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Bird's-Eye View

= In practice, data are often in tabular form
= Arrays are the most natural way to represent it
= Want to reduce both the space and time requirements by using a
customized representation
= This chapter
= Representation of a multidimensional array
= Row major and column major representation
= Develop the class Matrix
= Represent two-dimensional array
= Indexed beginning at 1 rather than 0
= Support operations such as add, multiply, and transpose
= Introduce matrices with special structures
= Diagonal, triangular, and symmetric matrices
= Sparse matrix
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i Table of Contents

= Arrays

= Matrices

= Special Matrices
= Sparse Matrices
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i The Abstract Data Type: Array

AbstractDataTyp@rray
{
Instances
set of (index, value) pairs, no two pairs have theesiathex

operations
get(index): return the value of the pair with this index
set(index, value) add this pair to set of pairs, overwrite
existing one (if any) with the same index
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i Indexing a Java Array

= Arrays are a standard data structure in Java

= The index (subscript) of an array in Java
= [i1] [i2] [is]... [ix]

= Creating a 3-dimensional array score
= int [][][] score = new int [u1][uz] [us]

= Java initializes every element of an array to the default value for the
data type of the array’s components

= Primitive data types vs. User-defined data types
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| 1-D Array Representation in Java, C, C++

Memory

—

Start

= 1-dimensional array x = [a, b, ¢, d]

= X[0], X[1], X[2], X[3]
= Map into contiguous memory locations
= |ocation(x[i]) = start + i
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i Space Overhead

Memory

—

start

= Space overhead = 4 bytes for start + 4 bytes for x.length
= 8 bytes
(Excluding space needed for the elements of x)
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i 2-D Arrays

= The elements of a 2-dimensional array “a” declared as
« int[][]a = new int[3][4];

= May be shown as table
a[0][0] a[0][1] a[0][2] a[0][3]
a[1][0] a[1][1] a[1][2] a[1][3]
a[2][0] a[2][1] a[2][2] a[2][3]
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‘L Rows of a 2-D Array

row 0
row 1
row 2
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‘L Columns of a 2-D Array

0 a[0][2] 3
1][0 1 a[1][21 a[113
0 11 a[2][2] 3

Y

column O column 1l column?2 column 3
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Array of Arrays Representation (1/5)

= Same in Java, C, and C++
= Two-dimensional array is represented as a one-dimensional array

= The one-dimensional array’s each element is, itself, a one-dimensional array

SNU
Data Structures 11 IDB Lab.



i Array of Arrays Representation (2/5)

= int[][]x = new int[3][5]
= A one-dimensional array x (length 3)
= Each element of x is a one-dimensional array (length5)

[O][1] [2][3] [4]
X[0]

X[1]

X[2]
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Array of Arrays Representation (3/5)

= 2-dimensional array x

a, b, ¢ d

eI fl gl h

il jl I(I I

= View 2-D array as a 1-D arrays of rows

X = [row0, rowl, row2]
row 0 =[a, b, ¢, d]
rowl =g, f, g, h]
row 2 =i, j, k, 1]

= So, store as 4 1-D arrays which require contiguous memory of size 3, 4,
4, and 4 respectively
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i Array of Arrays Representation (4/5)

X[]

= Array length
= X.length =3
= x[0].length = x[1].length = x[2].length = 4
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i Array of arrays representation (5/5)

X[]

= Space overhead = overhead for 4 1-D arrays
= 4 * 8 bytes = 32 bytes
= (num of rows + 1) x (start pointer + length variable)
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i 2-D to 1-D: Row-Major Mapping

Example 3 x 4 array
a, b,cd
e f, gh
i, 3, k|
= Convert into 1-D array y by collecting elements by rows
= Within a row elements are collected from left to right
= Rows are collected from top to bottom

u We get Y[] = {al bI CI dl el fl gl hl II jl kl I}

SNU
Data Structures 16 IDB Lab.



