB Lab.

USM implementation
‘L using array linear list

= Node Structure

VZIBEY next

SNU
Data Structures 48 IDB Lab.

USM Implementation

i using array linear list
row |112244
ist = column |3 53 423
value (3457 2 6

E# :

firstNode

SNU
Data Structures 49 IDB Lab.

i One Linear List Per Row

e USM is viewed as array of linear list
= Synonym: Array of row chains

00304
00570
00000
02600

Data Structures

rowl =
row2 =
row3 =
row4d =

(3.3), (5.4)
(35). (4.7)

|
(2,2), (3,6)]

50

SNU
IDB Lab.

USM implementation
& using array of row chains (1/2)

= Each row has a chain of the following node structure

ll value |

SNU
Data Structures 51 IDB Lab.

USM implementation
i using array of row chains (2/2)

00304
00570
00000
02600

row([]

SNU
Data Structures 52 IDB Lab.

USM implementation
using Orthogonal Lists

Both row and column lists

More expensive than array of row chains
More complicated implementation

Not much advantage!

Node structure

row

down

SNU
Data Structures 53 IDB Lab.

SNU
Data Structures 54 IDB Lab.

‘L Column Lists

00304
00570
00000
02600

SNU
Data Structures 55 IDB Lab.

‘L Orthogonal Lists

00304
00570
00000
02600

null

row[] _)E
56

SNU

Data Structures IDB Lab.

Approximate Memory Requirements

= 500 x 500 matrix with 1994 nonzero elements
« 2D array: 500 x 500 x 4 = 1million bytes
= Single Array Linear List: 3 x 1994 x4 = 23,928 bytes
= One Chain Per Row: 23928 + 500 x 4 = 25,928 bytes
= Orthogonal List: your job!

SNU
Data Structures 57 IDB Lab.

i Runtime Performance (1/2)

= Matrix Transpose operation
s 500 x 500 matrix with 1994 nonzero elements

= 2D array 210 ms
= Array Linear List 6 ms
= One Chain Per Row 12 ms

SNU
Data Structures 58 IDB Lab.

i Runtime Performance (2/2)

= Matrix Addition operation
= 500 x 500 matrices with 1994 and 999 nonzero elements

= 2D array 880 ms
= Array Linear List 18 ms
= One Chain Per Row 29 ms

SNU
Data Structures 59 IDB Lab.

Summary

= In practice, data are often in tabular form
= Arrays are the most natural way to represent it

= Reduce both the space and time requirements by using a customized
representation

= This chapter
= Representation of a multidimensional array
= Row major and column major representation
= Develop the class Matrix
= Represent two-dimensional array
= Indexed beginning at 1 rather than 0
= Support operations such as add, multiply, and transpose
= Introduce matrices with special structures
= Diagonal, triangular, and symmetric matrices
= Sparse matrix

SNU
Data Structures 60 IDB Lab.