i Locating Element x[i][j]
[rowo [ rows [row2 [ .. Jrowi | [ |

= Assume x has r rows and c columns

= Each row has c elements

= There are i rows to the left of row i starting with x[i][0]

= Soi* celements to the left of x[i][0]

= So x[i][j] is mapped to position of i * ¢ + j of the 1D array
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i Space Overhead for 2D array
lrowo [rowa [row2 | .. Jrowi|[ [ |

= Assume x has r rows and c columns
= 4 bytes for start of 1D array +
4 bytes for length of 1D array +
4 bytes for c (number of columns) = 12 bytes
= number of rows r = length / c
= Disadvantage: should have contiguous memory of size r * c
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i 2-D to 1-D: Column Major Mapping

a, b, c d

e f, g, h

i, j, Kk, |
= Convert into 1D array y by collecting elements by columns
= Within a column elements are collected from top to bottom
= Columns are collected from left to right

= We gety = {al €, il bl fI jl C, g, kl dl hl I}
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i Irregular Two-Dimensional Arrays

= Arrays with two or more rows that have a different number of elements
= Size[i] fori (i is the row number)
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Creating and Using an Irregular Array

// declare a two-dimensional array variable
// and allocate the desired number of rows
int [][] irregularArray = new int [numberOfRows][];

// now allocate space for the elements in each row
for (inti = 0; i < numberOfRows; i++)
irreqularArray[i] = new int [size[i]];

// use the array like any regular array
irreqularArray[2][3] = 5;

irreqularArray[4][6] = irregularArray[2][3] + 2;
irreqularArray[1][1] += 3;
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i Table of Contents

= Arrays

= Matrices

= Special Matrices
= Sparse Matrices
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i Matrix

= Table of values

= has as rows and columns like 2-D array, but numbering begins at 1
rather than O

abcd row 1
ef gh row 2
i j k| row 3

= Use notation x(i, j) rather than x[i][j]

= Sometimes, we may use Java’s 2-D array to represent a
matrix
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Pitfalls of using a 2D Array for a Matrix

= A[0,*] and A[*,0] of 2D array cannot be used

= Java arrays do not support matrix operations such as add, transport,
multiply, and so on

= i.e. Suppose that x and y are 2D arrays, we cannotdo x + vy, x —y, x * v,
etc. directly in java

= S0, need to develop a class Matrix for object-oriented support of all
matrix operations
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i The Class Matrix

= Uses 1-D array element to store a matrix in row-major order
= The CloneableObject interface has clone() and copy()

public class Matrix implements CloneableObiject {
int rows, cols; // matrix dimensions
Object [] element; // element array

public Matrix(int theRows, int theColumns) {
rows = theRows;
cols = theColumns;
element = new Object [ rows * cols];

¥
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clone() & copy() of Matrix

public Object clone() { // return a clone of the matix
Matrix x = new Matrix(rows, cols);
for (int i=0; i < rows * cols; i++)
x.element[i] = ((CloneableObject) element[i]).clone();
return Xx;

}

public void copy(Matrix m) { // copy the references in m into this
if (this '=m) {
FOWS = M.rows;
cols = m.cols;
element = new Object[rows * cols];
for (int i=0; i < rows * cols; i++)
element[i] = m.element[i]; // copy each reference

¥
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get() & set() of Matrix

@return the element thisl[i, j]
* @throws IndexOutOfBoundsException when i or j invalid */
public Object get(int i, intj) {
checkIndex(i, j); // validate index
return element[(i— 1) * cols + j -1];

[**set this(i, j) = newValue
* @throws IndexOutOfBoundsException when i or j invalid */
public void set(int i, int j, Object newValue) {
checkIndex(i, j);
element[(i — 1) * cols + j — 1] = newValue;
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add() of Matrix

[**@return the this + m

* @throws IllegalArgumentException when matrices are incomputible */
public Matrix add(Matrix m) {
if (rows = m.rows || cols = m.cols)
throw new IllegalArgumentException(“*Imcompatible™);

// create result matrix w

Matrix w = new Matrix(rows, cols);

int numberOfTerms = rows * cols;

for (int i=0; i < numberOfTerms; i++)

w.element[i] = ((Computable) element[i]).add(m.element[i]));
return w;
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i Complexity of Matrix operations

= Constructor: O(rows * cols)

= Clone(), Copy(), Add(): O(rows * cols)

= Multiply():
= Program 8.6 at pp 270

0 O(this.row * this.cols * m.cols)
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i Table of Contents

= Arrays

= Matrices

s Special Matrices
= Sparse Matrices
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i Special Matrix Definitions

= Diagonal = M(i,j)=0fori=]j

= Tridiagonal = M(,j)=0for|i—=j] > 1
= Lower triangular = M(i, j) = 0 fori < j
= Upper triangular = M(i, j) = 0 fori > j

= Symmetric = M(, j) = M(j, i) for all i, ]
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i Diagonal Matrix

000
00O
O0RO
000

An n x n matrix in which all nonzero terms are on the diagonal
X(i, j) is on diagonal iff i = j

Number of diagonal elements in an n x n matrix is n

Non diagonal elements are zero

Store diagonal only vs store n2 whole
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The Class DiagonalMatrix

p class DiagonalMatrix {
int rows; // matrix dimension (no cols!)
Object zero; // zero element
Object [] element; // element array

public DiagonalMatrix (int theRows, Object theZero) {
if (theRow < 1)
throw new IllegalArgumentException(“row >0");
rows = theRows;
zero = theZero;
for (int i=0; i<rows; i++)
element[i] = zero; //construct only the diagonal elements

}
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get() and set() for diagonal matrix

public Object get(int i, intj) {
checkIndex(i, j); // validate index
if (i == j) return element[i — 1]; // return only the diagonal element
else return zero; // nondiagonal element

public void set(int i, int j, Object newValue) {
if (i == j) element[i — 1] = newValue; // save only the diagonal element
else // nondiagonal element, newValue must be zero
if (1((Zero)newValue).equalsZero())
throw new IllegalArgumenetException(“must be zero”);

SNU
Data Structures 34 IDB Lab.



i Tridiagonal Matrix

= The nonzero elements lie on only the 3 diagonals
= Main diagonal: M(i, j) where i = j
= Diagonal below main diagonal: M(i, j) wherei=j + 1
= Diagonal above main diagonal: M(i, j) wherej =j -1
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i Lower Triangular Matrix (LTM)

= An n X n matrix in which all nonzero terms are either on or below the
diagonal.

100 0
239 0
4560

______________

= X(i, j) is part of lower triangular iff i>=j
= Number of elements in lower triangle is 1+ 2+ 3+ ... + n=n(n+1) / 2
= Store only the lower triangle
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i LTM: Array of Arrays Representation

X[]

= Use an irregular 2D array: length of rows is not required
to be the same
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i Map LTM into a 1D Array

= Use row-major order, but omit terms that are not part of
the lower triangle

= For the matrix
1000
2300
456 0
/78910
= We get
1,2,3,4,5,6,7,8,9, 10
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i LTM: Index of Element[i][j]

= Suppose we store the LTM using 1D array
= Orderis: row 1, row 2, row 3, ...
= Row iis preceded by rows 1, 2, ..., i-1
= Sizeof rowiisi
= Number of elements that precede row i is
1+2+3+ ..+ (1) =i(-1)/2
= So element (i,j) is at position i(i-1)/2 + j -1 of the 1D array
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i Table of Contents

= Arrays

= Matrices

= Special Matrices
= Sparse Matrices
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i Sparse Matrices

= Sparse matrix = Many elements are zero
= Dense matrix = Few elements are zero

= The boundary between a dense and a sparse matrix is not
precisely defined

= Structured sparse matrices
Diagonal
Tridiagonal
Lower triangular

= May be mapped into a 1D array so that a mapping function
can be used to locate an element
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Unstructured Sparse Matrices (USM) (1/2)

= Airline flight matrix
= airports are numbered 1 through n (say 1000 airports)
« flight(i,j) = list of nonstop flights from airport i to airport j
= 1000 X 1000 matrix =» 1 million possible flights
= N x n array of list references = need 4 million bytes
= However, only total number of flights = 20,000 (say)
= need at most 20,000 list references =» at most 80,000 bytes
= We need an economic representation!
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Unstructured Sparse Matrices (USM) (2/2)

= Web page matrix

= Wweb pages are numbered 1 through n

= Millions of trillions of web pages

= web(i,j) = number of links from page i to page j

= The number of links is very very smaller than the number of web pages
= Web analysis

= authority page ... page that has many links to it

=« hub page ... links to many authority pages
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i Facts of Web Page Matrix

= n = 2 billion (and growing by 1 million a day)

= nXxnarray of ints = 16 * 1018 bytes (16 * 10° GB)
= Each page links to 10 (say) other pages on average
= On average there are 10 nonzero entries per row

= Space needed for nonzero elements is approximately 20 billion
X 4 bytes = 80 billion bytes (80 GB)
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i Representation of USM

= Single linear list in row-major order
= Scan the nonzero elements of the sparse matrix in row-major order
= Each nonzero element is represented by a triple
(row, column, value)
= The list of triples may be an array list or a linked list (chain)
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i USM is viewed as Single Linear List

00304 list =
00570 row |11224l4
00000 column 35 3 4 2|3

02600 value |3457 216
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USM is implemented

i using Array Linear List
row 1122414

list = coumn 3 5342 3
value 3457 26

element[] 0 12 345
row| 112244
column| 353423
valuee 3457 28
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USM implementation
‘L using array linear list

= Node Structure

VZIBEY next
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USM Implementation

i using array linear list
row |112244
ist = column |3 53 423
value (3457 2 6

E# :

firstNode
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i One Linear List Per Row

e USM is viewed as array of linear list
= Synonym: Array of row chains

00304
00570
00000
02600

Data Structures

rowl =
row2 =
row3 =
row4d =

(3.3), (5.4)
(35). (4.7)

|
(2,2), (3,6)]

50
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USM implementation
& using array of row chains (1/2)

= Each row has a chain of the following node structure

ll value |
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USM implementation
i using array of row chains (2/2)

00304
00570
00000
02600

row([]
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USM implementation
using Orthogonal Lists

Both row and column lists

More expensive than array of row chains
More complicated implementation

Not much advantage!

Node structure

row

down
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‘L Column Lists

00304
00570
00000
02600
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‘L Orthogonal Lists

00304
00570
00000
02600

null

row[] _)E
56
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Approximate Memory Requirements

= 500 x 500 matrix with 1994 nonzero elements
« 2D array: 500 x 500 x 4 = 1million bytes
= Single Array Linear List: 3 x 1994 x4 = 23,928 bytes
= One Chain Per Row: 23928 + 500 x 4 = 25,928 bytes
= Orthogonal List: your job!
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i Runtime Performance (1/2)

= Matrix Transpose operation
s 500 x 500 matrix with 1994 nonzero elements

= 2D array 210 ms
= Array Linear List 6 ms
= One Chain Per Row 12 ms
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i Runtime Performance (2/2)

= Matrix Addition operation
= 500 x 500 matrices with 1994 and 999 nonzero elements

= 2D array 880 ms
= Array Linear List 18 ms
= One Chain Per Row 29 ms
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Summary

= In practice, data are often in tabular form
= Arrays are the most natural way to represent it

= Reduce both the space and time requirements by using a customized
representation

= This chapter
= Representation of a multidimensional array
= Row major and column major representation
= Develop the class Matrix
= Represent two-dimensional array
= Indexed beginning at 1 rather than 0
= Support operations such as add, multiply, and transpose
= Introduce matrices with special structures
= Diagonal, triangular, and symmetric matrices
= Sparse matrix
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